*> \brief \b CLARFT forms the triangular factor T of a block reflector H = I - vtvH
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLARFT + dependencies
*>
*> [TGZ]
*>
*> [ZIP]
*>
*> [TXT]
*> \endhtmlonly
*
* Definition:
* ===========
*
* RECURSIVE SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
*
* .. Scalar Arguments ..
* CHARACTER DIRECT, STOREV
* INTEGER K, LDT, LDV, N
* ..
* .. Array Arguments ..
* COMPLEX T( LDT, * ), TAU( * ), V( LDV, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLARFT forms the triangular factor T of a complex block reflector H
*> of order n, which is defined as a product of k elementary reflectors.
*>
*> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
*>
*> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
*>
*> If STOREV = 'C', the vector which defines the elementary reflector
*> H(i) is stored in the i-th column of the array V, and
*>
*> H = I - V * T * V**H
*>
*> If STOREV = 'R', the vector which defines the elementary reflector
*> H(i) is stored in the i-th row of the array V, and
*>
*> H = I - V**H * T * V
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DIRECT
*> \verbatim
*> DIRECT is CHARACTER*1
*> Specifies the order in which the elementary reflectors are
*> multiplied to form the block reflector:
*> = 'F': H = H(1) H(2) . . . H(k) (Forward)
*> = 'B': H = H(k) . . . H(2) H(1) (Backward)
*> \endverbatim
*>
*> \param[in] STOREV
*> \verbatim
*> STOREV is CHARACTER*1
*> Specifies how the vectors which define the elementary
*> reflectors are stored (see also Further Details):
*> = 'C': columnwise
*> = 'R': rowwise
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the block reflector H. N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The order of the triangular factor T (= the number of
*> elementary reflectors). K >= 1.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*> V is COMPLEX array, dimension
*> (LDV,K) if STOREV = 'C'
*> (LDV,N) if STOREV = 'R'
*> The matrix V. See further details.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of the array V.
*> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is COMPLEX array, dimension (K)
*> TAU(i) must contain the scalar factor of the elementary
*> reflector H(i).
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*> T is COMPLEX array, dimension (LDT,K)
*> The k by k triangular factor T of the block reflector.
*> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
*> lower triangular. The rest of the array is not used.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= K.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup larft
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The shape of the matrix V and the storage of the vectors which define
*> the H(i) is best illustrated by the following example with n = 5 and
*> k = 3. The elements equal to 1 are not stored.
*>
*> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
*>
*> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
*> ( v1 1 ) ( 1 v2 v2 v2 )
*> ( v1 v2 1 ) ( 1 v3 v3 )
*> ( v1 v2 v3 )
*> ( v1 v2 v3 )
*>
*> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
*>
*> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
*> ( v1 v2 v3 ) ( v2 v2 v2 1 )
*> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
*> ( 1 v3 )
*> ( 1 )
*> \endverbatim
*>
* =====================================================================
RECURSIVE SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV,
$ TAU, T, LDT )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments
*
CHARACTER DIRECT, STOREV
INTEGER K, LDT, LDV, N
* ..
* .. Array Arguments ..
*
COMPLEX T( LDT, * ), TAU( * ), V( LDV, * )
* ..
*
* .. Parameters ..
*
COMPLEX ONE, NEG_ONE, ZERO
PARAMETER(ONE=1.0E+0, ZERO = 0.0E+0, NEG_ONE=-1.0E+0)
*
* .. Local Scalars ..
*
INTEGER I,J,L
LOGICAL QR,LQ,QL,DIRF,COLV
*
* .. External Subroutines ..
*
EXTERNAL CTRMM,CGEMM,CLACPY
*
* .. External Functions..
*
LOGICAL LSAME
EXTERNAL LSAME
*
* .. Intrinsic Functions..
*
INTRINSIC CONJG
*
* The general scheme used is inspired by the approach inside DGEQRT3
* which was (at the time of writing this code):
* Based on the algorithm of Elmroth and Gustavson,
* IBM J. Res. Develop. Vol 44 No. 4 July 2000.
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF(N.EQ.0.OR.K.EQ.0) THEN
RETURN
END IF
*
* Base case
*
IF(N.EQ.1.OR.K.EQ.1) THEN
T(1,1) = TAU(1)
RETURN
END IF
*
* Beginning of executable statements
*
L = K / 2
*
* Determine what kind of Q we need to compute
* We assume that if the user doesn't provide 'F' for DIRECT,
* then they meant to provide 'B' and if they don't provide
* 'C' for STOREV, then they meant to provide 'R'
*
DIRF = LSAME(DIRECT,'F')
COLV = LSAME(STOREV,'C')
*
* QR happens when we have forward direction in column storage
*
QR = DIRF.AND.COLV
*
* LQ happens when we have forward direction in row storage
*
LQ = DIRF.AND.(.NOT.COLV)
*
* QL happens when we have backward direction in column storage
*
QL = (.NOT.DIRF).AND.COLV
*
* The last case is RQ. Due to how we structured this, if the
* above 3 are false, then RQ must be true, so we never store
* this
* RQ happens when we have backward direction in row storage
* RQ = (.NOT.DIRF).AND.(.NOT.COLV)
*
IF(QR) THEN
*
* Break V apart into 6 components
*
* V = |---------------|
* |V_{1,1} 0 |
* |V_{2,1} V_{2,2}|
* |V_{3,1} V_{3,2}|
* |---------------|
*
* V_{1,1}\in\C^{l,l} unit lower triangular
* V_{2,1}\in\C^{k-l,l} rectangular
* V_{3,1}\in\C^{n-k,l} rectangular
*
* V_{2,2}\in\C^{k-l,k-l} unit lower triangular
* V_{3,2}\in\C^{n-k,k-l} rectangular
*
* We will construct the T matrix
* T = |---------------|
* |T_{1,1} T_{1,2}|
* |0 T_{2,2}|
* |---------------|
*
* T is the triangular factor obtained from block reflectors.
* To motivate the structure, assume we have already computed T_{1,1}
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2
*
* T_{1,1}\in\C^{l, l} upper triangular
* T_{2,2}\in\C^{k-l, k-l} upper triangular
* T_{1,2}\in\C^{l, k-l} rectangular
*
* Where l = floor(k/2)
*
* Then, consider the product:
*
* (I - V_1*T_{1,1}*V_1')*(I - V_2*T_{2,2}*V_2')
* = I - V_1*T_{1,1}*V_1' - V_2*T_{2,2}*V_2' + V_1*T_{1,1}*V_1'*V_2*T_{2,2}*V_2'
*
* Define T{1,2} = -T_{1,1}*V_1'*V_2*T_{2,2}
*
* Then, we can define the matrix V as
* V = |-------|
* |V_1 V_2|
* |-------|
*
* So, our product is equivalent to the matrix product
* I - V*T*V'
* This means, we can compute T_{1,1} and T_{2,2}, then use this information
* to compute T_{1,2}
*
* Compute T_{1,1} recursively
*
CALL CLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT)
*
* Compute T_{2,2} recursively
*
CALL CLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV,
$ TAU(L+1), T(L+1, L+1), LDT)
*
* Compute T_{1,2}
* T_{1,2} = V_{2,1}'
*
DO J = 1, L
DO I = 1, K-L
T(J, L+I) = CONJG(V(L+I, J))
END DO
END DO
*
* T_{1,2} = T_{1,2}*V_{2,2}
*
CALL CTRMM('Right', 'Lower', 'No transpose', 'Unit', L,
$ K-L, ONE, V(L+1, L+1), LDV, T(1, L+1), LDT)
*
* T_{1,2} = V_{3,1}'*V_{3,2} + T_{1,2}
* Note: We assume K <= N, and GEMM will do nothing if N=K
*
CALL CGEMM('Conjugate', 'No transpose', L, K-L, N-K, ONE,
$ V(K+1, 1), LDV, V(K+1, L+1), LDV, ONE, T(1, L+1),
$ LDT)
*
* At this point, we have that T_{1,2} = V_1'*V_2
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2}
* respectively.
*
* T_{1,2} = -T_{1,1}*T_{1,2}
*
CALL CTRMM('Left', 'Upper', 'No transpose', 'Non-unit', L,
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT)
*
* T_{1,2} = T_{1,2}*T_{2,2}
*
CALL CTRMM('Right', 'Upper', 'No transpose', 'Non-unit', L,
$ K-L, ONE, T(L+1, L+1), LDT, T(1, L+1), LDT)
ELSE IF(LQ) THEN
*
* Break V apart into 6 components
*
* V = |----------------------|
* |V_{1,1} V_{1,2} V{1,3}|
* |0 V_{2,2} V{2,3}|
* |----------------------|
*
* V_{1,1}\in\C^{l,l} unit upper triangular
* V_{1,2}\in\C^{l,k-l} rectangular
* V_{1,3}\in\C^{l,n-k} rectangular
*
* V_{2,2}\in\C^{k-l,k-l} unit upper triangular
* V_{2,3}\in\C^{k-l,n-k} rectangular
*
* Where l = floor(k/2)
*
* We will construct the T matrix
* T = |---------------|
* |T_{1,1} T_{1,2}|
* |0 T_{2,2}|
* |---------------|
*
* T is the triangular factor obtained from block reflectors.
* To motivate the structure, assume we have already computed T_{1,1}
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2
*
* T_{1,1}\in\C^{l, l} upper triangular
* T_{2,2}\in\C^{k-l, k-l} upper triangular
* T_{1,2}\in\C^{l, k-l} rectangular
*
* Then, consider the product:
*
* (I - V_1'*T_{1,1}*V_1)*(I - V_2'*T_{2,2}*V_2)
* = I - V_1'*T_{1,1}*V_1 - V_2'*T_{2,2}*V_2 + V_1'*T_{1,1}*V_1*V_2'*T_{2,2}*V_2
*
* Define T_{1,2} = -T_{1,1}*V_1*V_2'*T_{2,2}
*
* Then, we can define the matrix V as
* V = |---|
* |V_1|
* |V_2|
* |---|
*
* So, our product is equivalent to the matrix product
* I - V'*T*V
* This means, we can compute T_{1,1} and T_{2,2}, then use this information
* to compute T_{1,2}
*
* Compute T_{1,1} recursively
*
CALL CLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT)
*
* Compute T_{2,2} recursively
*
CALL CLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV,
$ TAU(L+1), T(L+1, L+1), LDT)
*
* Compute T_{1,2}
* T_{1,2} = V_{1,2}
*
CALL CLACPY('All', L, K-L, V(1, L+1), LDV, T(1, L+1), LDT)
*
* T_{1,2} = T_{1,2}*V_{2,2}'
*
CALL CTRMM('Right', 'Upper', 'Conjugate', 'Unit', L, K-L,
$ ONE, V(L+1, L+1), LDV, T(1, L+1), LDT)
*
* T_{1,2} = V_{1,3}*V_{2,3}' + T_{1,2}
* Note: We assume K <= N, and GEMM will do nothing if N=K
*
CALL CGEMM('No transpose', 'Conjugate', L, K-L, N-K, ONE,
$ V(1, K+1), LDV, V(L+1, K+1), LDV, ONE, T(1, L+1), LDT)
*
* At this point, we have that T_{1,2} = V_1*V_2'
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2}
* respectively.
*
* T_{1,2} = -T_{1,1}*T_{1,2}
*
CALL CTRMM('Left', 'Upper', 'No transpose', 'Non-unit', L,
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT)
*
* T_{1,2} = T_{1,2}*T_{2,2}
*
CALL CTRMM('Right', 'Upper', 'No transpose', 'Non-unit', L,
$ K-L, ONE, T(L+1,L+1), LDT, T(1, L+1), LDT)
ELSE IF(QL) THEN
*
* Break V apart into 6 components
*
* V = |---------------|
* |V_{1,1} V_{1,2}|
* |V_{2,1} V_{2,2}|
* |0 V_{3,2}|
* |---------------|
*
* V_{1,1}\in\C^{n-k,k-l} rectangular
* V_{2,1}\in\C^{k-l,k-l} unit upper triangular
*
* V_{1,2}\in\C^{n-k,l} rectangular
* V_{2,2}\in\C^{k-l,l} rectangular
* V_{3,2}\in\C^{l,l} unit upper triangular
*
* We will construct the T matrix
* T = |---------------|
* |T_{1,1} 0 |
* |T_{2,1} T_{2,2}|
* |---------------|
*
* T is the triangular factor obtained from block reflectors.
* To motivate the structure, assume we have already computed T_{1,1}
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2
*
* T_{1,1}\in\C^{k-l, k-l} non-unit lower triangular
* T_{2,2}\in\C^{l, l} non-unit lower triangular
* T_{2,1}\in\C^{k-l, l} rectangular
*
* Where l = floor(k/2)
*
* Then, consider the product:
*
* (I - V_2*T_{2,2}*V_2')*(I - V_1*T_{1,1}*V_1')
* = I - V_2*T_{2,2}*V_2' - V_1*T_{1,1}*V_1' + V_2*T_{2,2}*V_2'*V_1*T_{1,1}*V_1'
*
* Define T_{2,1} = -T_{2,2}*V_2'*V_1*T_{1,1}
*
* Then, we can define the matrix V as
* V = |-------|
* |V_1 V_2|
* |-------|
*
* So, our product is equivalent to the matrix product
* I - V*T*V'
* This means, we can compute T_{1,1} and T_{2,2}, then use this information
* to compute T_{2,1}
*
* Compute T_{1,1} recursively
*
CALL CLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT)
*
* Compute T_{2,2} recursively
*
CALL CLARFT(DIRECT, STOREV, N, L, V(1, K-L+1), LDV,
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT)
*
* Compute T_{2,1}
* T_{2,1} = V_{2,2}'
*
DO J = 1, K-L
DO I = 1, L
T(K-L+I, J) = CONJG(V(N-K+J, K-L+I))
END DO
END DO
*
* T_{2,1} = T_{2,1}*V_{2,1}
*
CALL CTRMM('Right', 'Upper', 'No transpose', 'Unit', L,
$ K-L, ONE, V(N-K+1, 1), LDV, T(K-L+1, 1), LDT)
*
* T_{2,1} = V_{2,2}'*V_{2,1} + T_{2,1}
* Note: We assume K <= N, and GEMM will do nothing if N=K
*
CALL CGEMM('Conjugate', 'No transpose', L, K-L, N-K, ONE,
$ V(1, K-L+1), LDV, V, LDV, ONE, T(K-L+1, 1),
$ LDT)
*
* At this point, we have that T_{2,1} = V_2'*V_1
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1}
* respectively.
*
* T_{2,1} = -T_{2,2}*T_{2,1}
*
CALL CTRMM('Left', 'Lower', 'No transpose', 'Non-unit', L,
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT,
$ T(K-L+1, 1), LDT)
*
* T_{2,1} = T_{2,1}*T_{1,1}
*
CALL CTRMM('Right', 'Lower', 'No transpose', 'Non-unit', L,
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT)
ELSE
*
* Else means RQ case
*
* Break V apart into 6 components
*
* V = |-----------------------|
* |V_{1,1} V_{1,2} 0 |
* |V_{2,1} V_{2,2} V_{2,3}|
* |-----------------------|
*
* V_{1,1}\in\C^{k-l,n-k} rectangular
* V_{1,2}\in\C^{k-l,k-l} unit lower triangular
*
* V_{2,1}\in\C^{l,n-k} rectangular
* V_{2,2}\in\C^{l,k-l} rectangular
* V_{2,3}\in\C^{l,l} unit lower triangular
*
* We will construct the T matrix
* T = |---------------|
* |T_{1,1} 0 |
* |T_{2,1} T_{2,2}|
* |---------------|
*
* T is the triangular factor obtained from block reflectors.
* To motivate the structure, assume we have already computed T_{1,1}
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2
*
* T_{1,1}\in\C^{k-l, k-l} non-unit lower triangular
* T_{2,2}\in\C^{l, l} non-unit lower triangular
* T_{2,1}\in\C^{k-l, l} rectangular
*
* Where l = floor(k/2)
*
* Then, consider the product:
*
* (I - V_2'*T_{2,2}*V_2)*(I - V_1'*T_{1,1}*V_1)
* = I - V_2'*T_{2,2}*V_2 - V_1'*T_{1,1}*V_1 + V_2'*T_{2,2}*V_2*V_1'*T_{1,1}*V_1
*
* Define T_{2,1} = -T_{2,2}*V_2*V_1'*T_{1,1}
*
* Then, we can define the matrix V as
* V = |---|
* |V_1|
* |V_2|
* |---|
*
* So, our product is equivalent to the matrix product
* I - V'*T*V
* This means, we can compute T_{1,1} and T_{2,2}, then use this information
* to compute T_{2,1}
*
* Compute T_{1,1} recursively
*
CALL CLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT)
*
* Compute T_{2,2} recursively
*
CALL CLARFT(DIRECT, STOREV, N, L, V(K-L+1,1), LDV,
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT)
*
* Compute T_{2,1}
* T_{2,1} = V_{2,2}
*
CALL CLACPY('All', L, K-L, V(K-L+1, N-K+1), LDV,
$ T(K-L+1, 1), LDT)
*
* T_{2,1} = T_{2,1}*V_{1,2}'
*
CALL CTRMM('Right', 'Lower', 'Conjugate', 'Unit', L, K-L,
$ ONE, V(1, N-K+1), LDV, T(K-L+1,1), LDT)
*
* T_{2,1} = V_{2,1}*V_{1,1}' + T_{2,1}
* Note: We assume K <= N, and GEMM will do nothing if N=K
*
CALL CGEMM('No transpose', 'Conjugate', L, K-L, N-K, ONE,
$ V(K-L+1, 1), LDV, V, LDV, ONE, T(K-L+1, 1),
$ LDT)
*
* At this point, we have that T_{2,1} = V_2*V_1'
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1}
* respectively.
*
* T_{2,1} = -T_{2,2}*T_{2,1}
*
CALL CTRMM('Left', 'Lower', 'No tranpose', 'Non-unit', L,
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT,
$ T(K-L+1, 1), LDT)
*
* T_{2,1} = T_{2,1}*T_{1,1}
*
CALL CTRMM('Right', 'Lower', 'No tranpose', 'Non-unit', L,
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT)
END IF
END SUBROUTINE