|
- /*******************************************************************************
- Copyright (c) 2023, The OpenBLAS Project
- All rights reserved.
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions are
- met:
- 1. Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- 2. Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in
- the documentation and/or other materials provided with the
- distribution.
- 3. Neither the name of the OpenBLAS project nor the names of
- its contributors may be used to endorse or promote products
- derived from this software without specific prior written permission.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE
- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
- USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *******************************************************************************/
- #define ASSEMBLER
-
- #include "common.h"
- #include "loongarch64_asm.S"
-
- /*********************************************************************
- * 2023/08/26 guxiwei
- * UTEST : OK
- * CTEST : OK
- * TEST : OK
- *
- *
- *********************************************************************/
-
- /* int CNAME(BLASLONG m, BLASLONG n, BLASLONG k, FLOAT dummy1, FLOAT *a, FLOAT *b,
- * FLOAT *c, BLASLONG ldc, BLASLONG offset)
- */
-
- #define M $r4 // param 1: bm
- #define N $r5 // param 2: bn
- #define K $r6 // param 3: bk
- #define A $r7 // param 5: ba
- #define B $r8 // param 6: bb
- #define C $r9 // param 7: bc
- #define LDC $r10 // param 8: ldc
- #define OFFSET $r11 // param 9: offset
-
- /* Cycle control parameters */
- #define I $r13
- #define J $r14
- #define L $r15
- #define TL $r16
- /* Matrix address */
- #define A0 $r17
- #define B0 $r18
- #define C0 $r19
- #define C1 $r20
- #define C2 $r23
- #define C3 $r24
- #define T0 $r25
- #define T1 $r26
- #define T2 $r27
- #define KK $r28
- #define AA $r29
- #define CC $r30
- #define BB B0
- #undef ZERO
- #define ZERO $r0
-
- #define U0 $xr0
- #define U1 $xr1
- #define U2 $xr2
- #define U3 $xr3
- #define U4 $xr4
- #define U5 $xr5
- #define U6 $xr6
- #define U7 $xr7
- #define U8 $xr8
- #define U9 $xr9
- #define U10 $xr10
- #define U11 $xr11
- #define U12 $xr12
- #define U13 $xr13
- #define U14 $xr14
- #define U15 $xr15
- #define D0 $xr16
- #define D1 $xr17
- #define D2 $xr18
- #define D3 $xr19
- #define D4 $xr20
- #define D5 $xr21
- #define D6 $xr22
- #define D7 $xr23
- #define D8 $xr24
- #define D9 $xr25
- #define D10 $xr26
- #define D11 $xr27
- #define D12 $xr28
- #define D13 $xr29
- #define D14 $xr30
- #define D15 $xr31
- #define G0 D0
- #define G1 D1
- #define G2 D2
- #define G3 D3
- #define G4 D4
- #define G5 D5
- #define G6 D6
- #define G7 D7
- #define G8 D8
- #define G9 D9
- #define G10 D10
- #define G11 D11
- #define G12 D12
- #define G13 D13
- #define G14 D14
- #define G15 D15
-
- /* Prefetch interval */
- #define A_PRE 0x400
- #define B_PRE 0x100
-
- #include "dtrsm_kernel_macro.S"
-
- .macro ldrepl_macro stride:req, index:req, more:vararg
- // Load Ux (x = 0...15)
- GLDREPL xv, d, $xr\index, A0, \index * 8 - \stride * 8
- .ifnb \more
- ldrepl_macro \stride, \more
- .endif
- .endm
- .macro nmsub_macro reg:req, start0:req, start1:req, more:vararg
- // Gx -= reg * Ux
- xvfnmsub.d $xr\start0, \reg, $xr\start1, $xr\start0
- .ifnb \more
- nmsub_macro \reg, \more
- .endif
- .endm
- .macro B_st_macro N:req, stride:req, start:req, more:vararg
- // Store Gx(x = 16...31)
- .if \N == 4
- xvst $xr\start, B0, \start * 0x20 - \stride * 0x20
- .elseif \N == 2
- vst $vr\start, B0, \start * 0x10 - \stride * 0x10
- .elseif \N == 1
- fst.d $f\start, B0, \start * 0x08 - \stride * 0x08
- .endif
- .ifnb \more
- B_st_macro \N, \stride, \more
- .endif
- .endm
-
- .macro dsolve_16 N
- // The data layout of C (4x16) is as follows (store 4 data in each register):
- // U0 U1 U2 U3
- // U4 U5 U6 U7
- // U8 U9 U10 U11
- // U12 U13 U14 U15
- // The first step is to transpose the result of C
- GTRANSPOSE4x4_D U3, U7, U11, U15, G12, G13, G14, G15, D0, D1
- GTRANSPOSE4x4_D U2, U6, U10, U14, G8, G9, G10, G11, D0, D1
- GTRANSPOSE4x4_D U1, U5, U9, U13, G4, G5, G6, G7, U3, U7
- GTRANSPOSE4x4_D U0, U4, U8, U12, G0, G1, G2, G3, U3, U7
- // Now we have the following memory layout of C:
- // 0 1 2 3 ... 15
- // 0 | | | | | | |
- // 1 | G0 | G1 | G2 | G3 | ... | G15 |
- // 2 | | | | | | |
- // 3 | | | | | | |
- // Next we are going to process matrix A with a size of 16x16,
- // using only the upper triangular portion. The memory layout of
- // matrix A is as follows, quite large.
- //0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
- // 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
- // 34 35 36 37 38 39 40 41 42 43 44 45 46 47
- // 51 52 53 54 55 56 57 58 59 60 61 62 63
- // 68 69 70 71 72 73 74 75 76 77 78 79
- // 85 86 87 88 89 90 91 92 93 94 95
- // 102 103 104 105 106 107 108 109 110 111
- // 119 120 121 122 123 124 125 126 127
- // 136 137 138 139 140 141 142 143
- // 153 154 155 156 157 158 159
- // 170 171 172 173 174 175
- // 187 188 189 190 191
- // 204 205 206 207
- // 221 222 223
- // 238 239
- // 255
- // Sequentially extract data from A in row order
- // Load 0
- ldrepl_macro 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- GMUL xvf, d, G0, G0, U0
- nmsub_macro G0, 17, 1, 18, 2, 19, 3, 20, 4, 21, 5, 22, 6, 23, 7, 24, 8, \
- 25, 9, 26, 10, 27, 11, 28, 12, 29, 13, 30, 14, 31, 15
- PTR_ADDI A0, A0, 17 * 8
- // Load 1
- ldrepl_macro 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- GMUL xvf, d, G1, G1, U1
- nmsub_macro G1, 18, 2, 19, 3, 20, 4, 21, 5, 22, 6, 23, 7, 24, 8, \
- 25, 9, 26, 10, 27, 11, 28, 12, 29, 13, 30, 14, 31, 15
- PTR_ADDI A0, A0, 17 * 8
- // Load 2
- ldrepl_macro 2, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- GMUL xvf, d, G2, G2, U2
- nmsub_macro G2, 19, 3, 20, 4, 21, 5, 22, 6, 23, 7, 24, 8, 25, 9, 26, \
- 10, 27, 11, 28, 12, 29, 13, 30, 14, 31, 15
- PTR_ADDI A0, A0, 17 * 8
- // Load 3
- ldrepl_macro 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- GMUL xvf, d, G3, G3, U3
- nmsub_macro G3, 20, 4, 21, 5, 22, 6, 23, 7, 24, 8, 25, 9, 26, 10, \
- 27, 11, 28, 12, 29, 13, 30, 14, 31, 15
- PTR_ADDI A0, A0, 17 * 8
- // Load 4
- ldrepl_macro 4, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- GMUL xvf, d, G4, G4, U4
- nmsub_macro G4, 21, 5, 22, 6, 23, 7, 24, 8, 25, 9, 26, 10, 27, 11, \
- 28, 12, 29, 13, 30, 14, 31, 15
- PTR_ADDI A0, A0, 17 * 8
- // Load 5
- ldrepl_macro 5, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- GMUL xvf, d, G5, G5, U5
- nmsub_macro G5, 22, 6, 23, 7, 24, 8, 25, 9, 26, 10, 27, 11, 28, 12, \
- 29, 13, 30, 14, 31, 15
- PTR_ADDI A0, A0, 17 * 8
- // Load 6
- ldrepl_macro 6, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
- GMUL xvf, d, G6, G6, U6
- nmsub_macro G6, 23, 7, 24, 8, 25, 9, 26, 10, 27, 11, 28, 12, 29, 13, \
- 30, 14, 31, 15
- PTR_ADDI A0, A0, 17 * 8
- // Load 7
- ldrepl_macro 7, 7, 8, 9, 10, 11, 12, 13, 14, 15
- GMUL xvf, d, G7, G7, U7
- nmsub_macro G7, 24, 8, 25, 9, 26, 10, 27, 11, 28, 12, 29, 13, 30, 14, 31, 15
- PTR_ADDI A0, A0, 17 * 8
- // Load 8
- ldrepl_macro 8, 8, 9, 10, 11, 12, 13, 14, 15
- GMUL xvf, d, G8, G8, U8
- nmsub_macro G8, 25, 9, 26, 10, 27, 11, 28, 12, 29, 13, 30, 14, 31, 15
- PTR_ADDI A0, A0, 17 * 8
- // Load 9
- ldrepl_macro 9, 9, 10, 11, 12, 13, 14, 15
- GMUL xvf, d, G9, G9, U9
- nmsub_macro G9, 26, 10, 27, 11, 28, 12, 29, 13, 30, 14, 31, 15
- PTR_ADDI A0, A0, 17 * 8
- // Load 10
- ldrepl_macro 10, 10, 11, 12, 13, 14, 15
- GMUL xvf, d, G10, G10, U10
- nmsub_macro G10, 27, 11, 28, 12, 29, 13, 30, 14, 31, 15
- PTR_ADDI A0, A0, 17 * 8
- // Load 11
- ldrepl_macro 11, 11, 12, 13, 14, 15
- GMUL xvf, d, G11, G11, U11
- nmsub_macro G11, 28, 12, 29, 13, 30, 14, 31, 15
- PTR_ADDI A0, A0, 17 * 8
- // Load 12
- ldrepl_macro 12, 12, 13, 14, 15
- GMUL xvf, d, G12, G12, U12
- nmsub_macro G12, 29, 13, 30, 14, 31, 15
- PTR_ADDI A0, A0, 17 * 8
- // Load 13
- ldrepl_macro 13, 13, 14, 15
- GMUL xvf, d, G13, G13, U13
- nmsub_macro G13, 30, 14, 31, 15
- PTR_ADDI A0, A0, 17 * 8
- // Load 14
- ldrepl_macro 14, 14, 15
- GMUL xvf, d, G14, G14, U14
- nmsub_macro G14, 31, 15
- PTR_ADDI A0, A0, 17 * 8
- // Load 15
- ldrepl_macro 15, 15
- GMUL xvf, d, G15, G15, U15
- // Finally, We can store the result.
- // For B, stored sequentially, and C, first transpose and then store
- B_st_macro \N, 16, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
- GTRANSPOSE4x4_D G0, G1, G2, G3, G0, G1, G2, G3, U0, U1
- GTRANSPOSE4x4_D G4, G5, G6, G7, G4, G5, G6, G7, U0, U1
- GTRANSPOSE4x4_D G8, G9, G10, G11, G8, G9, G10, G11, U0, U1
- GTRANSPOSE4x4_D G12, G13, G14, G15, G12, G13, G14, G15, U0, U1
- .if \N == 4
- GST xv, , G0, C0, 0x00, G4, C0, 0x20, G8, C0, 0x40, G12, C0, 0x60, \
- G1, C1, 0x00, G5, C1, 0x20, G9, C1, 0x40, G13, C1, 0x60, \
- G2, C2, 0x00, G6, C2, 0x20, G10, C2, 0x40, G14, C2, 0x60, \
- G3, C3, 0x00, G7, C3, 0x20, G11, C3, 0x40, G15, C3, 0x60
- .elseif \N == 2
- GST xv, , G0, C0, 0x00, G4, C0, 0x20, G8, C0, 0x40, G12, C0, 0x60, \
- G1, C1, 0x00, G5, C1, 0x20, G9, C1, 0x40, G13, C1, 0x60
- .elseif \N == 1
- GST xv, , G0, C0, 0x00, G4, C0, 0x20, G8, C0, 0x40, G12, C0, 0x60
- .endif
- .endm
-
- .macro dgemm_dsolve_16x4
- bge ZERO, KK, .L_dsolve_16x4_load
- dgemm_16x4
- b .L_dsolve_16x4
- .L_dsolve_16x4_load:
- // Load C
- GLD xv, , U0, C0, 0x00, U1, C0, 0x20, U2, C0, 0x40, U3, C0, 0x60
- GLD xv, , U4, C1, 0x00, U5, C1, 0x20, U6, C1, 0x40, U7, C1, 0x60
- GLD xv, , U8, C2, 0x00, U9, C2, 0x20, U10, C2, 0x40, U11, C2, 0x60
- GLD xv, , U12, C3, 0x00, U13, C3, 0x20, U14, C3, 0x40, U15, C3, 0x60
- /********************** solver ******************/
- .L_dsolve_16x4:
- dsolve_16 4
- .endm
-
- .macro dsolve_8 N
- // The data layout of C (4x8) is as follows (store 4 data in each register):
- // U0 U1
- // U2 U3
- // U4 U5
- // U6 U7
- // The first step is to transpose the result of C
- GTRANSPOSE4x4_D U1, U3, U5, U7, G4, G5, G6, G7, G8, G9
- GTRANSPOSE4x4_D U0, U2, U4, U6, G0, G1, G2, G3, G8, G9
- // Now we have the following memory layout of C:
- // 0 1 2 3 ... 7
- // 0 | | | | | | |
- // 1 | G0 | G1 | G2 | G3 | ... | G7 |
- // 2 | | | | | | |
- // 3 | | | | | | |
- // Next we are going to process matrix A with a size of 8x8,
- // using only the upper triangular portion. The memory layout of
- // matrix A is as follows:
- //0 1 2 3 4 5 6 7
- // 9 10 11 12 13 14 15
- // 18 19 20 21 22 23
- // 27 28 29 30 31
- // 36 37 38 39
- // 45 46 47
- // 54 55
- // 63
- // Sequentially extract data from A in row order
- // Load 0
- ldrepl_macro 0, 0, 1, 2, 3, 4, 5, 6, 7
- GMUL xvf, d, G0, G0, U0
- nmsub_macro G0, 17, 1, 18, 2, 19, 3, 20, 4, 21, 5, 22, 6, 23, 7
- PTR_ADDI A0, A0, 9 * 8
- // Load 1
- ldrepl_macro 1, 1, 2, 3, 4, 5, 6, 7
- GMUL xvf, d, G1, G1, U1
- nmsub_macro G1, 18, 2, 19, 3, 20, 4, 21, 5, 22, 6, 23, 7
- PTR_ADDI A0, A0, 9 * 8
- // Load 2
- ldrepl_macro 2, 2, 3, 4, 5, 6, 7
- GMUL xvf, d, G2, G2, U2
- nmsub_macro G2, 19, 3, 20, 4, 21, 5, 22, 6, 23, 7
- PTR_ADDI A0, A0, 9 * 8
- // Load 3
- ldrepl_macro 3, 3, 4, 5, 6, 7
- GMUL xvf, d, G3, G3, U3
- nmsub_macro G3, 20, 4, 21, 5, 22, 6, 23, 7
- PTR_ADDI A0, A0, 9 * 8
- // Load 4
- ldrepl_macro 4, 4, 5, 6, 7
- GMUL xvf, d, G4, G4, U4
- nmsub_macro G4, 21, 5, 22, 6, 23, 7
- PTR_ADDI A0, A0, 9 * 8
- // Load 5
- ldrepl_macro 5, 5, 6, 7
- GMUL xvf, d, G5, G5, U5
- nmsub_macro G5, 22, 6, 23, 7
- PTR_ADDI A0, A0, 9 * 8
- // Load 6
- ldrepl_macro 6, 6, 7
- GMUL xvf, d, G6, G6, U6
- nmsub_macro G6, 23, 7
- PTR_ADDI A0, A0, 9 * 8
- // Load 7
- ldrepl_macro 7, 7
- GMUL xvf, d, G7, G7, U7
- // Finally, We can store the result.
- // For B, stored sequentially, and C, first transpose and then store
- B_st_macro \N, 16, 16, 17, 18, 19, 20, 21, 22, 23
- GTRANSPOSE4x4_D G0, G1, G2, G3, G0, G1, G2, G3, U0, U1
- GTRANSPOSE4x4_D G4, G5, G6, G7, G4, G5, G6, G7, U0, U1
- .if \N == 4
- GST xv, , G0, C0, 0x00, G4, C0, 0x20, \
- G1, C1, 0x00, G5, C1, 0x20, \
- G2, C2, 0x00, G6, C2, 0x20, \
- G3, C3, 0x00, G7, C3, 0x20
- .elseif \N == 2
- GST xv, , G0, C0, 0x00, G4, C0, 0x20, \
- G1, C1, 0x00, G5, C1, 0x20
- .elseif \N == 1
- GST xv, , G0, C0, 0x00, G4, C0, 0x20
- .endif
- .endm
-
- .macro dgemm_dsolve_8x4
- bge ZERO, L, .L_dsolve_8x4_load
- dgemm_8x4
- b .L_dsolve_8x4
- .L_dsolve_8x4_load:
- /* Load C0 */
- xvld U0, C0, 0x00
- xvld U1, C0, 0x20
-
- /* Load C1 */
- xvld U2, C1, 0x00
- xvld U3, C1, 0x20
-
- /* Load C2 */
- xvld U4, C2, 0x00
- xvld U5, C2, 0x20
-
- /* Load C3 */
- xvld U6, C3, 0x00
- xvld U7, C3, 0x20
- /********* solver *********/
- .L_dsolve_8x4:
- dsolve_8 4
- .endm
-
- .macro dsolve_4 N
- // The data layout of C (4x4) is as follows (store 4 data in each register):
- // U0
- // U1
- // U2
- // U3
- // The first step is to transpose the result of C
- GTRANSPOSE4x4_D U0, U1, U2, U3, G0, G1, G2, G3, G4, G5
- // Now we have the following memory layout of C:
- // 0 1 2 3
- // 0 | | | | |
- // 1 | G0 | G1 | G2 | G3 |
- // 2 | | | | |
- // 3 | | | | |
- // Next we are going to process matrix A with a size of 4x4,
- // using only the upper triangular portion. The memory layout of
- // matrix A is as follows:
- //0 1 2 3
- // 5 6 7
- // 10 11
- // 15
- // Sequentially extract data from A in row order
- // Load 0
- ldrepl_macro 0, 0, 1, 2, 3
- GMUL xvf, d, G0, G0, U0
- nmsub_macro G0, 17, 1, 18, 2, 19, 3
- PTR_ADDI A0, A0, 5 * 8
- // Load 1
- ldrepl_macro 1, 1, 2, 3
- GMUL xvf, d, G1, G1, U1
- nmsub_macro G1, 18, 2, 19, 3
- PTR_ADDI A0, A0, 5 * 8
- // Load 2
- ldrepl_macro 2, 2, 3
- GMUL xvf, d, G2, G2, U2
- nmsub_macro G2, 19, 3
- PTR_ADDI A0, A0, 5 * 8
- // Load 3
- ldrepl_macro 3, 3
- GMUL xvf, d, G3, G3, U3
- // Finally, We can store the result.
- // For B, stored sequentially, and C, first transpose and then store
- B_st_macro \N, 16, 16, 17, 18, 19
- GTRANSPOSE4x4_D G0, G1, G2, G3, G0, G1, G2, G3, U0, U1
- .if \N == 4
- GST xv, , G0, C0, 0x00, G1, C1, 0x00, G2, C2, 0x00, G3, C3, 0x00
- .elseif \N == 2
- GST xv, , G0, C0, 0x00, G1, C1, 0x00
- .elseif \N == 1
- GST xv, , G0, C0, 0x00
- .endif
- .endm
-
- .macro dgemm_dsolve_4x4
- bge ZERO, L, .L_dsolve_4x4_load
- dgemm_4x4
- b .L_dsolve_4x4
- .L_dsolve_4x4_load:
- /* Load C0 */
- xvld U0, C0, 0x00
- /* Load C1 */
- xvld U1, C1, 0x00
- /* Load C2 */
- xvld U2, C2, 0x00
- /* Load C3 */
- xvld U3, C3, 0x00
- /************** solver *****************/
- .L_dsolve_4x4:
- dsolve_4 4
- .endm
-
- .macro dsolve_2 N
- // Transpose
- GSBUTTERFLY xv, d, G0, G1, U1, U0
- // Now we have the following memory layout of C:
- // 0 1
- // 0 | | |
- // 1 | G0 | G1 |
- // 2 | | |
- // 3 | | |
- // Next we are going to process matrix A with a size of 2x2,
- // using only the upper triangular portion. The memory layout of
- // matrix A is as follows:
- //0 1
- // 3
- // Sequentially extract data from A in row order
- // Load 0
- ldrepl_macro 0, 0, 1
- GMUL xvf, d, G0, G0, U0
- nmsub_macro G0, 17, 1
- PTR_ADDI A0, A0, 3 * 8
- // Load 1
- ldrepl_macro 1, 1
- GMUL xvf, d, G1, G1, U1
- // Finally, We can store the result.
- // For B, stored sequentially, and C, first transpose and then store
- B_st_macro \N, 16, 16, 17
- GSBUTTERFLY xv, d, U0, U1, G1, G0
- .if \N == 4
- vst $vr0, C0, 0x00
- vst $vr1, C1, 0x00
- xvstelm.d U0, C2, 0x00, 0x02
- xvstelm.d U1, C3, 0x00, 0x02
- xvstelm.d U0, C2, 0x08, 0x03
- xvstelm.d U1, C3, 0x08, 0x03
- .elseif \N == 2
- vst $vr0, C0, 0x00
- vst $vr1, C1, 0x00
- .elseif \N == 1
- vst $vr0, C0, 0x00
- .endif
- .endm
-
- .macro dgemm_dsolve_2x4
- bge ZERO, L, .L_dsolve_2x4_load
- dgemm_2x4
- b .L_dsolve_2x4
- .L_dsolve_2x4_load:
- /* Load C0 */
- xvld U0, C0, 0x00
- /* Load C1 */
- xvld U1, C1, 0x00
- /* Load C2 */
- xvld U2, C2, 0x00
- /* Load C3 */
- xvld U3, C3, 0x00
-
- xvpermi.q U0, U2, 0x02
- xvpermi.q U1, U3, 0x02
- /********************** solver ******************/
- .L_dsolve_2x4:
- dsolve_2 4
- .endm
-
- .macro dgemm_dsolve_1x4
- bge ZERO, L, .L_dsolve_1x4_load
- dgemm_1x4
- b .L_dsolve_1x4
- .L_dsolve_1x4_load:
- // Load C
- fld.d $f0, C0, 0x00
- fld.d $f1, C1, 0x00
- fld.d $f2, C2, 0x00
- fld.d $f3, C3, 0x00
- xvinsve0.d U0, U1, 0x01
- xvinsve0.d U0, U2, 0x02
- xvinsve0.d U0, U3, 0x03
- .L_dsolve_1x4:
- GLDREPL xv, d, D0, A0, 0x00
- GMUL xvf, d, U0, U0, D0
- // Store C
- xvstelm.d U0, C0, 0x00, 0x00
- xvstelm.d U0, C1, 0x00, 0x01
- xvstelm.d U0, C2, 0x00, 0x02
- xvstelm.d U0, C3, 0x00, 0x03
- // Store B
- xvst U0, B0, 0x00
- .endm
-
- .macro dgemm_dsolve_16x2
- bge ZERO, L, .L_dsolve_16x2_load
- dgemm_16x2
- b .L_dsolve_16x2
- .L_dsolve_16x2_load:
- /* Load C0 */
- xvld U0, C0, 0x00
- xvld U1, C0, 0x20
- xvld U2, C0, 0x40
- xvld U3, C0, 0x60
- /* Load C1 */
- xvld U4, C1, 0x00
- xvld U5, C1, 0x20
- xvld U6, C1, 0x40
- xvld U7, C1, 0x60
- .L_dsolve_16x2:
- dsolve_16 2
- .endm
-
- .macro dgemm_dsolve_8x2
- bge ZERO, L, .L_dsolve_8x2_load
- dgemm_8x2
- b .L_dsolve_8x2
- .L_dsolve_8x2_load:
- /* Load C0 */
- xvld U0, C0, 0x00
- xvld U1, C0, 0x20
- /* Load C1 */
- xvld U2, C1, 0x00
- xvld U3, C1, 0x20
- .L_dsolve_8x2:
- dsolve_8 2
- .endm
-
- .macro dgemm_dsolve_4x2
- bge ZERO, L, .L_dsolve_4x2_load
- dgemm_4x2
- b .L_dsolve_4x2
- .L_dsolve_4x2_load:
- /* Load C0 */
- xvld U0, C0, 0x00
- /* Load C1 */
- xvld U1, C1, 0x00
- .L_dsolve_4x2:
- dsolve_4 2
- .endm
-
- .macro dgemm_dsolve_1x2
- bge ZERO, L, .L_dsolve_1x2_load
- dgemm_1x2
- b .L_dsolve_1x2
- .L_dsolve_1x2_load:
- // Load C
- fld.d $f0, C0, 0x00
- fld.d $f1, C1, 0x00
- xvinsve0.d U0, U1, 0x01
- .L_dsolve_1x2:
- GLDREPL xv, d, D0, A0, 0x00
- GMUL xvf, d, U0, U0, D0
- // Store C
- xvstelm.d U0, C0, 0x00, 0x00
- xvstelm.d U0, C1, 0x00, 0x01
- // Store B
- vst $vr0, B0, 0x00
- .endm
-
- .macro dgemm_dsolve_2x2
- bge ZERO, L, .L_dsolve_2x2_load
- dgemm_2x2
- b .L_dsolve_2x2
- .L_dsolve_2x2_load:
- /* Load C0 */
- xvld U0, C0, 0x00
- /* Load C1 */
- xvld U1, C1, 0x00
- .L_dsolve_2x2:
- dsolve_2 2
- .endm
-
- .macro dgemm_dsolve_16x1
- bge ZERO, L, .L_dsolve_16x1_load
- dgemm_16x1
- b .L_dsolve_16x1
- .L_dsolve_16x1_load:
- /* Load C0 */
- xvld U0, C0, 0x00
- xvld U1, C0, 0x20
- xvld U2, C0, 0x40
- xvld U3, C0, 0x60
- .L_dsolve_16x1:
- dsolve_16 1
- .endm
-
- .macro dgemm_dsolve_8x1
- bge ZERO, L, .L_dsolve_8x1_load
- dgemm_8x1
- b .L_dsolve_8x1
- .L_dsolve_8x1_load:
- /* Load C0 */
- xvld U0, C0, 0x00
- xvld U1, C0, 0x20
- .L_dsolve_8x1:
- dsolve_8 1
- .endm
-
- .macro dgemm_dsolve_4x1
- bge ZERO, L, .L_dsolve_4x1_load
- dgemm_4x1
- b .L_dsolve_4x1
- .L_dsolve_4x1_load:
- /* Load C0 */
- xvld U0, C0, 0x00
- .L_dsolve_4x1:
- dsolve_4 1
- .endm
-
- .macro dgemm_dsolve_2x1
- bge ZERO, L, .L_dsolve_2x1_load
- dgemm_2x1
- b .L_dsolve_2x1
- .L_dsolve_2x1_load:
- /* Load C0 */
- xvld U0, C0, 0x00
- .L_dsolve_2x1:
- dsolve_2 1
- .endm
-
- .macro dgemm_dsolve_1x1
- bge ZERO, L, .L_dsolve_1x1_load
- dgemm_1x1
- b .L_dsolve_1x1
- .L_dsolve_1x1_load:
- // Load C
- fld.d $f0, C0, 0x00
- .L_dsolve_1x1:
- GLDREPL xv, d, D0, A0, 0x00
- GMUL xvf, d, U0, U0, D0
- // Store C
- xvstelm.d U0, C0, 0x00, 0x00
- // Store B
- xvstelm.d U0, B0, 0x00, 0x00
- .endm
-
- PROLOGUE
- push_if_used 9, 8
- PTR_SLLI LDC, LDC, 3
- /* if (!(N >> 2)) goto L_N3 */
- PTR_SRAI J, N, 2 /* J = bn >> 2 */
- andi N, N, 0x03
- beq ZERO, J, .L_N3
- .align 5
- .L_J1:
- PTR_ADDI J, J, -1
- move KK, OFFSET
- move AA, A
- move CC, C
- PTR_SRAI I, M, 4 // M >> 4
- beqz I, .L_M15
- .align 4
- .L_I1:
- GADD , d, C0, CC, ZERO, C1, C0, LDC, C2, C1, LDC, C3, C2, LDC
- move A0, AA
- move B0, B
- move L, KK
- dgemm_dsolve_16x4
- PTR_ADDI I, I, -1
- PTR_SLLI T0, K, 7
- PTR_ADDI CC, CC, 0x80 // cc += 16
- PTR_ADDI KK, KK, 0x10 // kk += 16
- PTR_ADD AA, AA, T0 // aa += 16 * k
- bnez I, .L_I1
- .L_M15:
- andi I, M, 8
- beqz I, .L_M7
- .L_M8:
- GADD , d, C0, CC, ZERO, C1, C0, LDC, C2, C1, LDC, C3, C2, LDC
- move A0, AA
- move B0, B
- move L, KK
- dgemm_dsolve_8x4
- PTR_SLLI T0, K, 6
- PTR_ADDI CC, CC, 0x40 // cc += 8
- PTR_ADDI KK, KK, 0x08 // kk += 8
- PTR_ADD AA, AA, T0 // aa += 8 * k
- .L_M7:
- andi I, M, 4
- beqz I, .L_M3
- .L_M4:
- GADD , d, C0, CC, ZERO, C1, C0, LDC, C2, C1, LDC, C3, C2, LDC
- move A0, AA
- move B0, B
- move L, KK
- dgemm_dsolve_4x4
- PTR_SLLI T0, K, 5
- PTR_ADDI CC, CC, 0x20 // cc += 4
- PTR_ADDI KK, KK, 0x04 // kk += 4
- PTR_ADD AA, AA, T0 // aa += 4 * k
- .L_M3:
- andi I, M, 2
- beqz I, .L_M1
- .L_M2:
- GADD , d, C0, CC, ZERO, C1, C0, LDC, C2, C1, LDC, C3, C2, LDC
- move A0, AA
- move B0, B
- move L, KK
- dgemm_dsolve_2x4
- PTR_SLLI T0, K, 4
- PTR_ADDI CC, CC, 0x10 // cc += 2
- PTR_ADDI KK, KK, 0x02 // kk += 2
- PTR_ADD AA, AA, T0 // aa += 2 * k
- .L_M1:
- andi I, M, 1
- beqz I, .L_M0
- GADD , d, C0, CC, ZERO, C1, C0, LDC, C2, C1, LDC, C3, C2, LDC
- move A0, AA
- move B0, B
- move L, KK
- dgemm_dsolve_1x4
- PTR_SLLI T0, K, 3
- PTR_ADDI CC, CC, 0x08 // cc += 1
- PTR_ADDI KK, KK, 0x01 // kk += 1
- PTR_ADD AA, AA, T0 // aa += 1 * k
- .L_M0:
- PTR_SLLI T0, K, 5
- PTR_SLLI T1, LDC, 2
- PTR_ADD B, B, T0 // b += 4 * k
- PTR_ADD C, C, T1 // c += 4 * ldc
- bnez J, .L_J1
- .L_N3:
- andi J, N, 2
- beq ZERO, J, .L_N1
- .L_N2:
- move KK, OFFSET
- move AA, A
- move CC, C
- PTR_SRAI I, M, 4 // M >> 4
- beqz I, .L_N2_M15
- .align 4
- .L_N2_I1:
- GADD , d, C0, CC, ZERO, C1, C0, LDC
- move A0, AA
- move B0, B
- move L, KK
- dgemm_dsolve_16x2
- PTR_ADDI I, I, -1
- PTR_SLLI T0, K, 7
- PTR_ADDI CC, CC, 0x80 // cc += 16
- PTR_ADDI KK, KK, 0x10 // kk += 16
- PTR_ADD AA, AA, T0 // aa += 16 * k
- bnez I, .L_N2_I1
- .L_N2_M15:
- andi I, M, 8
- beqz I, .L_N2_M7
- .L_N2_M8:
- GADD , d, C0, CC, ZERO, C1, C0, LDC
- move A0, AA
- move B0, B
- move L, KK
- dgemm_dsolve_8x2
- PTR_SLLI T0, K, 6
- PTR_ADDI CC, CC, 0x40 // cc += 8
- PTR_ADDI KK, KK, 0x08 // kk += 8
- PTR_ADD AA, AA, T0 // aa += 8 * k
- .L_N2_M7:
- andi I, M, 4
- beqz I, .L_N2_M3
- .L_N2_M4:
- GADD , d, C0, CC, ZERO, C1, C0, LDC
- move A0, AA
- move B0, B
- move L, KK
- dgemm_dsolve_4x2
- PTR_SLLI T0, K, 5
- PTR_ADDI CC, CC, 0x20 // cc += 4
- PTR_ADDI KK, KK, 0x04 // kk += 4
- PTR_ADD AA, AA, T0 // aa += 4 * k
- .L_N2_M3:
- andi I, M, 2
- beqz I, .L_N2_M1
- .L_N2_M2:
- GADD , d, C0, CC, ZERO, C1, C0, LDC
- move A0, AA
- move B0, B
- move L, KK
- dgemm_dsolve_2x2
- PTR_SLLI T0, K, 4
- PTR_ADDI CC, CC, 0x10 // cc += 2
- PTR_ADDI KK, KK, 0x02 // kk += 2
- PTR_ADD AA, AA, T0 // aa += 2 * k
- .L_N2_M1:
- andi I, M, 1
- beqz I, .L_N2_M0
- GADD , d, C0, CC, ZERO, C1, C0, LDC
- move A0, AA
- move B0, B
- move L, KK
- dgemm_dsolve_1x2
- PTR_SLLI T0, K, 3
- PTR_ADDI CC, CC, 0x08 // cc += 1
- PTR_ADDI KK, KK, 0x01 // kk += 1
- PTR_ADD AA, AA, T0 // aa += 1 * k
- .L_N2_M0:
- PTR_SLLI T0, K, 4
- PTR_SLLI T1, LDC, 1
- PTR_ADD B, B, T0 // b += 2 * k
- PTR_ADD C, C, T1 // c += 2 * ldc
- .L_N1:
- andi J, N, 1
- beq ZERO, J, .L_N0
-
- move KK, OFFSET
- move AA, A
- move CC, C
- PTR_SRAI I, M, 4 // M >> 4
- beqz I, .L_N1_M15
- .align 4
- .L_N1_I1:
- GADD , d, C0, CC, ZERO
- move A0, AA
- move B0, B
- move L, KK
- dgemm_dsolve_16x1
- PTR_ADDI I, I, -1
- PTR_SLLI T0, K, 7
- PTR_ADDI CC, CC, 0x80 // cc += 16
- PTR_ADDI KK, KK, 0x10 // kk += 16
- PTR_ADD AA, AA, T0 // aa += 16 * k
- bnez I, .L_N1_I1
- .L_N1_M15:
- andi I, M, 8
- beqz I, .L_N1_M7
- .L_N1_M8:
- GADD , d, C0, CC, ZERO
- move A0, AA
- move B0, B
- move L, KK
- dgemm_dsolve_8x1
- PTR_SLLI T0, K, 6
- PTR_ADDI CC, CC, 0x40 // cc += 8
- PTR_ADDI KK, KK, 0x08 // kk += 8
- PTR_ADD AA, AA, T0 // aa += 8 * k
- .L_N1_M7:
- andi I, M, 4
- beqz I, .L_N1_M3
- .L_N1_M4:
- GADD , d, C0, CC, ZERO
- move A0, AA
- move B0, B
- move L, KK
- dgemm_dsolve_4x1
- PTR_SLLI T0, K, 5
- PTR_ADDI CC, CC, 0x20 // cc += 4
- PTR_ADDI KK, KK, 0x04 // kk += 4
- PTR_ADD AA, AA, T0 // aa += 4 * k
- .L_N1_M3:
- andi I, M, 2
- beqz I, .L_N1_M1
- .L_N1_M2:
- GADD , d, C0, CC, ZERO
- move A0, AA
- move B0, B
- move L, KK
- dgemm_dsolve_2x1
- PTR_SLLI T0, K, 4
- PTR_ADDI CC, CC, 0x10 // cc += 2
- PTR_ADDI KK, KK, 0x02 // kk += 2
- PTR_ADD AA, AA, T0 // aa += 2 * k
- .L_N1_M1:
- andi I, M, 1
- beqz I, .L_N1_M0
- GADD , d, C0, CC, ZERO
- move A0, AA
- move B0, B
- move L, KK
- dgemm_dsolve_1x1
- PTR_SLLI T0, K, 3
- PTR_ADDI CC, CC, 0x08 // cc += 1
- PTR_ADDI KK, KK, 0x01 // kk += 1
- PTR_ADD AA, AA, T0 // aa += 1 * k
- .L_N1_M0:
- .L_N0:
- pop_if_used 9, 8
- jirl $r0, $r1, 0x0
- EPILOGUE
|