#include #include #include #include #include #ifdef complex #undef complex #endif #ifdef I #undef I #endif #if defined(_WIN64) typedef long long BLASLONG; typedef unsigned long long BLASULONG; #else typedef long BLASLONG; typedef unsigned long BLASULONG; #endif #ifdef LAPACK_ILP64 typedef BLASLONG blasint; #if defined(_WIN64) #define blasabs(x) llabs(x) #else #define blasabs(x) labs(x) #endif #else typedef int blasint; #define blasabs(x) abs(x) #endif typedef blasint integer; typedef unsigned int uinteger; typedef char *address; typedef short int shortint; typedef float real; typedef double doublereal; typedef struct { real r, i; } complex; typedef struct { doublereal r, i; } doublecomplex; #ifdef _MSC_VER static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;} static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;} static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;} static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;} #else static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;} static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;} static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;} static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;} #endif #define pCf(z) (*_pCf(z)) #define pCd(z) (*_pCd(z)) typedef blasint logical; typedef char logical1; typedef char integer1; #define TRUE_ (1) #define FALSE_ (0) /* Extern is for use with -E */ #ifndef Extern #define Extern extern #endif /* I/O stuff */ typedef int flag; typedef int ftnlen; typedef int ftnint; /*external read, write*/ typedef struct { flag cierr; ftnint ciunit; flag ciend; char *cifmt; ftnint cirec; } cilist; /*internal read, write*/ typedef struct { flag icierr; char *iciunit; flag iciend; char *icifmt; ftnint icirlen; ftnint icirnum; } icilist; /*open*/ typedef struct { flag oerr; ftnint ounit; char *ofnm; ftnlen ofnmlen; char *osta; char *oacc; char *ofm; ftnint orl; char *oblnk; } olist; /*close*/ typedef struct { flag cerr; ftnint cunit; char *csta; } cllist; /*rewind, backspace, endfile*/ typedef struct { flag aerr; ftnint aunit; } alist; /* inquire */ typedef struct { flag inerr; ftnint inunit; char *infile; ftnlen infilen; ftnint *inex; /*parameters in standard's order*/ ftnint *inopen; ftnint *innum; ftnint *innamed; char *inname; ftnlen innamlen; char *inacc; ftnlen inacclen; char *inseq; ftnlen inseqlen; char *indir; ftnlen indirlen; char *infmt; ftnlen infmtlen; char *inform; ftnint informlen; char *inunf; ftnlen inunflen; ftnint *inrecl; ftnint *innrec; char *inblank; ftnlen inblanklen; } inlist; #define VOID void union Multitype { /* for multiple entry points */ integer1 g; shortint h; integer i; /* longint j; */ real r; doublereal d; complex c; doublecomplex z; }; typedef union Multitype Multitype; struct Vardesc { /* for Namelist */ char *name; char *addr; ftnlen *dims; int type; }; typedef struct Vardesc Vardesc; struct Namelist { char *name; Vardesc **vars; int nvars; }; typedef struct Namelist Namelist; #define abs(x) ((x) >= 0 ? (x) : -(x)) #define dabs(x) (fabs(x)) #define f2cmin(a,b) ((a) <= (b) ? (a) : (b)) #define f2cmax(a,b) ((a) >= (b) ? (a) : (b)) #define dmin(a,b) (f2cmin(a,b)) #define dmax(a,b) (f2cmax(a,b)) #define bit_test(a,b) ((a) >> (b) & 1) #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b))) #define bit_set(a,b) ((a) | ((uinteger)1 << (b))) #define abort_() { sig_die("Fortran abort routine called", 1); } #define c_abs(z) (cabsf(Cf(z))) #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); } #ifdef _MSC_VER #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);} #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);} #else #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);} #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);} #endif #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));} #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));} #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));} //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));} #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));} #define d_abs(x) (fabs(*(x))) #define d_acos(x) (acos(*(x))) #define d_asin(x) (asin(*(x))) #define d_atan(x) (atan(*(x))) #define d_atn2(x, y) (atan2(*(x),*(y))) #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); } #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); } #define d_cos(x) (cos(*(x))) #define d_cosh(x) (cosh(*(x))) #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 ) #define d_exp(x) (exp(*(x))) #define d_imag(z) (cimag(Cd(z))) #define r_imag(z) (cimagf(Cf(z))) #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x))) #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) ) #define d_log(x) (log(*(x))) #define d_mod(x, y) (fmod(*(x), *(y))) #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x))) #define d_nint(x) u_nint(*(x)) #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a))) #define d_sign(a,b) u_sign(*(a),*(b)) #define r_sign(a,b) u_sign(*(a),*(b)) #define d_sin(x) (sin(*(x))) #define d_sinh(x) (sinh(*(x))) #define d_sqrt(x) (sqrt(*(x))) #define d_tan(x) (tan(*(x))) #define d_tanh(x) (tanh(*(x))) #define i_abs(x) abs(*(x)) #define i_dnnt(x) ((integer)u_nint(*(x))) #define i_len(s, n) (n) #define i_nint(x) ((integer)u_nint(*(x))) #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b))) #define pow_dd(ap, bp) ( pow(*(ap), *(bp))) #define pow_si(B,E) spow_ui(*(B),*(E)) #define pow_ri(B,E) spow_ui(*(B),*(E)) #define pow_di(B,E) dpow_ui(*(B),*(E)) #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));} #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));} #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));} #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; } #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d)))) #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; } #define sig_die(s, kill) { exit(1); } #define s_stop(s, n) {exit(0);} static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n"; #define z_abs(z) (cabs(Cd(z))) #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));} #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));} #define myexit_() break; #define mycycle_() continue; #define myceiling_(w) {ceil(w)} #define myhuge_(w) {HUGE_VAL} //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);} #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n) /* procedure parameter types for -A and -C++ */ #ifdef __cplusplus typedef logical (*L_fp)(...); #else typedef logical (*L_fp)(); #endif static float spow_ui(float x, integer n) { float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static double dpow_ui(double x, integer n) { double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #ifdef _MSC_VER static _Fcomplex cpow_ui(complex x, integer n) { complex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i; for(u = n; ; ) { if(u & 01) pow.r *= x.r, pow.i *= x.i; if(u >>= 1) x.r *= x.r, x.i *= x.i; else break; } } _Fcomplex p={pow.r, pow.i}; return p; } #else static _Complex float cpow_ui(_Complex float x, integer n) { _Complex float pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif #ifdef _MSC_VER static _Dcomplex zpow_ui(_Dcomplex x, integer n) { _Dcomplex pow={1.0,0.0}; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1]; for(u = n; ; ) { if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1]; if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1]; else break; } } _Dcomplex p = {pow._Val[0], pow._Val[1]}; return p; } #else static _Complex double zpow_ui(_Complex double x, integer n) { _Complex double pow=1.0; unsigned long int u; if(n != 0) { if(n < 0) n = -n, x = 1/x; for(u = n; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } #endif static integer pow_ii(integer x, integer n) { integer pow; unsigned long int u; if (n <= 0) { if (n == 0 || x == 1) pow = 1; else if (x != -1) pow = x == 0 ? 1/x : 0; else n = -n; } if ((n > 0) || !(n == 0 || x == 1 || x != -1)) { u = n; for(pow = 1; ; ) { if(u & 01) pow *= x; if(u >>= 1) x *= x; else break; } } return pow; } static integer dmaxloc_(double *w, integer s, integer e, integer *n) { double m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static integer smaxloc_(float *w, integer s, integer e, integer *n) { float m; integer i, mi; for(m=w[s-1], mi=s, i=s+1; i<=e; i++) if (w[i-1]>m) mi=i ,m=w[i-1]; return mi-s+1; } static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) { integer n = *n_, incx = *incx_, incy = *incy_, i; #ifdef _MSC_VER _Fcomplex zdotc = {0.0, 0.0}; if (incx == 1 && incy == 1) { for (i=0;i myhugeval) { *info = *n + kk - 1 + kp; } /* ============================================================ */ /* Test for the second and third stopping criteria. */ /* NOTE: There is no need to test for ABSTOL >= ZERO, since */ /* MAXC2NRMK is non-negative. Similarly, there is no need */ /* to test for RELTOL >= ZERO, since RELMAXC2NRMK is */ /* non-negative. */ /* We need to check the condition only if the */ /* column index (same as row index) of the original whole */ /* matrix is larger than 1, since the condition for whole */ /* original matrix is checked in the main routine. */ *relmaxc2nrmk = *maxc2nrmk / *maxc2nrm; if (*maxc2nrmk <= *abstol || *relmaxc2nrmk <= *reltol) { /* Set K, the number of factorized columns. */ *k = kk - 1; /* Set TAUs corresponding to the columns that were not */ /* factorized to ZERO, i.e. set TAU(KK:MINMNFACT) to CZERO. */ i__2 = minmnfact; for (j = kk; j <= i__2; ++j) { i__3 = j; tau[i__3].r = 0., tau[i__3].i = 0.; } /* Return from the routine. */ return 0; } /* ============================================================ */ /* End ELSE of IF(I.EQ.1) */ } /* =============================================================== */ /* If the pivot column is not the first column of the */ /* subblock A(1:M,KK:N): */ /* 1) swap the KK-th column and the KP-th pivot column */ /* in A(1:M,1:N); */ /* 2) copy the KK-th element into the KP-th element of the partial */ /* and exact 2-norm vectors VN1 and VN2. ( Swap is not needed */ /* for VN1 and VN2 since we use the element with the index */ /* larger than KK in the next loop step.) */ /* 3) Save the pivot interchange with the indices relative to the */ /* the original matrix A, not the block A(1:M,1:N). */ if (kp != kk) { zswap_(m, &a[kp * a_dim1 + 1], &c__1, &a[kk * a_dim1 + 1], &c__1); vn1[kp] = vn1[kk]; vn2[kp] = vn2[kk]; itemp = jpiv[kp]; jpiv[kp] = jpiv[kk]; jpiv[kk] = itemp; } /* Generate elementary reflector H(KK) using the column A(I:M,KK), */ /* if the column has more than one element, otherwise */ /* the elementary reflector would be an identity matrix, */ /* and TAU(KK) = CZERO. */ if (i__ < *m) { i__2 = *m - i__ + 1; zlarfg_(&i__2, &a[i__ + kk * a_dim1], &a[i__ + 1 + kk * a_dim1], & c__1, &tau[kk]); } else { i__2 = kk; tau[i__2].r = 0., tau[i__2].i = 0.; } /* Check if TAU(KK) contains NaN, set INFO parameter */ /* to the column number where NaN is found and return from */ /* the routine. */ /* NOTE: There is no need to check TAU(KK) for Inf, */ /* since ZLARFG cannot produce TAU(KK) or Householder vector */ /* below the diagonal containing Inf. Only BETA on the diagonal, */ /* returned by ZLARFG can contain Inf, which requires */ /* TAU(KK) to contain NaN. Therefore, this case of generating Inf */ /* by ZLARFG is covered by checking TAU(KK) for NaN. */ i__2 = kk; d__1 = tau[i__2].r; if (disnan_(&d__1)) { i__2 = kk; taunan = tau[i__2].r; } else /* if(complicated condition) */ { d__1 = d_imag(&tau[kk]); if (disnan_(&d__1)) { taunan = d_imag(&tau[kk]); } else { taunan = 0.; } } if (disnan_(&taunan)) { *k = kk - 1; *info = kk; /* Set MAXC2NRMK and RELMAXC2NRMK to NaN. */ *maxc2nrmk = taunan; *relmaxc2nrmk = taunan; /* Array TAU(KK:MINMNFACT) is not set and contains */ /* undefined elements, except the first element TAU(KK) = NaN. */ return 0; } /* Apply H(KK)**H to A(I:M,KK+1:N+NRHS) from the left. */ /* ( If M >= N, then at KK = N there is no residual matrix, */ /* i.e. no columns of A to update, only columns of B. */ /* If M < N, then at KK = M-IOFFSET, I = M and we have a */ /* one-row residual matrix in A and the elementary */ /* reflector is a unit matrix, TAU(KK) = CZERO, i.e. no update */ /* is needed for the residual matrix in A and the */ /* right-hand-side-matrix in B. */ /* Therefore, we update only if */ /* KK < MINMNUPDT = f2cmin(M-IOFFSET, N+NRHS) */ /* condition is satisfied, not only KK < N+NRHS ) */ if (kk < minmnupdt) { i__2 = i__ + kk * a_dim1; aikk.r = a[i__2].r, aikk.i = a[i__2].i; i__2 = i__ + kk * a_dim1; a[i__2].r = 1., a[i__2].i = 0.; i__2 = *m - i__ + 1; i__3 = *n + *nrhs - kk; d_cnjg(&z__1, &tau[kk]); zlarf_("Left", &i__2, &i__3, &a[i__ + kk * a_dim1], &c__1, &z__1, &a[i__ + (kk + 1) * a_dim1], lda, &work[1]); i__2 = i__ + kk * a_dim1; a[i__2].r = aikk.r, a[i__2].i = aikk.i; } if (kk < minmnfact) { /* Update the partial column 2-norms for the residual matrix, */ /* only if the residual matrix A(I+1:M,KK+1:N) exists, i.e. */ /* when KK < f2cmin(M-IOFFSET, N). */ i__2 = *n; for (j = kk + 1; j <= i__2; ++j) { if (vn1[j] != 0.) { /* NOTE: The following lines follow from the analysis in */ /* Lapack Working Note 176. */ /* Computing 2nd power */ d__1 = z_abs(&a[i__ + j * a_dim1]) / vn1[j]; temp = 1. - d__1 * d__1; temp = f2cmax(temp,0.); /* Computing 2nd power */ d__1 = vn1[j] / vn2[j]; temp2 = temp * (d__1 * d__1); if (temp2 <= tol3z) { /* Compute the column 2-norm for the partial */ /* column A(I+1:M,J) by explicitly computing it, */ /* and store it in both partial 2-norm vector VN1 */ /* and exact column 2-norm vector VN2. */ i__3 = *m - i__; vn1[j] = dznrm2_(&i__3, &a[i__ + 1 + j * a_dim1], & c__1); vn2[j] = vn1[j]; } else { /* Update the column 2-norm for the partial */ /* column A(I+1:M,J) by removing one */ /* element A(I,J) and store it in partial */ /* 2-norm vector VN1. */ vn1[j] *= sqrt(temp); } } } } /* End factorization loop */ } /* If we reached this point, all colunms have been factorized, */ /* i.e. no condition was triggered to exit the routine. */ /* Set the number of factorized columns. */ *k = *kmax; /* We reached the end of the loop, i.e. all KMAX columns were */ /* factorized, we need to set MAXC2NRMK and RELMAXC2NRMK before */ /* we return. */ if (*k < minmnfact) { i__1 = *n - *k; jmaxc2nrm = *k + idamax_(&i__1, &vn1[*k + 1], &c__1); *maxc2nrmk = vn1[jmaxc2nrm]; if (*k == 0) { *relmaxc2nrmk = 1.; } else { *relmaxc2nrmk = *maxc2nrmk / *maxc2nrm; } } else { *maxc2nrmk = 0.; *relmaxc2nrmk = 0.; } /* We reached the end of the loop, i.e. all KMAX columns were */ /* factorized, set TAUs corresponding to the columns that were */ /* not factorized to ZERO, i.e. TAU(K+1:MINMNFACT) set to CZERO. */ i__1 = minmnfact; for (j = *k + 1; j <= i__1; ++j) { i__2 = j; tau[i__2].r = 0., tau[i__2].i = 0.; } return 0; /* End of ZLAQP2RK */ } /* zlaqp2rk_ */