#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef blasint logical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle_() continue; #define myceiling_(w) {ceil(w)} #define myhuge_(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n) /* procedure parameter types for -A and -C++ */ #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i 0 && *kb < *m - *ioffset) { i__1 = *m - if__; z__1.r = -1., z__1.i = 0.; zgemm_("No transpose", "Conjugate transpose", &i__1, nrhs, kb, &z__1, &a[if__ + 1 + a_dim1], lda, &f[*n + 1 + f_dim1], ldf, &c_b2, &a[if__ + 1 + (*n + 1) * a_dim1], lda); } /* There is no need to recompute the 2-norm of the */ /* difficult columns, since we stop the factorization. */ /* Array TAU(KF+1:MINMNFACT) is not set and contains */ /* undefined elements. */ /* Return from the routine. */ return 0; } /* Quick return, if the submatrix A(I:M,K:N) is */ /* a zero matrix. We need to check it only if the column index */ /* (same as row index) is larger than 1, since the condition */ /* for the whole original matrix A_orig is checked in the main */ /* routine. */ if (*maxc2nrmk == 0.) { *done = TRUE_; /* Set KB, the number of factorized partial columns */ /* that are non-zero in each step in the block, */ /* i.e. the rank of the factor R. */ /* Set IF, the number of processed rows in the block, which */ /* is the same as the number of processed rows in */ /* the original whole matrix A_orig. */ *kb = k - 1; if__ = i__ - 1; *relmaxc2nrmk = 0.; /* There is no need to apply the block reflector to the */ /* residual of the matrix A stored in A(KB+1:M,KB+1:N), */ /* since the submatrix is zero and we stop the computation. */ /* But, we need to apply the block reflector to the residual */ /* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */ /* residual right hand sides exist. This occurs */ /* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */ /* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */ /* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**H. */ if (*nrhs > 0 && *kb < *m - *ioffset) { i__1 = *m - if__; z__1.r = -1., z__1.i = 0.; zgemm_("No transpose", "Conjugate transpose", &i__1, nrhs, kb, &z__1, &a[if__ + 1 + a_dim1], lda, &f[*n + 1 + f_dim1], ldf, &c_b2, &a[if__ + 1 + (*n + 1) * a_dim1], lda); } /* There is no need to recompute the 2-norm of the */ /* difficult columns, since we stop the factorization. */ /* Set TAUs corresponding to the columns that were not */ /* factorized to ZERO, i.e. set TAU(KB+1:MINMNFACT) = CZERO, */ /* which is equivalent to seting TAU(K:MINMNFACT) = CZERO. */ i__1 = minmnfact; for (j = k; j <= i__1; ++j) { i__2 = j; tau[i__2].r = 0., tau[i__2].i = 0.; } /* Return from the routine. */ return 0; } /* ============================================================ */ /* Check if the submatrix A(I:M,K:N) contains Inf, */ /* set INFO parameter to the column number, where */ /* the first Inf is found plus N, and continue */ /* the computation. */ /* We need to check the condition only if the */ /* column index (same as row index) of the original whole */ /* matrix is larger than 1, since the condition for whole */ /* original matrix is checked in the main routine. */ if (*info == 0 && *maxc2nrmk > myhugeval) { *info = *n + k - 1 + kp; } /* ============================================================ */ /* Test for the second and third tolerance stopping criteria. */ /* NOTE: There is no need to test for ABSTOL.GE.ZERO, since */ /* MAXC2NRMK is non-negative. Similarly, there is no need */ /* to test for RELTOL.GE.ZERO, since RELMAXC2NRMK is */ /* non-negative. */ /* We need to check the condition only if the */ /* column index (same as row index) of the original whole */ /* matrix is larger than 1, since the condition for whole */ /* original matrix is checked in the main routine. */ *relmaxc2nrmk = *maxc2nrmk / *maxc2nrm; if (*maxc2nrmk <= *abstol || *relmaxc2nrmk <= *reltol) { *done = TRUE_; /* Set KB, the number of factorized partial columns */ /* that are non-zero in each step in the block, */ /* i.e. the rank of the factor R. */ /* Set IF, the number of processed rows in the block, which */ /* is the same as the number of processed rows in */ /* the original whole matrix A_orig; */ *kb = k - 1; if__ = i__ - 1; /* Apply the block reflector to the residual of the */ /* matrix A and the residual of the right hand sides B, if */ /* the residual matrix and and/or the residual of the right */ /* hand sides exist, i.e. if the submatrix */ /* A(I+1:M,KB+1:N+NRHS) exists. This occurs when */ /* KB < MINMNUPDT = f2cmin( M-IOFFSET, N+NRHS ): */ /* A(IF+1:M,K+1:N+NRHS) := A(IF+1:M,KB+1:N+NRHS) - */ /* A(IF+1:M,1:KB) * F(KB+1:N+NRHS,1:KB)**H. */ if (*kb < minmnupdt) { i__1 = *m - if__; i__2 = *n + *nrhs - *kb; z__1.r = -1., z__1.i = 0.; zgemm_("No transpose", "Conjugate transpose", &i__1, & i__2, kb, &z__1, &a[if__ + 1 + a_dim1], lda, &f[* kb + 1 + f_dim1], ldf, &c_b2, &a[if__ + 1 + (*kb + 1) * a_dim1], lda); } /* There is no need to recompute the 2-norm of the */ /* difficult columns, since we stop the factorization. */ /* Set TAUs corresponding to the columns that were not */ /* factorized to ZERO, i.e. set TAU(KB+1:MINMNFACT) = CZERO, */ /* which is equivalent to seting TAU(K:MINMNFACT) = CZERO. */ i__1 = minmnfact; for (j = k; j <= i__1; ++j) { i__2 = j; tau[i__2].r = 0., tau[i__2].i = 0.; } /* Return from the routine. */ return 0; } /* ============================================================ */ /* End ELSE of IF(I.EQ.1) */ } /* =============================================================== */ /* If the pivot column is not the first column of the */ /* subblock A(1:M,K:N): */ /* 1) swap the K-th column and the KP-th pivot column */ /* in A(1:M,1:N); */ /* 2) swap the K-th row and the KP-th row in F(1:N,1:K-1) */ /* 3) copy the K-th element into the KP-th element of the partial */ /* and exact 2-norm vectors VN1 and VN2. (Swap is not needed */ /* for VN1 and VN2 since we use the element with the index */ /* larger than K in the next loop step.) */ /* 4) Save the pivot interchange with the indices relative to the */ /* the original matrix A_orig, not the block A(1:M,1:N). */ if (kp != k) { zswap_(m, &a[kp * a_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1); i__1 = k - 1; zswap_(&i__1, &f[kp + f_dim1], ldf, &f[k + f_dim1], ldf); vn1[kp] = vn1[k]; vn2[kp] = vn2[k]; itemp = jpiv[kp]; jpiv[kp] = jpiv[k]; jpiv[k] = itemp; } /* Apply previous Householder reflectors to column K: */ /* A(I:M,K) := A(I:M,K) - A(I:M,1:K-1)*F(K,1:K-1)**H. */ if (k > 1) { i__1 = k - 1; for (j = 1; j <= i__1; ++j) { i__2 = k + j * f_dim1; d_cnjg(&z__1, &f[k + j * f_dim1]); f[i__2].r = z__1.r, f[i__2].i = z__1.i; } i__1 = *m - i__ + 1; i__2 = k - 1; z__1.r = -1., z__1.i = 0.; zgemv_("No transpose", &i__1, &i__2, &z__1, &a[i__ + a_dim1], lda, &f[k + f_dim1], ldf, &c_b2, &a[i__ + k * a_dim1], &c__1); i__1 = k - 1; for (j = 1; j <= i__1; ++j) { i__2 = k + j * f_dim1; d_cnjg(&z__1, &f[k + j * f_dim1]); f[i__2].r = z__1.r, f[i__2].i = z__1.i; } } /* Generate elementary reflector H(k) using the column A(I:M,K). */ if (i__ < *m) { i__1 = *m - i__ + 1; zlarfg_(&i__1, &a[i__ + k * a_dim1], &a[i__ + 1 + k * a_dim1], & c__1, &tau[k]); } else { i__1 = k; tau[i__1].r = 0., tau[i__1].i = 0.; } /* Check if TAU(K) contains NaN, set INFO parameter */ /* to the column number where NaN is found and return from */ /* the routine. */ /* NOTE: There is no need to check TAU(K) for Inf, */ /* since ZLARFG cannot produce TAU(KK) or Householder vector */ /* below the diagonal containing Inf. Only BETA on the diagonal, */ /* returned by ZLARFG can contain Inf, which requires */ /* TAU(K) to contain NaN. Therefore, this case of generating Inf */ /* by ZLARFG is covered by checking TAU(K) for NaN. */ i__1 = k; d__1 = tau[i__1].r; if (disnan_(&d__1)) { i__1 = k; taunan = tau[i__1].r; } else /* if(complicated condition) */ { d__1 = d_imag(&tau[k]); if (disnan_(&d__1)) { taunan = d_imag(&tau[k]); } else { taunan = 0.; } } if (disnan_(&taunan)) { *done = TRUE_; /* Set KB, the number of factorized partial columns */ /* that are non-zero in each step in the block, */ /* i.e. the rank of the factor R. */ /* Set IF, the number of processed rows in the block, which */ /* is the same as the number of processed rows in */ /* the original whole matrix A_orig. */ *kb = k - 1; if__ = i__ - 1; *info = k; /* Set MAXC2NRMK and RELMAXC2NRMK to NaN. */ *maxc2nrmk = taunan; *relmaxc2nrmk = taunan; /* There is no need to apply the block reflector to the */ /* residual of the matrix A stored in A(KB+1:M,KB+1:N), */ /* since the submatrix contains NaN and we stop */ /* the computation. */ /* But, we need to apply the block reflector to the residual */ /* right hand sides stored in A(KB+1:M,N+1:N+NRHS), if the */ /* residual right hand sides exist. This occurs */ /* when ( NRHS != 0 AND KB <= (M-IOFFSET) ): */ /* A(I+1:M,N+1:N+NRHS) := A(I+1:M,N+1:N+NRHS) - */ /* A(I+1:M,1:KB) * F(N+1:N+NRHS,1:KB)**H. */ if (*nrhs > 0 && *kb < *m - *ioffset) { i__1 = *m - if__; z__1.r = -1., z__1.i = 0.; zgemm_("No transpose", "Conjugate transpose", &i__1, nrhs, kb, &z__1, &a[if__ + 1 + a_dim1], lda, &f[*n + 1 + f_dim1], ldf, &c_b2, &a[if__ + 1 + (*n + 1) * a_dim1], lda); } /* There is no need to recompute the 2-norm of the */ /* difficult columns, since we stop the factorization. */ /* Array TAU(KF+1:MINMNFACT) is not set and contains */ /* undefined elements. */ /* Return from the routine. */ return 0; } /* =============================================================== */ i__1 = i__ + k * a_dim1; aik.r = a[i__1].r, aik.i = a[i__1].i; i__1 = i__ + k * a_dim1; a[i__1].r = 1., a[i__1].i = 0.; /* =============================================================== */ /* Compute the current K-th column of F: */ /* 1) F(K+1:N,K) := tau(K) * A(I:M,K+1:N)**H * A(I:M,K). */ if (k < *n + *nrhs) { i__1 = *m - i__ + 1; i__2 = *n + *nrhs - k; zgemv_("Conjugate transpose", &i__1, &i__2, &tau[k], &a[i__ + (k + 1) * a_dim1], lda, &a[i__ + k * a_dim1], &c__1, &c_b1, & f[k + 1 + k * f_dim1], &c__1); } /* 2) Zero out elements above and on the diagonal of the */ /* column K in matrix F, i.e elements F(1:K,K). */ i__1 = k; for (j = 1; j <= i__1; ++j) { i__2 = j + k * f_dim1; f[i__2].r = 0., f[i__2].i = 0.; } /* 3) Incremental updating of the K-th column of F: */ /* F(1:N,K) := F(1:N,K) - tau(K) * F(1:N,1:K-1) * A(I:M,1:K-1)**H */ /* * A(I:M,K). */ if (k > 1) { i__1 = *m - i__ + 1; i__2 = k - 1; i__3 = k; z__1.r = -tau[i__3].r, z__1.i = -tau[i__3].i; zgemv_("Conjugate Transpose", &i__1, &i__2, &z__1, &a[i__ + a_dim1], lda, &a[i__ + k * a_dim1], &c__1, &c_b1, &auxv[1] , &c__1); i__1 = *n + *nrhs; i__2 = k - 1; zgemv_("No transpose", &i__1, &i__2, &c_b2, &f[f_dim1 + 1], ldf, & auxv[1], &c__1, &c_b2, &f[k * f_dim1 + 1], &c__1); } /* =============================================================== */ /* Update the current I-th row of A: */ /* A(I,K+1:N+NRHS) := A(I,K+1:N+NRHS) */ /* - A(I,1:K)*F(K+1:N+NRHS,1:K)**H. */ if (k < *n + *nrhs) { i__1 = *n + *nrhs - k; z__1.r = -1., z__1.i = 0.; zgemm_("No transpose", "Conjugate transpose", &c__1, &i__1, &k, & z__1, &a[i__ + a_dim1], lda, &f[k + 1 + f_dim1], ldf, & c_b2, &a[i__ + (k + 1) * a_dim1], lda); } i__1 = i__ + k * a_dim1; a[i__1].r = aik.r, a[i__1].i = aik.i; /* Update the partial column 2-norms for the residual matrix, */ /* only if the residual matrix A(I+1:M,K+1:N) exists, i.e. */ /* when K < MINMNFACT = f2cmin( M-IOFFSET, N ). */ if (k < minmnfact) { i__1 = *n; for (j = k + 1; j <= i__1; ++j) { if (vn1[j] != 0.) { /* NOTE: The following lines follow from the analysis in */ /* Lapack Working Note 176. */ temp = z_abs(&a[i__ + j * a_dim1]) / vn1[j]; /* Computing MAX */ d__1 = 0., d__2 = (temp + 1.) * (1. - temp); temp = f2cmax(d__1,d__2); /* Computing 2nd power */ d__1 = vn1[j] / vn2[j]; temp2 = temp * (d__1 * d__1); if (temp2 <= tol3z) { /* At J-index, we have a difficult column for the */ /* update of the 2-norm. Save the index of the previous */ /* difficult column in IWORK(J-1). */ /* NOTE: ILSTCC > 1, threfore we can use IWORK only */ /* with N-1 elements, where the elements are */ /* shifted by 1 to the left. */ iwork[j - 1] = lsticc; /* Set the index of the last difficult column LSTICC. */ lsticc = j; } else { vn1[j] *= sqrt(temp); } } } } /* End of while loop. */ } /* Now, afler the loop: */ /* Set KB, the number of factorized columns in the block; */ /* Set IF, the number of processed rows in the block, which */ /* is the same as the number of processed rows in */ /* the original whole matrix A_orig, IF = IOFFSET + KB. */ *kb = k; if__ = i__; /* Apply the block reflector to the residual of the matrix A */ /* and the residual of the right hand sides B, if the residual */ /* matrix and and/or the residual of the right hand sides */ /* exist, i.e. if the submatrix A(I+1:M,KB+1:N+NRHS) exists. */ /* This occurs when KB < MINMNUPDT = f2cmin( M-IOFFSET, N+NRHS ): */ /* A(IF+1:M,K+1:N+NRHS) := A(IF+1:M,KB+1:N+NRHS) - */ /* A(IF+1:M,1:KB) * F(KB+1:N+NRHS,1:KB)**H. */ if (*kb < minmnupdt) { i__1 = *m - if__; i__2 = *n + *nrhs - *kb; z__1.r = -1., z__1.i = 0.; zgemm_("No transpose", "Conjugate transpose", &i__1, &i__2, kb, &z__1, &a[if__ + 1 + a_dim1], lda, &f[*kb + 1 + f_dim1], ldf, &c_b2, &a[if__ + 1 + (*kb + 1) * a_dim1], lda); } /* Recompute the 2-norm of the difficult columns. */ /* Loop over the index of the difficult columns from the largest */ /* to the smallest index. */ while(lsticc > 0) { /* LSTICC is the index of the last difficult column is greater */ /* than 1. */ /* ITEMP is the index of the previous difficult column. */ itemp = iwork[lsticc - 1]; /* Compute the 2-norm explicilty for the last difficult column and */ /* save it in the partial and exact 2-norm vectors VN1 and VN2. */ /* NOTE: The computation of VN1( LSTICC ) relies on the fact that */ /* DZNRM2 does not fail on vectors with norm below the value of */ /* SQRT(DLAMCH('S')) */ i__1 = *m - if__; vn1[lsticc] = dznrm2_(&i__1, &a[if__ + 1 + lsticc * a_dim1], &c__1); vn2[lsticc] = vn1[lsticc]; /* Downdate the index of the last difficult column to */ /* the index of the previous difficult column. */ lsticc = itemp; } return 0; /* End of ZLAQP3RK */ } /* zlaqp3rk_ */