Fix accumulation in LAPACK ?LASSQ (Reference-LAPACK PR 909)tags/v0.3.25^2
@@ -34,28 +34,15 @@ | |||
!> | |||
!> \verbatim | |||
!> | |||
!> CLASSQ returns the values scl and smsq such that | |||
!> CLASSQ returns the values scale_out and sumsq_out such that | |||
!> | |||
!> ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq, | |||
!> (scale_out**2)*sumsq_out = x( 1 )**2 +...+ x( n )**2 + (scale**2)*sumsq, | |||
!> | |||
!> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is | |||
!> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is | |||
!> assumed to be non-negative. | |||
!> | |||
!> scale and sumsq must be supplied in SCALE and SUMSQ and | |||
!> scl and smsq are overwritten on SCALE and SUMSQ respectively. | |||
!> | |||
!> If scale * sqrt( sumsq ) > tbig then | |||
!> we require: scale >= sqrt( TINY*EPS ) / sbig on entry, | |||
!> and if 0 < scale * sqrt( sumsq ) < tsml then | |||
!> we require: scale <= sqrt( HUGE ) / ssml on entry, | |||
!> where | |||
!> tbig -- upper threshold for values whose square is representable; | |||
!> sbig -- scaling constant for big numbers; \see la_constants.f90 | |||
!> tsml -- lower threshold for values whose square is representable; | |||
!> ssml -- scaling constant for small numbers; \see la_constants.f90 | |||
!> and | |||
!> TINY*EPS -- tiniest representable number; | |||
!> HUGE -- biggest representable number. | |||
!> scale_out and sumsq_out are overwritten on SCALE and SUMSQ respectively. | |||
!> | |||
!> \endverbatim | |||
! | |||
@@ -72,7 +59,7 @@ | |||
!> \verbatim | |||
!> X is COMPLEX array, dimension (1+(N-1)*abs(INCX)) | |||
!> The vector for which a scaled sum of squares is computed. | |||
!> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. | |||
!> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. | |||
!> \endverbatim | |||
!> | |||
!> \param[in] INCX | |||
@@ -82,24 +69,24 @@ | |||
!> If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n | |||
!> If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n | |||
!> If INCX = 0, x isn't a vector so there is no need to call | |||
!> this subroutine. If you call it anyway, it will count x(1) | |||
!> this subroutine. If you call it anyway, it will count x(1) | |||
!> in the vector norm N times. | |||
!> \endverbatim | |||
!> | |||
!> \param[in,out] SCALE | |||
!> \verbatim | |||
!> SCALE is REAL | |||
!> On entry, the value scale in the equation above. | |||
!> On exit, SCALE is overwritten with scl , the scaling factor | |||
!> On entry, the value scale in the equation above. | |||
!> On exit, SCALE is overwritten by scale_out, the scaling factor | |||
!> for the sum of squares. | |||
!> \endverbatim | |||
!> | |||
!> \param[in,out] SUMSQ | |||
!> \verbatim | |||
!> SUMSQ is REAL | |||
!> On entry, the value sumsq in the equation above. | |||
!> On exit, SUMSQ is overwritten with smsq , the basic sum of | |||
!> squares from which scl has been factored out. | |||
!> On entry, the value sumsq in the equation above. | |||
!> On exit, SUMSQ is overwritten by sumsq_out, the basic sum of | |||
!> squares from which scale_out has been factored out. | |||
!> \endverbatim | |||
! | |||
! Authors: | |||
@@ -130,10 +117,10 @@ | |||
!> | |||
!> \endverbatim | |||
! | |||
!> \ingroup OTHERauxiliary | |||
!> \ingroup lassq | |||
! | |||
! ===================================================================== | |||
subroutine CLASSQ( n, x, incx, scl, sumsq ) | |||
subroutine CLASSQ( n, x, incx, scale, sumsq ) | |||
use LA_CONSTANTS, & | |||
only: wp=>sp, zero=>szero, one=>sone, & | |||
sbig=>ssbig, ssml=>sssml, tbig=>stbig, tsml=>stsml | |||
@@ -145,7 +132,7 @@ subroutine CLASSQ( n, x, incx, scl, sumsq ) | |||
! | |||
! .. Scalar Arguments .. | |||
integer :: incx, n | |||
real(wp) :: scl, sumsq | |||
real(wp) :: scale, sumsq | |||
! .. | |||
! .. Array Arguments .. | |||
complex(wp) :: x(*) | |||
@@ -158,10 +145,10 @@ subroutine CLASSQ( n, x, incx, scl, sumsq ) | |||
! | |||
! Quick return if possible | |||
! | |||
if( LA_ISNAN(scl) .or. LA_ISNAN(sumsq) ) return | |||
if( sumsq == zero ) scl = one | |||
if( scl == zero ) then | |||
scl = one | |||
if( LA_ISNAN(scale) .or. LA_ISNAN(sumsq) ) return | |||
if( sumsq == zero ) scale = one | |||
if( scale == zero ) then | |||
scale = one | |||
sumsq = zero | |||
end if | |||
if (n <= 0) then | |||
@@ -207,15 +194,27 @@ subroutine CLASSQ( n, x, incx, scl, sumsq ) | |||
! Put the existing sum of squares into one of the accumulators | |||
! | |||
if( sumsq > zero ) then | |||
ax = scl*sqrt( sumsq ) | |||
ax = scale*sqrt( sumsq ) | |||
if (ax > tbig) then | |||
! We assume scl >= sqrt( TINY*EPS ) / sbig | |||
abig = abig + (scl*sbig)**2 * sumsq | |||
if (scale > one) then | |||
scale = scale * sbig | |||
abig = abig + scale * (scale * sumsq) | |||
else | |||
! sumsq > tbig^2 => (sbig * (sbig * sumsq)) is representable | |||
abig = abig + scale * (scale * (sbig * (sbig * sumsq))) | |||
end if | |||
else if (ax < tsml) then | |||
! We assume scl <= sqrt( HUGE ) / ssml | |||
if (notbig) asml = asml + (scl*ssml)**2 * sumsq | |||
if (notbig) then | |||
if (scale < one) then | |||
scale = scale * ssml | |||
asml = asml + scale * (scale * sumsq) | |||
else | |||
! sumsq < tsml^2 => (ssml * (ssml * sumsq)) is representable | |||
asml = asml + scale * (scale * (ssml * (ssml * sumsq))) | |||
end if | |||
end if | |||
else | |||
amed = amed + scl**2 * sumsq | |||
amed = amed + scale * (scale * sumsq) | |||
end if | |||
end if | |||
! | |||
@@ -229,7 +228,7 @@ subroutine CLASSQ( n, x, incx, scl, sumsq ) | |||
if (amed > zero .or. LA_ISNAN(amed)) then | |||
abig = abig + (amed*sbig)*sbig | |||
end if | |||
scl = one / sbig | |||
scale = one / sbig | |||
sumsq = abig | |||
else if (asml > zero) then | |||
! | |||
@@ -245,17 +244,17 @@ subroutine CLASSQ( n, x, incx, scl, sumsq ) | |||
ymin = asml | |||
ymax = amed | |||
end if | |||
scl = one | |||
scale = one | |||
sumsq = ymax**2*( one + (ymin/ymax)**2 ) | |||
else | |||
scl = one / ssml | |||
scale = one / ssml | |||
sumsq = asml | |||
end if | |||
else | |||
! | |||
! Otherwise all values are mid-range or zero | |||
! | |||
scl = one | |||
scale = one | |||
sumsq = amed | |||
end if | |||
return | |||
@@ -34,28 +34,15 @@ | |||
!> | |||
!> \verbatim | |||
!> | |||
!> DLASSQ returns the values scl and smsq such that | |||
!> DLASSQ returns the values scale_out and sumsq_out such that | |||
!> | |||
!> ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq, | |||
!> (scale_out**2)*sumsq_out = x( 1 )**2 +...+ x( n )**2 + (scale**2)*sumsq, | |||
!> | |||
!> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is | |||
!> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is | |||
!> assumed to be non-negative. | |||
!> | |||
!> scale and sumsq must be supplied in SCALE and SUMSQ and | |||
!> scl and smsq are overwritten on SCALE and SUMSQ respectively. | |||
!> | |||
!> If scale * sqrt( sumsq ) > tbig then | |||
!> we require: scale >= sqrt( TINY*EPS ) / sbig on entry, | |||
!> and if 0 < scale * sqrt( sumsq ) < tsml then | |||
!> we require: scale <= sqrt( HUGE ) / ssml on entry, | |||
!> where | |||
!> tbig -- upper threshold for values whose square is representable; | |||
!> sbig -- scaling constant for big numbers; \see la_constants.f90 | |||
!> tsml -- lower threshold for values whose square is representable; | |||
!> ssml -- scaling constant for small numbers; \see la_constants.f90 | |||
!> and | |||
!> TINY*EPS -- tiniest representable number; | |||
!> HUGE -- biggest representable number. | |||
!> scale_out and sumsq_out are overwritten on SCALE and SUMSQ respectively. | |||
!> | |||
!> \endverbatim | |||
! | |||
@@ -72,7 +59,7 @@ | |||
!> \verbatim | |||
!> X is DOUBLE PRECISION array, dimension (1+(N-1)*abs(INCX)) | |||
!> The vector for which a scaled sum of squares is computed. | |||
!> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. | |||
!> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. | |||
!> \endverbatim | |||
!> | |||
!> \param[in] INCX | |||
@@ -82,24 +69,24 @@ | |||
!> If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n | |||
!> If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n | |||
!> If INCX = 0, x isn't a vector so there is no need to call | |||
!> this subroutine. If you call it anyway, it will count x(1) | |||
!> this subroutine. If you call it anyway, it will count x(1) | |||
!> in the vector norm N times. | |||
!> \endverbatim | |||
!> | |||
!> \param[in,out] SCALE | |||
!> \verbatim | |||
!> SCALE is DOUBLE PRECISION | |||
!> On entry, the value scale in the equation above. | |||
!> On exit, SCALE is overwritten with scl , the scaling factor | |||
!> On entry, the value scale in the equation above. | |||
!> On exit, SCALE is overwritten by scale_out, the scaling factor | |||
!> for the sum of squares. | |||
!> \endverbatim | |||
!> | |||
!> \param[in,out] SUMSQ | |||
!> \verbatim | |||
!> SUMSQ is DOUBLE PRECISION | |||
!> On entry, the value sumsq in the equation above. | |||
!> On exit, SUMSQ is overwritten with smsq , the basic sum of | |||
!> squares from which scl has been factored out. | |||
!> On entry, the value sumsq in the equation above. | |||
!> On exit, SUMSQ is overwritten by sumsq_out, the basic sum of | |||
!> squares from which scale_out has been factored out. | |||
!> \endverbatim | |||
! | |||
! Authors: | |||
@@ -130,10 +117,10 @@ | |||
!> | |||
!> \endverbatim | |||
! | |||
!> \ingroup OTHERauxiliary | |||
!> \ingroup lassq | |||
! | |||
! ===================================================================== | |||
subroutine DLASSQ( n, x, incx, scl, sumsq ) | |||
subroutine DLASSQ( n, x, incx, scale, sumsq ) | |||
use LA_CONSTANTS, & | |||
only: wp=>dp, zero=>dzero, one=>done, & | |||
sbig=>dsbig, ssml=>dssml, tbig=>dtbig, tsml=>dtsml | |||
@@ -145,7 +132,7 @@ subroutine DLASSQ( n, x, incx, scl, sumsq ) | |||
! | |||
! .. Scalar Arguments .. | |||
integer :: incx, n | |||
real(wp) :: scl, sumsq | |||
real(wp) :: scale, sumsq | |||
! .. | |||
! .. Array Arguments .. | |||
real(wp) :: x(*) | |||
@@ -158,10 +145,10 @@ subroutine DLASSQ( n, x, incx, scl, sumsq ) | |||
! | |||
! Quick return if possible | |||
! | |||
if( LA_ISNAN(scl) .or. LA_ISNAN(sumsq) ) return | |||
if( sumsq == zero ) scl = one | |||
if( scl == zero ) then | |||
scl = one | |||
if( LA_ISNAN(scale) .or. LA_ISNAN(sumsq) ) return | |||
if( sumsq == zero ) scale = one | |||
if( scale == zero ) then | |||
scale = one | |||
sumsq = zero | |||
end if | |||
if (n <= 0) then | |||
@@ -198,15 +185,27 @@ subroutine DLASSQ( n, x, incx, scl, sumsq ) | |||
! Put the existing sum of squares into one of the accumulators | |||
! | |||
if( sumsq > zero ) then | |||
ax = scl*sqrt( sumsq ) | |||
ax = scale*sqrt( sumsq ) | |||
if (ax > tbig) then | |||
! We assume scl >= sqrt( TINY*EPS ) / sbig | |||
abig = abig + (scl*sbig)**2 * sumsq | |||
if (scale > one) then | |||
scale = scale * sbig | |||
abig = abig + scale * (scale * sumsq) | |||
else | |||
! sumsq > tbig^2 => (sbig * (sbig * sumsq)) is representable | |||
abig = abig + scale * (scale * (sbig * (sbig * sumsq))) | |||
end if | |||
else if (ax < tsml) then | |||
! We assume scl <= sqrt( HUGE ) / ssml | |||
if (notbig) asml = asml + (scl*ssml)**2 * sumsq | |||
if (notbig) then | |||
if (scale < one) then | |||
scale = scale * ssml | |||
asml = asml + scale * (scale * sumsq) | |||
else | |||
! sumsq < tsml^2 => (ssml * (ssml * sumsq)) is representable | |||
asml = asml + scale * (scale * (ssml * (ssml * sumsq))) | |||
end if | |||
end if | |||
else | |||
amed = amed + scl**2 * sumsq | |||
amed = amed + scale * (scale * sumsq) | |||
end if | |||
end if | |||
! | |||
@@ -220,7 +219,7 @@ subroutine DLASSQ( n, x, incx, scl, sumsq ) | |||
if (amed > zero .or. LA_ISNAN(amed)) then | |||
abig = abig + (amed*sbig)*sbig | |||
end if | |||
scl = one / sbig | |||
scale = one / sbig | |||
sumsq = abig | |||
else if (asml > zero) then | |||
! | |||
@@ -236,17 +235,17 @@ subroutine DLASSQ( n, x, incx, scl, sumsq ) | |||
ymin = asml | |||
ymax = amed | |||
end if | |||
scl = one | |||
scale = one | |||
sumsq = ymax**2*( one + (ymin/ymax)**2 ) | |||
else | |||
scl = one / ssml | |||
scale = one / ssml | |||
sumsq = asml | |||
end if | |||
else | |||
! | |||
! Otherwise all values are mid-range or zero | |||
! | |||
scl = one | |||
scale = one | |||
sumsq = amed | |||
end if | |||
return | |||
@@ -34,28 +34,15 @@ | |||
!> | |||
!> \verbatim | |||
!> | |||
!> SLASSQ returns the values scl and smsq such that | |||
!> SLASSQ returns the values scale_out and sumsq_out such that | |||
!> | |||
!> ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq, | |||
!> (scale_out**2)*sumsq_out = x( 1 )**2 +...+ x( n )**2 + (scale**2)*sumsq, | |||
!> | |||
!> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is | |||
!> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is | |||
!> assumed to be non-negative. | |||
!> | |||
!> scale and sumsq must be supplied in SCALE and SUMSQ and | |||
!> scl and smsq are overwritten on SCALE and SUMSQ respectively. | |||
!> | |||
!> If scale * sqrt( sumsq ) > tbig then | |||
!> we require: scale >= sqrt( TINY*EPS ) / sbig on entry, | |||
!> and if 0 < scale * sqrt( sumsq ) < tsml then | |||
!> we require: scale <= sqrt( HUGE ) / ssml on entry, | |||
!> where | |||
!> tbig -- upper threshold for values whose square is representable; | |||
!> sbig -- scaling constant for big numbers; \see la_constants.f90 | |||
!> tsml -- lower threshold for values whose square is representable; | |||
!> ssml -- scaling constant for small numbers; \see la_constants.f90 | |||
!> and | |||
!> TINY*EPS -- tiniest representable number; | |||
!> HUGE -- biggest representable number. | |||
!> scale_out and sumsq_out are overwritten on SCALE and SUMSQ respectively. | |||
!> | |||
!> \endverbatim | |||
! | |||
@@ -72,7 +59,7 @@ | |||
!> \verbatim | |||
!> X is REAL array, dimension (1+(N-1)*abs(INCX)) | |||
!> The vector for which a scaled sum of squares is computed. | |||
!> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. | |||
!> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. | |||
!> \endverbatim | |||
!> | |||
!> \param[in] INCX | |||
@@ -82,24 +69,24 @@ | |||
!> If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n | |||
!> If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n | |||
!> If INCX = 0, x isn't a vector so there is no need to call | |||
!> this subroutine. If you call it anyway, it will count x(1) | |||
!> this subroutine. If you call it anyway, it will count x(1) | |||
!> in the vector norm N times. | |||
!> \endverbatim | |||
!> | |||
!> \param[in,out] SCALE | |||
!> \verbatim | |||
!> SCALE is REAL | |||
!> On entry, the value scale in the equation above. | |||
!> On exit, SCALE is overwritten with scl , the scaling factor | |||
!> On entry, the value scale in the equation above. | |||
!> On exit, SCALE is overwritten by scale_out, the scaling factor | |||
!> for the sum of squares. | |||
!> \endverbatim | |||
!> | |||
!> \param[in,out] SUMSQ | |||
!> \verbatim | |||
!> SUMSQ is REAL | |||
!> On entry, the value sumsq in the equation above. | |||
!> On exit, SUMSQ is overwritten with smsq , the basic sum of | |||
!> squares from which scl has been factored out. | |||
!> On entry, the value sumsq in the equation above. | |||
!> On exit, SUMSQ is overwritten by sumsq_out, the basic sum of | |||
!> squares from which scale_out has been factored out. | |||
!> \endverbatim | |||
! | |||
! Authors: | |||
@@ -130,10 +117,10 @@ | |||
!> | |||
!> \endverbatim | |||
! | |||
!> \ingroup OTHERauxiliary | |||
!> \ingroup lassq | |||
! | |||
! ===================================================================== | |||
subroutine SLASSQ( n, x, incx, scl, sumsq ) | |||
subroutine SLASSQ( n, x, incx, scale, sumsq ) | |||
use LA_CONSTANTS, & | |||
only: wp=>sp, zero=>szero, one=>sone, & | |||
sbig=>ssbig, ssml=>sssml, tbig=>stbig, tsml=>stsml | |||
@@ -145,7 +132,7 @@ subroutine SLASSQ( n, x, incx, scl, sumsq ) | |||
! | |||
! .. Scalar Arguments .. | |||
integer :: incx, n | |||
real(wp) :: scl, sumsq | |||
real(wp) :: scale, sumsq | |||
! .. | |||
! .. Array Arguments .. | |||
real(wp) :: x(*) | |||
@@ -158,10 +145,10 @@ subroutine SLASSQ( n, x, incx, scl, sumsq ) | |||
! | |||
! Quick return if possible | |||
! | |||
if( LA_ISNAN(scl) .or. LA_ISNAN(sumsq) ) return | |||
if( sumsq == zero ) scl = one | |||
if( scl == zero ) then | |||
scl = one | |||
if( LA_ISNAN(scale) .or. LA_ISNAN(sumsq) ) return | |||
if( sumsq == zero ) scale = one | |||
if( scale == zero ) then | |||
scale = one | |||
sumsq = zero | |||
end if | |||
if (n <= 0) then | |||
@@ -198,15 +185,27 @@ subroutine SLASSQ( n, x, incx, scl, sumsq ) | |||
! Put the existing sum of squares into one of the accumulators | |||
! | |||
if( sumsq > zero ) then | |||
ax = scl*sqrt( sumsq ) | |||
ax = scale*sqrt( sumsq ) | |||
if (ax > tbig) then | |||
! We assume scl >= sqrt( TINY*EPS ) / sbig | |||
abig = abig + (scl*sbig)**2 * sumsq | |||
if (scale > one) then | |||
scale = scale * sbig | |||
abig = abig + scale * (scale * sumsq) | |||
else | |||
! sumsq > tbig^2 => (sbig * (sbig * sumsq)) is representable | |||
abig = abig + scale * (scale * (sbig * (sbig * sumsq))) | |||
end if | |||
else if (ax < tsml) then | |||
! We assume scl <= sqrt( HUGE ) / ssml | |||
if (notbig) asml = asml + (scl*ssml)**2 * sumsq | |||
if (notbig) then | |||
if (scale < one) then | |||
scale = scale * ssml | |||
asml = asml + scale * (scale * sumsq) | |||
else | |||
! sumsq < tsml^2 => (ssml * (ssml * sumsq)) is representable | |||
asml = asml + scale * (scale * (ssml * (ssml * sumsq))) | |||
end if | |||
end if | |||
else | |||
amed = amed + scl**2 * sumsq | |||
amed = amed + scale * (scale * sumsq) | |||
end if | |||
end if | |||
! | |||
@@ -220,7 +219,7 @@ subroutine SLASSQ( n, x, incx, scl, sumsq ) | |||
if (amed > zero .or. LA_ISNAN(amed)) then | |||
abig = abig + (amed*sbig)*sbig | |||
end if | |||
scl = one / sbig | |||
scale = one / sbig | |||
sumsq = abig | |||
else if (asml > zero) then | |||
! | |||
@@ -236,17 +235,17 @@ subroutine SLASSQ( n, x, incx, scl, sumsq ) | |||
ymin = asml | |||
ymax = amed | |||
end if | |||
scl = one | |||
scale = one | |||
sumsq = ymax**2*( one + (ymin/ymax)**2 ) | |||
else | |||
scl = one / ssml | |||
scale = one / ssml | |||
sumsq = asml | |||
end if | |||
else | |||
! | |||
! Otherwise all values are mid-range or zero | |||
! | |||
scl = one | |||
scale = one | |||
sumsq = amed | |||
end if | |||
return | |||
@@ -34,28 +34,15 @@ | |||
!> | |||
!> \verbatim | |||
!> | |||
!> ZLASSQ returns the values scl and smsq such that | |||
!> ZLASSQ returns the values scale_out and sumsq_out such that | |||
!> | |||
!> ( scl**2 )*smsq = x( 1 )**2 +...+ x( n )**2 + ( scale**2 )*sumsq, | |||
!> (scale_out**2)*sumsq_out = x( 1 )**2 +...+ x( n )**2 + (scale**2)*sumsq, | |||
!> | |||
!> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is | |||
!> where x( i ) = X( 1 + ( i - 1 )*INCX ). The value of sumsq is | |||
!> assumed to be non-negative. | |||
!> | |||
!> scale and sumsq must be supplied in SCALE and SUMSQ and | |||
!> scl and smsq are overwritten on SCALE and SUMSQ respectively. | |||
!> | |||
!> If scale * sqrt( sumsq ) > tbig then | |||
!> we require: scale >= sqrt( TINY*EPS ) / sbig on entry, | |||
!> and if 0 < scale * sqrt( sumsq ) < tsml then | |||
!> we require: scale <= sqrt( HUGE ) / ssml on entry, | |||
!> where | |||
!> tbig -- upper threshold for values whose square is representable; | |||
!> sbig -- scaling constant for big numbers; \see la_constants.f90 | |||
!> tsml -- lower threshold for values whose square is representable; | |||
!> ssml -- scaling constant for small numbers; \see la_constants.f90 | |||
!> and | |||
!> TINY*EPS -- tiniest representable number; | |||
!> HUGE -- biggest representable number. | |||
!> scale_out and sumsq_out are overwritten on SCALE and SUMSQ respectively. | |||
!> | |||
!> \endverbatim | |||
! | |||
@@ -72,7 +59,7 @@ | |||
!> \verbatim | |||
!> X is DOUBLE COMPLEX array, dimension (1+(N-1)*abs(INCX)) | |||
!> The vector for which a scaled sum of squares is computed. | |||
!> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. | |||
!> x( i ) = X( 1 + ( i - 1 )*INCX ), 1 <= i <= n. | |||
!> \endverbatim | |||
!> | |||
!> \param[in] INCX | |||
@@ -82,24 +69,24 @@ | |||
!> If INCX > 0, X(1+(i-1)*INCX) = x(i) for 1 <= i <= n | |||
!> If INCX < 0, X(1-(n-i)*INCX) = x(i) for 1 <= i <= n | |||
!> If INCX = 0, x isn't a vector so there is no need to call | |||
!> this subroutine. If you call it anyway, it will count x(1) | |||
!> this subroutine. If you call it anyway, it will count x(1) | |||
!> in the vector norm N times. | |||
!> \endverbatim | |||
!> | |||
!> \param[in,out] SCALE | |||
!> \verbatim | |||
!> SCALE is DOUBLE PRECISION | |||
!> On entry, the value scale in the equation above. | |||
!> On exit, SCALE is overwritten with scl , the scaling factor | |||
!> On entry, the value scale in the equation above. | |||
!> On exit, SCALE is overwritten by scale_out, the scaling factor | |||
!> for the sum of squares. | |||
!> \endverbatim | |||
!> | |||
!> \param[in,out] SUMSQ | |||
!> \verbatim | |||
!> SUMSQ is DOUBLE PRECISION | |||
!> On entry, the value sumsq in the equation above. | |||
!> On exit, SUMSQ is overwritten with smsq , the basic sum of | |||
!> squares from which scl has been factored out. | |||
!> On entry, the value sumsq in the equation above. | |||
!> On exit, SUMSQ is overwritten by sumsq_out, the basic sum of | |||
!> squares from which scale_out has been factored out. | |||
!> \endverbatim | |||
! | |||
! Authors: | |||
@@ -130,10 +117,10 @@ | |||
!> | |||
!> \endverbatim | |||
! | |||
!> \ingroup OTHERauxiliary | |||
!> \ingroup lassq | |||
! | |||
! ===================================================================== | |||
subroutine ZLASSQ( n, x, incx, scl, sumsq ) | |||
subroutine ZLASSQ( n, x, incx, scale, sumsq ) | |||
use LA_CONSTANTS, & | |||
only: wp=>dp, zero=>dzero, one=>done, & | |||
sbig=>dsbig, ssml=>dssml, tbig=>dtbig, tsml=>dtsml | |||
@@ -145,7 +132,7 @@ subroutine ZLASSQ( n, x, incx, scl, sumsq ) | |||
! | |||
! .. Scalar Arguments .. | |||
integer :: incx, n | |||
real(wp) :: scl, sumsq | |||
real(wp) :: scale, sumsq | |||
! .. | |||
! .. Array Arguments .. | |||
complex(wp) :: x(*) | |||
@@ -158,10 +145,10 @@ subroutine ZLASSQ( n, x, incx, scl, sumsq ) | |||
! | |||
! Quick return if possible | |||
! | |||
if( LA_ISNAN(scl) .or. LA_ISNAN(sumsq) ) return | |||
if( sumsq == zero ) scl = one | |||
if( scl == zero ) then | |||
scl = one | |||
if( LA_ISNAN(scale) .or. LA_ISNAN(sumsq) ) return | |||
if( sumsq == zero ) scale = one | |||
if( scale == zero ) then | |||
scale = one | |||
sumsq = zero | |||
end if | |||
if (n <= 0) then | |||
@@ -207,15 +194,27 @@ subroutine ZLASSQ( n, x, incx, scl, sumsq ) | |||
! Put the existing sum of squares into one of the accumulators | |||
! | |||
if( sumsq > zero ) then | |||
ax = scl*sqrt( sumsq ) | |||
ax = scale*sqrt( sumsq ) | |||
if (ax > tbig) then | |||
! We assume scl >= sqrt( TINY*EPS ) / sbig | |||
abig = abig + (scl*sbig)**2 * sumsq | |||
if (scale > one) then | |||
scale = scale * sbig | |||
abig = abig + scale * (scale * sumsq) | |||
else | |||
! sumsq > tbig^2 => (sbig * (sbig * sumsq)) is representable | |||
abig = abig + scale * (scale * (sbig * (sbig * sumsq))) | |||
end if | |||
else if (ax < tsml) then | |||
! We assume scl <= sqrt( HUGE ) / ssml | |||
if (notbig) asml = asml + (scl*ssml)**2 * sumsq | |||
if (notbig) then | |||
if (scale < one) then | |||
scale = scale * ssml | |||
asml = asml + scale * (scale * sumsq) | |||
else | |||
! sumsq < tsml^2 => (ssml * (ssml * sumsq)) is representable | |||
asml = asml + scale * (scale * (ssml * (ssml * sumsq))) | |||
end if | |||
end if | |||
else | |||
amed = amed + scl**2 * sumsq | |||
amed = amed + scale * (scale * sumsq) | |||
end if | |||
end if | |||
! | |||
@@ -229,7 +228,7 @@ subroutine ZLASSQ( n, x, incx, scl, sumsq ) | |||
if (amed > zero .or. LA_ISNAN(amed)) then | |||
abig = abig + (amed*sbig)*sbig | |||
end if | |||
scl = one / sbig | |||
scale = one / sbig | |||
sumsq = abig | |||
else if (asml > zero) then | |||
! | |||
@@ -245,17 +244,17 @@ subroutine ZLASSQ( n, x, incx, scl, sumsq ) | |||
ymin = asml | |||
ymax = amed | |||
end if | |||
scl = one | |||
scale = one | |||
sumsq = ymax**2*( one + (ymin/ymax)**2 ) | |||
else | |||
scl = one / ssml | |||
scale = one / ssml | |||
sumsq = asml | |||
end if | |||
else | |||
! | |||
! Otherwise all values are mid-range or zero | |||
! | |||
scl = one | |||
scale = one | |||
sumsq = amed | |||
end if | |||
return | |||