/*********************************************************************/ /* Copyright 2024, 2025 The OpenBLAS Project */ /* Copyright 2009, 2010 The University of Texas at Austin. */ /* All rights reserved. */ /* */ /* Redistribution and use in source and binary forms, with or */ /* without modification, are permitted provided that the following */ /* conditions are met: */ /* */ /* 1. Redistributions of source code must retain the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer. */ /* */ /* 2. Redistributions in binary form must reproduce the above */ /* copyright notice, this list of conditions and the following */ /* disclaimer in the documentation and/or other materials */ /* provided with the distribution. */ /* */ /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ /* POSSIBILITY OF SUCH DAMAGE. */ /* */ /* The views and conclusions contained in the software and */ /* documentation are those of the authors and should not be */ /* interpreted as representing official policies, either expressed */ /* or implied, of The University of Texas at Austin. */ /*********************************************************************/ #include #include #include #include "common.h" #ifdef FUNCTION_PROFILE #include "functable.h" #endif #ifndef COMPLEX #define SMP_THRESHOLD_MIN 65536.0 #ifdef XDOUBLE #define ERROR_NAME "QGEMM " #define GEMV BLASFUNC(qgemv) #elif defined(DOUBLE) #define ERROR_NAME "DGEMM " #define GEMV BLASFUNC(dgemv) #elif defined(BFLOAT16) #define ERROR_NAME "SBGEMM " #define GEMV BLASFUNC(sbgemv) #else #define ERROR_NAME "SGEMM " #define GEMV BLASFUNC(sgemv) #endif #else #define SMP_THRESHOLD_MIN 8192.0 #ifndef GEMM3M #ifdef XDOUBLE #define ERROR_NAME "XGEMM " #elif defined(DOUBLE) #define ERROR_NAME "ZGEMM " #else #define ERROR_NAME "CGEMM " #endif #else #ifdef XDOUBLE #define ERROR_NAME "XGEMM3M " #elif defined(DOUBLE) #define ERROR_NAME "ZGEMM3M " #else #define ERROR_NAME "CGEMM3M " #endif #endif #endif #ifndef GEMM_MULTITHREAD_THRESHOLD #define GEMM_MULTITHREAD_THRESHOLD 4 #endif static int (*gemm[])(blas_arg_t *, BLASLONG *, BLASLONG *, IFLOAT *, IFLOAT *, BLASLONG) = { #if !defined(GEMM3M) || defined(GENERIC) GEMM_NN, GEMM_TN, GEMM_RN, GEMM_CN, GEMM_NT, GEMM_TT, GEMM_RT, GEMM_CT, GEMM_NR, GEMM_TR, GEMM_RR, GEMM_CR, GEMM_NC, GEMM_TC, GEMM_RC, GEMM_CC, #if defined(SMP) && !defined(USE_SIMPLE_THREADED_LEVEL3) GEMM_THREAD_NN, GEMM_THREAD_TN, GEMM_THREAD_RN, GEMM_THREAD_CN, GEMM_THREAD_NT, GEMM_THREAD_TT, GEMM_THREAD_RT, GEMM_THREAD_CT, GEMM_THREAD_NR, GEMM_THREAD_TR, GEMM_THREAD_RR, GEMM_THREAD_CR, GEMM_THREAD_NC, GEMM_THREAD_TC, GEMM_THREAD_RC, GEMM_THREAD_CC, #endif #else GEMM3M_NN, GEMM3M_TN, GEMM3M_RN, GEMM3M_CN, GEMM3M_NT, GEMM3M_TT, GEMM3M_RT, GEMM3M_CT, GEMM3M_NR, GEMM3M_TR, GEMM3M_RR, GEMM3M_CR, GEMM3M_NC, GEMM3M_TC, GEMM3M_RC, GEMM3M_CC, #if defined(SMP) && !defined(USE_SIMPLE_THREADED_LEVEL3) GEMM3M_THREAD_NN, GEMM3M_THREAD_TN, GEMM3M_THREAD_RN, GEMM3M_THREAD_CN, GEMM3M_THREAD_NT, GEMM3M_THREAD_TT, GEMM3M_THREAD_RT, GEMM3M_THREAD_CT, GEMM3M_THREAD_NR, GEMM3M_THREAD_TR, GEMM3M_THREAD_RR, GEMM3M_THREAD_CR, GEMM3M_THREAD_NC, GEMM3M_THREAD_TC, GEMM3M_THREAD_RC, GEMM3M_THREAD_CC, #endif #endif }; #if defined(SMALL_MATRIX_OPT) && !defined(GEMM3M) && !defined(XDOUBLE) #define USE_SMALL_MATRIX_OPT 1 #else #define USE_SMALL_MATRIX_OPT 0 #endif #if USE_SMALL_MATRIX_OPT #ifndef DYNAMIC_ARCH #define SMALL_KERNEL_ADDR(table, idx) ((void *)(table[idx])) #else #define SMALL_KERNEL_ADDR(table, idx) ((void *)(*(uintptr_t *)((char *)gotoblas + (size_t)(table[idx])))) #endif #ifndef COMPLEX static size_t gemm_small_kernel[] = { GEMM_SMALL_KERNEL_NN, GEMM_SMALL_KERNEL_TN, 0, 0, GEMM_SMALL_KERNEL_NT, GEMM_SMALL_KERNEL_TT, 0, 0, }; static size_t gemm_small_kernel_b0[] = { GEMM_SMALL_KERNEL_B0_NN, GEMM_SMALL_KERNEL_B0_TN, 0, 0, GEMM_SMALL_KERNEL_B0_NT, GEMM_SMALL_KERNEL_B0_TT, 0, 0, }; #define GEMM_SMALL_KERNEL_B0(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, IFLOAT *, BLASLONG, FLOAT, IFLOAT *, BLASLONG, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(gemm_small_kernel_b0, (idx)) #define GEMM_SMALL_KERNEL(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, IFLOAT *, BLASLONG, FLOAT, IFLOAT *, BLASLONG, FLOAT, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(gemm_small_kernel, (idx)) #else static size_t zgemm_small_kernel[] = { GEMM_SMALL_KERNEL_NN, GEMM_SMALL_KERNEL_TN, GEMM_SMALL_KERNEL_RN, GEMM_SMALL_KERNEL_CN, GEMM_SMALL_KERNEL_NT, GEMM_SMALL_KERNEL_TT, GEMM_SMALL_KERNEL_RT, GEMM_SMALL_KERNEL_CT, GEMM_SMALL_KERNEL_NR, GEMM_SMALL_KERNEL_TR, GEMM_SMALL_KERNEL_RR, GEMM_SMALL_KERNEL_CR, GEMM_SMALL_KERNEL_NC, GEMM_SMALL_KERNEL_TC, GEMM_SMALL_KERNEL_RC, GEMM_SMALL_KERNEL_CC, }; static size_t zgemm_small_kernel_b0[] = { GEMM_SMALL_KERNEL_B0_NN, GEMM_SMALL_KERNEL_B0_TN, GEMM_SMALL_KERNEL_B0_RN, GEMM_SMALL_KERNEL_B0_CN, GEMM_SMALL_KERNEL_B0_NT, GEMM_SMALL_KERNEL_B0_TT, GEMM_SMALL_KERNEL_B0_RT, GEMM_SMALL_KERNEL_B0_CT, GEMM_SMALL_KERNEL_B0_NR, GEMM_SMALL_KERNEL_B0_TR, GEMM_SMALL_KERNEL_B0_RR, GEMM_SMALL_KERNEL_B0_CR, GEMM_SMALL_KERNEL_B0_NC, GEMM_SMALL_KERNEL_B0_TC, GEMM_SMALL_KERNEL_B0_RC, GEMM_SMALL_KERNEL_B0_CC, }; #define ZGEMM_SMALL_KERNEL(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, FLOAT *, BLASLONG, FLOAT , FLOAT, FLOAT *, BLASLONG, FLOAT , FLOAT, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(zgemm_small_kernel, (idx)) #define ZGEMM_SMALL_KERNEL_B0(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, FLOAT *, BLASLONG, FLOAT , FLOAT, FLOAT *, BLASLONG, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(zgemm_small_kernel_b0, (idx)) #endif #endif #if defined(__linux__) && defined(__x86_64__) && defined(BFLOAT16) #define XFEATURE_XTILEDATA 18 #define ARCH_REQ_XCOMP_PERM 0x1023 static int openblas_amxtile_permission = 0; static int init_amxtile_permission() { long status = syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_PERM, XFEATURE_XTILEDATA); if (status != 0) { fprintf(stderr, "XTILEDATA permission not granted in your device(Linux, " "Intel Sapphier Rapids), skip sbgemm calculation\n"); return -1; } openblas_amxtile_permission = 1; return 0; } #endif #ifdef DYNAMIC_ARCH extern char* gotoblas_corename(void); #endif #if defined(DYNAMIC_ARCH) || defined(NEOVERSEV1) static inline int get_gemm_optimal_nthreads_neoversev1(double MNK, int ncpu) { return MNK < 262144L ? 1 : MNK < 1124864L ? MIN(ncpu, 6) : MNK < 7880599L ? MIN(ncpu, 12) : MNK < 17173512L ? MIN(ncpu, 16) : MNK < 33386248L ? MIN(ncpu, 20) : MNK < 57066625L ? MIN(ncpu, 24) : MNK < 91733851L ? MIN(ncpu, 32) : MNK < 265847707L ? MIN(ncpu, 40) : MNK < 458314011L ? MIN(ncpu, 48) : MNK < 729000000L ? MIN(ncpu, 56) : ncpu; } #endif static inline int get_gemm_optimal_nthreads(double MNK) { int ncpu = num_cpu_avail(3); #if defined(NEOVERSEV1) && !defined(COMPLEX) && !defined(DOUBLE) && !defined(BFLOAT16) return get_gemm_optimal_nthreads_neoversev1(MNK, ncpu); #elif defined(DYNAMIC_ARCH) && !defined(COMPLEX) && !defined(DOUBLE) && !defined(BFLOAT16) if (strcmp(gotoblas_corename(), "neoversev1") == 0) { return get_gemm_optimal_nthreads_neoversev1(MNK, ncpu); } #endif if ( MNK <= (SMP_THRESHOLD_MIN * (double) GEMM_MULTITHREAD_THRESHOLD) ) { return 1; } else { if (MNK/ncpu < SMP_THRESHOLD_MIN*(double)GEMM_MULTITHREAD_THRESHOLD) { return MNK/(SMP_THRESHOLD_MIN*(double)GEMM_MULTITHREAD_THRESHOLD); } else { return ncpu; } } } #ifndef CBLAS void NAME(char *TRANSA, char *TRANSB, blasint *M, blasint *N, blasint *K, FLOAT *alpha, IFLOAT *a, blasint *ldA, IFLOAT *b, blasint *ldB, FLOAT *beta, FLOAT *c, blasint *ldC){ blas_arg_t args; int transa, transb, nrowa, nrowb; blasint info; char transA, transB; IFLOAT *buffer; IFLOAT *sa, *sb; #ifdef SMP double MNK; #if defined(USE_SIMPLE_THREADED_LEVEL3) || !defined(NO_AFFINITY) #ifndef COMPLEX #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_REAL; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_REAL; #else int mode = BLAS_SINGLE | BLAS_REAL; #endif #else #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_COMPLEX; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_COMPLEX; #else int mode = BLAS_SINGLE | BLAS_COMPLEX; #endif #endif #endif #endif #if defined(SMP) && !defined(NO_AFFINITY) && !defined(USE_SIMPLE_THREADED_LEVEL3) int nodes; #endif PRINT_DEBUG_NAME; args.m = *M; args.n = *N; args.k = *K; args.a = (void *)a; args.b = (void *)b; args.c = (void *)c; args.lda = *ldA; args.ldb = *ldB; args.ldc = *ldC; args.alpha = (void *)alpha; args.beta = (void *)beta; transA = *TRANSA; transB = *TRANSB; TOUPPER(transA); TOUPPER(transB); transa = -1; transb = -1; if (transA == 'N') transa = 0; if (transA == 'T') transa = 1; #ifndef COMPLEX if (transA == 'R') transa = 0; if (transA == 'C') transa = 1; #else if (transA == 'R') transa = 2; if (transA == 'C') transa = 3; #endif if (transB == 'N') transb = 0; if (transB == 'T') transb = 1; #ifndef COMPLEX if (transB == 'R') transb = 0; if (transB == 'C') transb = 1; #else if (transB == 'R') transb = 2; if (transB == 'C') transb = 3; #endif nrowa = args.m; if (transa & 1) nrowa = args.k; nrowb = args.k; if (transb & 1) nrowb = args.n; info = 0; if (args.ldc < args.m) info = 13; if (args.ldb < nrowb) info = 10; if (args.lda < nrowa) info = 8; if (args.k < 0) info = 5; if (args.n < 0) info = 4; if (args.m < 0) info = 3; if (transb < 0) info = 2; if (transa < 0) info = 1; if (info){ BLASFUNC(xerbla)(ERROR_NAME, &info, sizeof(ERROR_NAME)); return; } #else void CNAME(enum CBLAS_ORDER order, enum CBLAS_TRANSPOSE TransA, enum CBLAS_TRANSPOSE TransB, blasint m, blasint n, blasint k, #ifndef COMPLEX FLOAT alpha, IFLOAT *a, blasint lda, IFLOAT *b, blasint ldb, FLOAT beta, FLOAT *c, blasint ldc) { #else void *valpha, void *va, blasint lda, void *vb, blasint ldb, void *vbeta, void *vc, blasint ldc) { FLOAT *alpha = (FLOAT*) valpha; FLOAT *beta = (FLOAT*) vbeta; FLOAT *a = (FLOAT*) va; FLOAT *b = (FLOAT*) vb; FLOAT *c = (FLOAT*) vc; #endif blas_arg_t args; int transa, transb; blasint nrowa, nrowb, info; XFLOAT *buffer; XFLOAT *sa, *sb; #ifdef SMP double MNK; #if defined(USE_SIMPLE_THREADED_LEVEL3) || !defined(NO_AFFINITY) #ifndef COMPLEX #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_REAL; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_REAL; #else int mode = BLAS_SINGLE | BLAS_REAL; #endif #else #ifdef XDOUBLE int mode = BLAS_XDOUBLE | BLAS_COMPLEX; #elif defined(DOUBLE) int mode = BLAS_DOUBLE | BLAS_COMPLEX; #else int mode = BLAS_SINGLE | BLAS_COMPLEX; #endif #endif #endif #endif #if defined(SMP) && !defined(NO_AFFINITY) && !defined(USE_SIMPLE_THREADED_LEVEL3) int nodes; #endif PRINT_DEBUG_CNAME; #if !defined(COMPLEX) && !defined(DOUBLE) && !defined(BFLOAT16) && defined(USE_SGEMM_KERNEL_DIRECT) #ifdef DYNAMIC_ARCH if (support_avx512() ) #endif if (beta == 0 && alpha == 1.0 && order == CblasRowMajor && TransA == CblasNoTrans && TransB == CblasNoTrans && SGEMM_DIRECT_PERFORMANT(m,n,k)) { SGEMM_DIRECT(m, n, k, a, lda, b, ldb, c, ldc); return; } #endif #ifndef COMPLEX args.alpha = (void *)α args.beta = (void *)β #else args.alpha = (void *)alpha; args.beta = (void *)beta; #endif transa = -1; transb = -1; info = 0; if (order == CblasColMajor) { args.m = m; args.n = n; args.k = k; args.a = (void *)a; args.b = (void *)b; args.c = (void *)c; args.lda = lda; args.ldb = ldb; args.ldc = ldc; if (TransA == CblasNoTrans) transa = 0; if (TransA == CblasTrans) transa = 1; #ifndef COMPLEX if (TransA == CblasConjNoTrans) transa = 0; if (TransA == CblasConjTrans) transa = 1; #else if (TransA == CblasConjNoTrans) transa = 2; if (TransA == CblasConjTrans) transa = 3; #endif if (TransB == CblasNoTrans) transb = 0; if (TransB == CblasTrans) transb = 1; #ifndef COMPLEX if (TransB == CblasConjNoTrans) transb = 0; if (TransB == CblasConjTrans) transb = 1; #else if (TransB == CblasConjNoTrans) transb = 2; if (TransB == CblasConjTrans) transb = 3; #endif nrowa = args.m; if (transa & 1) nrowa = args.k; nrowb = args.k; if (transb & 1) nrowb = args.n; info = -1; if (args.ldc < args.m) info = 13; if (args.ldb < nrowb) info = 10; if (args.lda < nrowa) info = 8; if (args.k < 0) info = 5; if (args.n < 0) info = 4; if (args.m < 0) info = 3; if (transb < 0) info = 2; if (transa < 0) info = 1; } if (order == CblasRowMajor) { args.m = n; args.n = m; args.k = k; args.a = (void *)b; args.b = (void *)a; args.c = (void *)c; args.lda = ldb; args.ldb = lda; args.ldc = ldc; if (TransB == CblasNoTrans) transa = 0; if (TransB == CblasTrans) transa = 1; #ifndef COMPLEX if (TransB == CblasConjNoTrans) transa = 0; if (TransB == CblasConjTrans) transa = 1; #else if (TransB == CblasConjNoTrans) transa = 2; if (TransB == CblasConjTrans) transa = 3; #endif if (TransA == CblasNoTrans) transb = 0; if (TransA == CblasTrans) transb = 1; #ifndef COMPLEX if (TransA == CblasConjNoTrans) transb = 0; if (TransA == CblasConjTrans) transb = 1; #else if (TransA == CblasConjNoTrans) transb = 2; if (TransA == CblasConjTrans) transb = 3; #endif nrowa = args.m; if (transa & 1) nrowa = args.k; nrowb = args.k; if (transb & 1) nrowb = args.n; info = -1; if (args.ldc < args.m) info = 13; if (args.ldb < nrowb) info = 10; if (args.lda < nrowa) info = 8; if (args.k < 0) info = 5; if (args.n < 0) info = 4; if (args.m < 0) info = 3; if (transb < 0) info = 2; if (transa < 0) info = 1; } if (info >= 0) { BLASFUNC(xerbla)(ERROR_NAME, &info, sizeof(ERROR_NAME)); return; } #endif #if defined(__linux__) && defined(__x86_64__) && defined(BFLOAT16) #if defined(DYNAMIC_ARCH) if (gotoblas->need_amxtile_permission && openblas_amxtile_permission == 0 && init_amxtile_permission() == -1) { return; } #endif #if !defined(DYNAMIC_ARCH) && defined(SAPPHIRERAPIDS) if (openblas_amxtile_permission == 0 && init_amxtile_permission() == -1) { return; } #endif #endif // defined(__linux__) && defined(__x86_64__) && defined(BFLOAT16) if ((args.m == 0) || (args.n == 0)) return; #if 0 fprintf(stderr, "m = %4d n = %d k = %d lda = %4d ldb = %4d ldc = %4d\n", args.m, args.n, args.k, args.lda, args.ldb, args.ldc); #endif #if defined(GEMM_GEMV_FORWARD) && !defined(GEMM3M) && !defined(COMPLEX) && (!defined(BFLOAT16) || defined(GEMM_GEMV_FORWARD_BF16)) #if defined(ARCH_ARM64) // The gemv kernels in arm64/{gemv_n.S,gemv_n_sve.c,gemv_t.S,gemv_t_sve.c} // perform poorly in certain circumstances. We use the following boolean // variable along with the gemv argument values to avoid these inefficient // gemv cases, see github issue#4951. bool have_tuned_gemv = false; #else bool have_tuned_gemv = true; #endif // Check if we can convert GEMM -> GEMV if (args.k != 0) { if (args.n == 1) { blasint inc_x = 1; blasint inc_y = 1; // These were passed in as blasint, but the struct translates them to blaslong blasint m = args.m; blasint n = args.k; blasint lda = args.lda; // Create new transpose parameters char NT = 'N'; if (transa & 1) { NT = 'T'; m = args.k; n = args.m; } if (transb & 1) { inc_x = args.ldb; } bool is_efficient_gemv = have_tuned_gemv || ((NT == 'N') || (NT == 'T' && inc_x == 1)); if (is_efficient_gemv) { GEMV(&NT, &m, &n, args.alpha, args.a, &lda, args.b, &inc_x, args.beta, args.c, &inc_y); return; } } if (args.m == 1) { blasint inc_x = args.lda; blasint inc_y = args.ldc; // These were passed in as blasint, but the struct translates them to blaslong blasint m = args.k; blasint n = args.n; blasint ldb = args.ldb; // Create new transpose parameters char NT = 'T'; if (transa & 1) { inc_x = 1; } if (transb & 1) { NT = 'N'; m = args.n; n = args.k; } bool is_efficient_gemv = have_tuned_gemv || ((NT == 'N' && inc_y == 1) || (NT == 'T' && inc_x == 1)); if (is_efficient_gemv) { GEMV(&NT, &m, &n, args.alpha, args.b, &ldb, args.a, &inc_x, args.beta, args.c, &inc_y); return; } } } #endif IDEBUG_START; FUNCTION_PROFILE_START(); #if USE_SMALL_MATRIX_OPT #if !defined(COMPLEX) if(GEMM_SMALL_MATRIX_PERMIT(transa, transb, args.m, args.n, args.k, *(FLOAT *)(args.alpha), *(FLOAT *)(args.beta))){ if(*(FLOAT *)(args.beta) == 0.0){ (GEMM_SMALL_KERNEL_B0((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, *(FLOAT *)(args.alpha), args.b, args.ldb, args.c, args.ldc); }else{ (GEMM_SMALL_KERNEL((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, *(FLOAT *)(args.alpha), args.b, args.ldb, *(FLOAT *)(args.beta), args.c, args.ldc); } return; } #else if(GEMM_SMALL_MATRIX_PERMIT(transa, transb, args.m, args.n, args.k, alpha[0], alpha[1], beta[0], beta[1])){ if(beta[0] == 0.0 && beta[1] == 0.0){ (ZGEMM_SMALL_KERNEL_B0((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, alpha[0], alpha[1], args.b, args.ldb, args.c, args.ldc); }else{ (ZGEMM_SMALL_KERNEL((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, alpha[0], alpha[1], args.b, args.ldb, beta[0], beta[1], args.c, args.ldc); } return; } #endif #endif buffer = (XFLOAT *)blas_memory_alloc(0); //For LOONGARCH64, applying an offset to the buffer is essential //for minimizing cache conflicts and optimizing performance. #if defined(ARCH_LOONGARCH64) && !defined(NO_AFFINITY) sa = (XFLOAT *)((BLASLONG)buffer + (WhereAmI() & 0xf) * GEMM_OFFSET_A); #else sa = (XFLOAT *)((BLASLONG)buffer +GEMM_OFFSET_A); #endif sb = (XFLOAT *)(((BLASLONG)sa + ((GEMM_P * GEMM_Q * COMPSIZE * SIZE + GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B); #ifdef SMP #if defined(USE_SIMPLE_THREADED_LEVEL3) || !defined(NO_AFFINITY) mode |= (transa << BLAS_TRANSA_SHIFT); mode |= (transb << BLAS_TRANSB_SHIFT); #endif MNK = (double) args.m * (double) args.n * (double) args.k; args.nthreads = get_gemm_optimal_nthreads(MNK); args.common = NULL; if (args.nthreads == 1) { #endif (gemm[(transb << 2) | transa])(&args, NULL, NULL, sa, sb, 0); #ifdef SMP } else { #ifndef USE_SIMPLE_THREADED_LEVEL3 #ifndef NO_AFFINITY nodes = get_num_nodes(); if ((nodes > 1) && get_node_equal()) { args.nthreads /= nodes; gemm_thread_mn(mode, &args, NULL, NULL, gemm[16 | (transb << 2) | transa], sa, sb, nodes); } else { #endif (gemm[16 | (transb << 2) | transa])(&args, NULL, NULL, sa, sb, 0); #else GEMM_THREAD(mode, &args, NULL, NULL, gemm[(transb << 2) | transa], sa, sb, args.nthreads); #endif #ifndef USE_SIMPLE_THREADED_LEVEL3 #ifndef NO_AFFINITY } #endif #endif #endif #ifdef SMP } #endif blas_memory_free(buffer); FUNCTION_PROFILE_END(COMPSIZE * COMPSIZE, args.m * args.k + args.k * args.n + args.m * args.n, 2 * args.m * args.n * args.k); IDEBUG_END; return; }