Replace LAPACK ?LARFT with a recursive implementation (Reference-LAPACK PR 1080)tags/v0.3.29
@@ -30,9 +30,11 @@ LUREC = lu/REC/cgetrf.o lu/REC/dgetrf.o lu/REC/sgetrf.o lu/REC/zgetrf.o | |||
QRLL = qr/LL/cgeqrf.o qr/LL/dgeqrf.o qr/LL/sgeqrf.o qr/LL/zgeqrf.o | |||
LARFTL2 = larft/LL-LVL2/clarft.o larft/LL-LVL2/dlarft.o larft/LL-LVL2/slarft.o larft/LL-LVL2/zlarft.o | |||
.PHONY: all | |||
all: cholrl.a choltop.a lucr.a lull.a lurec.a qrll.a | |||
all: cholrl.a choltop.a lucr.a lull.a lurec.a qrll.a larftl2.a | |||
cholrl.a: $(CHOLRL) | |||
$(AR) $(ARFLAGS) $@ $^ | |||
@@ -58,9 +60,13 @@ qrll.a: $(QRLL) | |||
$(AR) $(ARFLAGS) $@ $^ | |||
$(RANLIB) $@ | |||
larftl2.a: $(LARFTL2) | |||
$(AR) $(ARFLAGS) $@ $^ | |||
$(RANLIB) $@ | |||
.PHONY: clean cleanobj cleanlib | |||
clean: cleanobj cleanlib | |||
cleanobj: | |||
rm -f $(CHOLRL) $(CHOLTOP) $(LUCR) $(LULL) $(LUREC) $(QRLL) | |||
rm -f $(CHOLRL) $(CHOLTOP) $(LUCR) $(LULL) $(LUREC) $(QRLL) $(LARFTL2) | |||
cleanlib: | |||
rm -f *.a |
@@ -23,6 +23,7 @@ This directory contains several variants of LAPACK routines in single/double/com | |||
- [sdcz]geqrf with QR Left Looking Level 3 BLAS version algorithm [2]- Directory: SRC/VARIANTS/qr/LL | |||
- [sdcz]potrf with Cholesky Right Looking Level 3 BLAS version algorithm [2]- Directory: SRC/VARIANTS/cholesky/RL | |||
- [sdcz]potrf with Cholesky Top Level 3 BLAS version algorithm [2]- Directory: SRC/VARIANTS/cholesky/TOP | |||
- [sdcz]larft using a Left Looking Level 2 BLAS version algorithm - Directory: SRC/VARIANTS/larft/LL-LVL2 | |||
References:For a more detailed description please refer to | |||
- [1] Toledo, S. 1997. Locality of Reference in LU Decomposition with Partial Pivoting. SIAM J. Matrix Anal. Appl. 18, 4 (Oct. 1997), | |||
@@ -44,6 +45,7 @@ Corresponding libraries created in SRC/VARIANTS: | |||
- QR Left Looking : qrll.a | |||
- Cholesky Right Looking : cholrl.a | |||
- Cholesky Top : choltop.a | |||
- LARFT Level 2: larftl2.a | |||
=========== | |||
@@ -0,0 +1,328 @@ | |||
*> \brief \b CLARFT VARIANT: left-looking Level 2 BLAS version of the algorithm | |||
* | |||
* =========== DOCUMENTATION =========== | |||
* | |||
* Online html documentation available at | |||
* http://www.netlib.org/lapack/explore-html/ | |||
* | |||
*> \htmlonly | |||
*> Download CLARFT + dependencies | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarft.f"> | |||
*> [TGZ]</a> | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarft.f"> | |||
*> [ZIP]</a> | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarft.f"> | |||
*> [TXT]</a> | |||
*> \endhtmlonly | |||
* | |||
* Definition: | |||
* =========== | |||
* | |||
* SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* | |||
* .. Scalar Arguments .. | |||
* CHARACTER DIRECT, STOREV | |||
* INTEGER K, LDT, LDV, N | |||
* .. | |||
* .. Array Arguments .. | |||
* COMPLEX T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* | |||
*> \par Purpose: | |||
* ============= | |||
*> | |||
*> \verbatim | |||
*> | |||
*> CLARFT forms the triangular factor T of a complex block reflector H | |||
*> of order n, which is defined as a product of k elementary reflectors. | |||
*> | |||
*> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; | |||
*> | |||
*> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. | |||
*> | |||
*> If STOREV = 'C', the vector which defines the elementary reflector | |||
*> H(i) is stored in the i-th column of the array V, and | |||
*> | |||
*> H = I - V * T * V**H | |||
*> | |||
*> If STOREV = 'R', the vector which defines the elementary reflector | |||
*> H(i) is stored in the i-th row of the array V, and | |||
*> | |||
*> H = I - V**H * T * V | |||
*> \endverbatim | |||
* | |||
* Arguments: | |||
* ========== | |||
* | |||
*> \param[in] DIRECT | |||
*> \verbatim | |||
*> DIRECT is CHARACTER*1 | |||
*> Specifies the order in which the elementary reflectors are | |||
*> multiplied to form the block reflector: | |||
*> = 'F': H = H(1) H(2) . . . H(k) (Forward) | |||
*> = 'B': H = H(k) . . . H(2) H(1) (Backward) | |||
*> \endverbatim | |||
*> | |||
*> \param[in] STOREV | |||
*> \verbatim | |||
*> STOREV is CHARACTER*1 | |||
*> Specifies how the vectors which define the elementary | |||
*> reflectors are stored (see also Further Details): | |||
*> = 'C': columnwise | |||
*> = 'R': rowwise | |||
*> \endverbatim | |||
*> | |||
*> \param[in] N | |||
*> \verbatim | |||
*> N is INTEGER | |||
*> The order of the block reflector H. N >= 0. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] K | |||
*> \verbatim | |||
*> K is INTEGER | |||
*> The order of the triangular factor T (= the number of | |||
*> elementary reflectors). K >= 1. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] V | |||
*> \verbatim | |||
*> V is COMPLEX array, dimension | |||
*> (LDV,K) if STOREV = 'C' | |||
*> (LDV,N) if STOREV = 'R' | |||
*> The matrix V. See further details. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] LDV | |||
*> \verbatim | |||
*> LDV is INTEGER | |||
*> The leading dimension of the array V. | |||
*> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] TAU | |||
*> \verbatim | |||
*> TAU is COMPLEX array, dimension (K) | |||
*> TAU(i) must contain the scalar factor of the elementary | |||
*> reflector H(i). | |||
*> \endverbatim | |||
*> | |||
*> \param[out] T | |||
*> \verbatim | |||
*> T is COMPLEX array, dimension (LDT,K) | |||
*> The k by k triangular factor T of the block reflector. | |||
*> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is | |||
*> lower triangular. The rest of the array is not used. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] LDT | |||
*> \verbatim | |||
*> LDT is INTEGER | |||
*> The leading dimension of the array T. LDT >= K. | |||
*> \endverbatim | |||
* | |||
* Authors: | |||
* ======== | |||
* | |||
*> \author Univ. of Tennessee | |||
*> \author Univ. of California Berkeley | |||
*> \author Univ. of Colorado Denver | |||
*> \author NAG Ltd. | |||
* | |||
*> \ingroup larft | |||
* | |||
*> \par Further Details: | |||
* ===================== | |||
*> | |||
*> \verbatim | |||
*> | |||
*> The shape of the matrix V and the storage of the vectors which define | |||
*> the H(i) is best illustrated by the following example with n = 5 and | |||
*> k = 3. The elements equal to 1 are not stored. | |||
*> | |||
*> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': | |||
*> | |||
*> V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) | |||
*> ( v1 1 ) ( 1 v2 v2 v2 ) | |||
*> ( v1 v2 1 ) ( 1 v3 v3 ) | |||
*> ( v1 v2 v3 ) | |||
*> ( v1 v2 v3 ) | |||
*> | |||
*> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': | |||
*> | |||
*> V = ( v1 v2 v3 ) V = ( v1 v1 1 ) | |||
*> ( v1 v2 v3 ) ( v2 v2 v2 1 ) | |||
*> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) | |||
*> ( 1 v3 ) | |||
*> ( 1 ) | |||
*> \endverbatim | |||
*> | |||
* ===================================================================== | |||
SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* | |||
* -- LAPACK auxiliary routine -- | |||
* -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
* | |||
* .. Scalar Arguments .. | |||
CHARACTER DIRECT, STOREV | |||
INTEGER K, LDT, LDV, N | |||
* .. | |||
* .. Array Arguments .. | |||
COMPLEX T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* ===================================================================== | |||
* | |||
* .. Parameters .. | |||
COMPLEX ONE, ZERO | |||
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ), | |||
$ ZERO = ( 0.0E+0, 0.0E+0 ) ) | |||
* .. | |||
* .. Local Scalars .. | |||
INTEGER I, J, PREVLASTV, LASTV | |||
* .. | |||
* .. External Subroutines .. | |||
EXTERNAL CGEMM, CGEMV, CTRMV | |||
* .. | |||
* .. External Functions .. | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* .. | |||
* .. Executable Statements .. | |||
* | |||
* Quick return if possible | |||
* | |||
IF( N.EQ.0 ) | |||
$ RETURN | |||
* | |||
IF( LSAME( DIRECT, 'F' ) ) THEN | |||
PREVLASTV = N | |||
DO I = 1, K | |||
PREVLASTV = MAX( PREVLASTV, I ) | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = 1, I | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * CONJG( V( I , J ) ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i) | |||
* | |||
CALL CGEMV( 'Conjugate transpose', J-I, I-1, | |||
$ -TAU( I ), V( I+1, 1 ), LDV, | |||
$ V( I+1, I ), 1, | |||
$ ONE, T( 1, I ), 1 ) | |||
ELSE | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( J , I ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H | |||
* | |||
CALL CGEMM( 'N', 'C', I-1, 1, J-I, -TAU( I ), | |||
$ V( 1, I+1 ), LDV, V( I, I+1 ), LDV, | |||
$ ONE, T( 1, I ), LDT ) | |||
END IF | |||
* | |||
* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) | |||
* | |||
CALL CTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, | |||
$ T, | |||
$ LDT, T( 1, I ), 1 ) | |||
T( I, I ) = TAU( I ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MAX( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
END DO | |||
ELSE | |||
PREVLASTV = 1 | |||
DO I = K, 1, -1 | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = I, K | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( I.LT.K ) THEN | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * CONJG( V( N-K+I , J ) ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i) | |||
* | |||
CALL CGEMV( 'Conjugate transpose', N-K+I-J, K-I, | |||
$ -TAU( I ), V( J, I+1 ), LDV, V( J, I ), | |||
$ 1, ONE, T( I+1, I ), 1 ) | |||
ELSE | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( J, N-K+I ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H | |||
* | |||
CALL CGEMM( 'N', 'C', K-I, 1, N-K+I-J, | |||
$ -TAU( I ), | |||
$ V( I+1, J ), LDV, V( I, J ), LDV, | |||
$ ONE, T( I+1, I ), LDT ) | |||
END IF | |||
* | |||
* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) | |||
* | |||
CALL CTRMV( 'Lower', 'No transpose', 'Non-unit', | |||
$ K-I, | |||
$ T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MIN( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
T( I, I ) = TAU( I ) | |||
END IF | |||
END DO | |||
END IF | |||
RETURN | |||
* | |||
* End of CLARFT | |||
* | |||
END |
@@ -0,0 +1,326 @@ | |||
*> \brief \b DLARFT VARIANT: left-looking Level 2 BLAS version of the algorithm | |||
* | |||
* =========== DOCUMENTATION =========== | |||
* | |||
* Online html documentation available at | |||
* http://www.netlib.org/lapack/explore-html/ | |||
* | |||
*> \htmlonly | |||
*> Download DLARFT + dependencies | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarft.f"> | |||
*> [TGZ]</a> | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarft.f"> | |||
*> [ZIP]</a> | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarft.f"> | |||
*> [TXT]</a> | |||
*> \endhtmlonly | |||
* | |||
* Definition: | |||
* =========== | |||
* | |||
* SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* | |||
* .. Scalar Arguments .. | |||
* CHARACTER DIRECT, STOREV | |||
* INTEGER K, LDT, LDV, N | |||
* .. | |||
* .. Array Arguments .. | |||
* DOUBLE PRECISION T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* | |||
*> \par Purpose: | |||
* ============= | |||
*> | |||
*> \verbatim | |||
*> | |||
*> DLARFT forms the triangular factor T of a real block reflector H | |||
*> of order n, which is defined as a product of k elementary reflectors. | |||
*> | |||
*> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; | |||
*> | |||
*> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. | |||
*> | |||
*> If STOREV = 'C', the vector which defines the elementary reflector | |||
*> H(i) is stored in the i-th column of the array V, and | |||
*> | |||
*> H = I - V * T * V**T | |||
*> | |||
*> If STOREV = 'R', the vector which defines the elementary reflector | |||
*> H(i) is stored in the i-th row of the array V, and | |||
*> | |||
*> H = I - V**T * T * V | |||
*> \endverbatim | |||
* | |||
* Arguments: | |||
* ========== | |||
* | |||
*> \param[in] DIRECT | |||
*> \verbatim | |||
*> DIRECT is CHARACTER*1 | |||
*> Specifies the order in which the elementary reflectors are | |||
*> multiplied to form the block reflector: | |||
*> = 'F': H = H(1) H(2) . . . H(k) (Forward) | |||
*> = 'B': H = H(k) . . . H(2) H(1) (Backward) | |||
*> \endverbatim | |||
*> | |||
*> \param[in] STOREV | |||
*> \verbatim | |||
*> STOREV is CHARACTER*1 | |||
*> Specifies how the vectors which define the elementary | |||
*> reflectors are stored (see also Further Details): | |||
*> = 'C': columnwise | |||
*> = 'R': rowwise | |||
*> \endverbatim | |||
*> | |||
*> \param[in] N | |||
*> \verbatim | |||
*> N is INTEGER | |||
*> The order of the block reflector H. N >= 0. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] K | |||
*> \verbatim | |||
*> K is INTEGER | |||
*> The order of the triangular factor T (= the number of | |||
*> elementary reflectors). K >= 1. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] V | |||
*> \verbatim | |||
*> V is DOUBLE PRECISION array, dimension | |||
*> (LDV,K) if STOREV = 'C' | |||
*> (LDV,N) if STOREV = 'R' | |||
*> The matrix V. See further details. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] LDV | |||
*> \verbatim | |||
*> LDV is INTEGER | |||
*> The leading dimension of the array V. | |||
*> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] TAU | |||
*> \verbatim | |||
*> TAU is DOUBLE PRECISION array, dimension (K) | |||
*> TAU(i) must contain the scalar factor of the elementary | |||
*> reflector H(i). | |||
*> \endverbatim | |||
*> | |||
*> \param[out] T | |||
*> \verbatim | |||
*> T is DOUBLE PRECISION array, dimension (LDT,K) | |||
*> The k by k triangular factor T of the block reflector. | |||
*> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is | |||
*> lower triangular. The rest of the array is not used. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] LDT | |||
*> \verbatim | |||
*> LDT is INTEGER | |||
*> The leading dimension of the array T. LDT >= K. | |||
*> \endverbatim | |||
* | |||
* Authors: | |||
* ======== | |||
* | |||
*> \author Univ. of Tennessee | |||
*> \author Univ. of California Berkeley | |||
*> \author Univ. of Colorado Denver | |||
*> \author NAG Ltd. | |||
* | |||
*> \ingroup larft | |||
* | |||
*> \par Further Details: | |||
* ===================== | |||
*> | |||
*> \verbatim | |||
*> | |||
*> The shape of the matrix V and the storage of the vectors which define | |||
*> the H(i) is best illustrated by the following example with n = 5 and | |||
*> k = 3. The elements equal to 1 are not stored. | |||
*> | |||
*> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': | |||
*> | |||
*> V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) | |||
*> ( v1 1 ) ( 1 v2 v2 v2 ) | |||
*> ( v1 v2 1 ) ( 1 v3 v3 ) | |||
*> ( v1 v2 v3 ) | |||
*> ( v1 v2 v3 ) | |||
*> | |||
*> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': | |||
*> | |||
*> V = ( v1 v2 v3 ) V = ( v1 v1 1 ) | |||
*> ( v1 v2 v3 ) ( v2 v2 v2 1 ) | |||
*> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) | |||
*> ( 1 v3 ) | |||
*> ( 1 ) | |||
*> \endverbatim | |||
*> | |||
* ===================================================================== | |||
SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* | |||
* -- LAPACK auxiliary routine -- | |||
* -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
* | |||
* .. Scalar Arguments .. | |||
CHARACTER DIRECT, STOREV | |||
INTEGER K, LDT, LDV, N | |||
* .. | |||
* .. Array Arguments .. | |||
DOUBLE PRECISION T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* ===================================================================== | |||
* | |||
* .. Parameters .. | |||
DOUBLE PRECISION ONE, ZERO | |||
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) | |||
* .. | |||
* .. Local Scalars .. | |||
INTEGER I, J, PREVLASTV, LASTV | |||
* .. | |||
* .. External Subroutines .. | |||
EXTERNAL DGEMV, DTRMV | |||
* .. | |||
* .. External Functions .. | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* .. | |||
* .. Executable Statements .. | |||
* | |||
* Quick return if possible | |||
* | |||
IF( N.EQ.0 ) | |||
$ RETURN | |||
* | |||
IF( LSAME( DIRECT, 'F' ) ) THEN | |||
PREVLASTV = N | |||
DO I = 1, K | |||
PREVLASTV = MAX( I, PREVLASTV ) | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = 1, I | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( I , J ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i) | |||
* | |||
CALL DGEMV( 'Transpose', J-I, I-1, -TAU( I ), | |||
$ V( I+1, 1 ), LDV, V( I+1, I ), 1, ONE, | |||
$ T( 1, I ), 1 ) | |||
ELSE | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( J , I ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T | |||
* | |||
CALL DGEMV( 'No transpose', I-1, J-I, -TAU( I ), | |||
$ V( 1, I+1 ), LDV, V( I, I+1 ), LDV, ONE, | |||
$ T( 1, I ), 1 ) | |||
END IF | |||
* | |||
* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) | |||
* | |||
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, | |||
$ T, | |||
$ LDT, T( 1, I ), 1 ) | |||
T( I, I ) = TAU( I ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MAX( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
END DO | |||
ELSE | |||
PREVLASTV = 1 | |||
DO I = K, 1, -1 | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = I, K | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( I.LT.K ) THEN | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( N-K+I , J ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i) | |||
* | |||
CALL DGEMV( 'Transpose', N-K+I-J, K-I, | |||
$ -TAU( I ), | |||
$ V( J, I+1 ), LDV, V( J, I ), 1, ONE, | |||
$ T( I+1, I ), 1 ) | |||
ELSE | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( J, N-K+I ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T | |||
* | |||
CALL DGEMV( 'No transpose', K-I, N-K+I-J, | |||
$ -TAU( I ), V( I+1, J ), LDV, V( I, J ), LDV, | |||
$ ONE, T( I+1, I ), 1 ) | |||
END IF | |||
* | |||
* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) | |||
* | |||
CALL DTRMV( 'Lower', 'No transpose', 'Non-unit', | |||
$ K-I, | |||
$ T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MIN( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
T( I, I ) = TAU( I ) | |||
END IF | |||
END DO | |||
END IF | |||
RETURN | |||
* | |||
* End of DLARFT | |||
* | |||
END |
@@ -0,0 +1,326 @@ | |||
*> \brief \b SLARFT VARIANT: left-looking Level 2 BLAS version of the algorithm. | |||
* | |||
* =========== DOCUMENTATION =========== | |||
* | |||
* Online html documentation available at | |||
* http://www.netlib.org/lapack/explore-html/ | |||
* | |||
*> \htmlonly | |||
*> Download SLARFT + dependencies | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarft.f"> | |||
*> [TGZ]</a> | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarft.f"> | |||
*> [ZIP]</a> | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarft.f"> | |||
*> [TXT]</a> | |||
*> \endhtmlonly | |||
* | |||
* Definition: | |||
* =========== | |||
* | |||
* SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* | |||
* .. Scalar Arguments .. | |||
* CHARACTER DIRECT, STOREV | |||
* INTEGER K, LDT, LDV, N | |||
* .. | |||
* .. Array Arguments .. | |||
* REAL T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* | |||
*> \par Purpose: | |||
* ============= | |||
*> | |||
*> \verbatim | |||
*> | |||
*> SLARFT forms the triangular factor T of a real block reflector H | |||
*> of order n, which is defined as a product of k elementary reflectors. | |||
*> | |||
*> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; | |||
*> | |||
*> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. | |||
*> | |||
*> If STOREV = 'C', the vector which defines the elementary reflector | |||
*> H(i) is stored in the i-th column of the array V, and | |||
*> | |||
*> H = I - V * T * V**T | |||
*> | |||
*> If STOREV = 'R', the vector which defines the elementary reflector | |||
*> H(i) is stored in the i-th row of the array V, and | |||
*> | |||
*> H = I - V**T * T * V | |||
*> \endverbatim | |||
* | |||
* Arguments: | |||
* ========== | |||
* | |||
*> \param[in] DIRECT | |||
*> \verbatim | |||
*> DIRECT is CHARACTER*1 | |||
*> Specifies the order in which the elementary reflectors are | |||
*> multiplied to form the block reflector: | |||
*> = 'F': H = H(1) H(2) . . . H(k) (Forward) | |||
*> = 'B': H = H(k) . . . H(2) H(1) (Backward) | |||
*> \endverbatim | |||
*> | |||
*> \param[in] STOREV | |||
*> \verbatim | |||
*> STOREV is CHARACTER*1 | |||
*> Specifies how the vectors which define the elementary | |||
*> reflectors are stored (see also Further Details): | |||
*> = 'C': columnwise | |||
*> = 'R': rowwise | |||
*> \endverbatim | |||
*> | |||
*> \param[in] N | |||
*> \verbatim | |||
*> N is INTEGER | |||
*> The order of the block reflector H. N >= 0. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] K | |||
*> \verbatim | |||
*> K is INTEGER | |||
*> The order of the triangular factor T (= the number of | |||
*> elementary reflectors). K >= 1. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] V | |||
*> \verbatim | |||
*> V is REAL array, dimension | |||
*> (LDV,K) if STOREV = 'C' | |||
*> (LDV,N) if STOREV = 'R' | |||
*> The matrix V. See further details. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] LDV | |||
*> \verbatim | |||
*> LDV is INTEGER | |||
*> The leading dimension of the array V. | |||
*> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] TAU | |||
*> \verbatim | |||
*> TAU is REAL array, dimension (K) | |||
*> TAU(i) must contain the scalar factor of the elementary | |||
*> reflector H(i). | |||
*> \endverbatim | |||
*> | |||
*> \param[out] T | |||
*> \verbatim | |||
*> T is REAL array, dimension (LDT,K) | |||
*> The k by k triangular factor T of the block reflector. | |||
*> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is | |||
*> lower triangular. The rest of the array is not used. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] LDT | |||
*> \verbatim | |||
*> LDT is INTEGER | |||
*> The leading dimension of the array T. LDT >= K. | |||
*> \endverbatim | |||
* | |||
* Authors: | |||
* ======== | |||
* | |||
*> \author Univ. of Tennessee | |||
*> \author Univ. of California Berkeley | |||
*> \author Univ. of Colorado Denver | |||
*> \author NAG Ltd. | |||
* | |||
*> \ingroup larft | |||
* | |||
*> \par Further Details: | |||
* ===================== | |||
*> | |||
*> \verbatim | |||
*> | |||
*> The shape of the matrix V and the storage of the vectors which define | |||
*> the H(i) is best illustrated by the following example with n = 5 and | |||
*> k = 3. The elements equal to 1 are not stored. | |||
*> | |||
*> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': | |||
*> | |||
*> V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) | |||
*> ( v1 1 ) ( 1 v2 v2 v2 ) | |||
*> ( v1 v2 1 ) ( 1 v3 v3 ) | |||
*> ( v1 v2 v3 ) | |||
*> ( v1 v2 v3 ) | |||
*> | |||
*> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': | |||
*> | |||
*> V = ( v1 v2 v3 ) V = ( v1 v1 1 ) | |||
*> ( v1 v2 v3 ) ( v2 v2 v2 1 ) | |||
*> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) | |||
*> ( 1 v3 ) | |||
*> ( 1 ) | |||
*> \endverbatim | |||
*> | |||
* ===================================================================== | |||
SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* | |||
* -- LAPACK auxiliary routine -- | |||
* -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
* | |||
* .. Scalar Arguments .. | |||
CHARACTER DIRECT, STOREV | |||
INTEGER K, LDT, LDV, N | |||
* .. | |||
* .. Array Arguments .. | |||
REAL T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* ===================================================================== | |||
* | |||
* .. Parameters .. | |||
REAL ONE, ZERO | |||
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) | |||
* .. | |||
* .. Local Scalars .. | |||
INTEGER I, J, PREVLASTV, LASTV | |||
* .. | |||
* .. External Subroutines .. | |||
EXTERNAL SGEMV, STRMV | |||
* .. | |||
* .. External Functions .. | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* .. | |||
* .. Executable Statements .. | |||
* | |||
* Quick return if possible | |||
* | |||
IF( N.EQ.0 ) | |||
$ RETURN | |||
* | |||
IF( LSAME( DIRECT, 'F' ) ) THEN | |||
PREVLASTV = N | |||
DO I = 1, K | |||
PREVLASTV = MAX( I, PREVLASTV ) | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = 1, I | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( I , J ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i) | |||
* | |||
CALL SGEMV( 'Transpose', J-I, I-1, -TAU( I ), | |||
$ V( I+1, 1 ), LDV, V( I+1, I ), 1, ONE, | |||
$ T( 1, I ), 1 ) | |||
ELSE | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( J , I ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T | |||
* | |||
CALL SGEMV( 'No transpose', I-1, J-I, -TAU( I ), | |||
$ V( 1, I+1 ), LDV, V( I, I+1 ), LDV, | |||
$ ONE, T( 1, I ), 1 ) | |||
END IF | |||
* | |||
* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) | |||
* | |||
CALL STRMV( 'Upper', 'No transpose', 'Non-unit', I-1, | |||
$ T, | |||
$ LDT, T( 1, I ), 1 ) | |||
T( I, I ) = TAU( I ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MAX( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
END DO | |||
ELSE | |||
PREVLASTV = 1 | |||
DO I = K, 1, -1 | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = I, K | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( I.LT.K ) THEN | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( N-K+I , J ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i) | |||
* | |||
CALL SGEMV( 'Transpose', N-K+I-J, K-I, | |||
$ -TAU( I ), | |||
$ V( J, I+1 ), LDV, V( J, I ), 1, ONE, | |||
$ T( I+1, I ), 1 ) | |||
ELSE | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( J, N-K+I ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T | |||
* | |||
CALL SGEMV( 'No transpose', K-I, N-K+I-J, | |||
$ -TAU( I ), V( I+1, J ), LDV, V( I, J ), LDV, | |||
$ ONE, T( I+1, I ), 1 ) | |||
END IF | |||
* | |||
* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) | |||
* | |||
CALL STRMV( 'Lower', 'No transpose', 'Non-unit', | |||
$ K-I, | |||
$ T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MIN( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
T( I, I ) = TAU( I ) | |||
END IF | |||
END DO | |||
END IF | |||
RETURN | |||
* | |||
* End of SLARFT | |||
* | |||
END |
@@ -0,0 +1,327 @@ | |||
*> \brief \b ZLARFT VARIANT: left-looking Level 2 BLAS version of the algorithm. | |||
* | |||
* =========== DOCUMENTATION =========== | |||
* | |||
* Online html documentation available at | |||
* http://www.netlib.org/lapack/explore-html/ | |||
* | |||
*> \htmlonly | |||
*> Download ZLARFT + dependencies | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarft.f"> | |||
*> [TGZ]</a> | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarft.f"> | |||
*> [ZIP]</a> | |||
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarft.f"> | |||
*> [TXT]</a> | |||
*> \endhtmlonly | |||
* | |||
* Definition: | |||
* =========== | |||
* | |||
* SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* | |||
* .. Scalar Arguments .. | |||
* CHARACTER DIRECT, STOREV | |||
* INTEGER K, LDT, LDV, N | |||
* .. | |||
* .. Array Arguments .. | |||
* COMPLEX*16 T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* | |||
*> \par Purpose: | |||
* ============= | |||
*> | |||
*> \verbatim | |||
*> | |||
*> ZLARFT forms the triangular factor T of a complex block reflector H | |||
*> of order n, which is defined as a product of k elementary reflectors. | |||
*> | |||
*> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular; | |||
*> | |||
*> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular. | |||
*> | |||
*> If STOREV = 'C', the vector which defines the elementary reflector | |||
*> H(i) is stored in the i-th column of the array V, and | |||
*> | |||
*> H = I - V * T * V**H | |||
*> | |||
*> If STOREV = 'R', the vector which defines the elementary reflector | |||
*> H(i) is stored in the i-th row of the array V, and | |||
*> | |||
*> H = I - V**H * T * V | |||
*> \endverbatim | |||
* | |||
* Arguments: | |||
* ========== | |||
* | |||
*> \param[in] DIRECT | |||
*> \verbatim | |||
*> DIRECT is CHARACTER*1 | |||
*> Specifies the order in which the elementary reflectors are | |||
*> multiplied to form the block reflector: | |||
*> = 'F': H = H(1) H(2) . . . H(k) (Forward) | |||
*> = 'B': H = H(k) . . . H(2) H(1) (Backward) | |||
*> \endverbatim | |||
*> | |||
*> \param[in] STOREV | |||
*> \verbatim | |||
*> STOREV is CHARACTER*1 | |||
*> Specifies how the vectors which define the elementary | |||
*> reflectors are stored (see also Further Details): | |||
*> = 'C': columnwise | |||
*> = 'R': rowwise | |||
*> \endverbatim | |||
*> | |||
*> \param[in] N | |||
*> \verbatim | |||
*> N is INTEGER | |||
*> The order of the block reflector H. N >= 0. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] K | |||
*> \verbatim | |||
*> K is INTEGER | |||
*> The order of the triangular factor T (= the number of | |||
*> elementary reflectors). K >= 1. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] V | |||
*> \verbatim | |||
*> V is COMPLEX*16 array, dimension | |||
*> (LDV,K) if STOREV = 'C' | |||
*> (LDV,N) if STOREV = 'R' | |||
*> The matrix V. See further details. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] LDV | |||
*> \verbatim | |||
*> LDV is INTEGER | |||
*> The leading dimension of the array V. | |||
*> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] TAU | |||
*> \verbatim | |||
*> TAU is COMPLEX*16 array, dimension (K) | |||
*> TAU(i) must contain the scalar factor of the elementary | |||
*> reflector H(i). | |||
*> \endverbatim | |||
*> | |||
*> \param[out] T | |||
*> \verbatim | |||
*> T is COMPLEX*16 array, dimension (LDT,K) | |||
*> The k by k triangular factor T of the block reflector. | |||
*> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is | |||
*> lower triangular. The rest of the array is not used. | |||
*> \endverbatim | |||
*> | |||
*> \param[in] LDT | |||
*> \verbatim | |||
*> LDT is INTEGER | |||
*> The leading dimension of the array T. LDT >= K. | |||
*> \endverbatim | |||
* | |||
* Authors: | |||
* ======== | |||
* | |||
*> \author Univ. of Tennessee | |||
*> \author Univ. of California Berkeley | |||
*> \author Univ. of Colorado Denver | |||
*> \author NAG Ltd. | |||
* | |||
*> \ingroup larft | |||
* | |||
*> \par Further Details: | |||
* ===================== | |||
*> | |||
*> \verbatim | |||
*> | |||
*> The shape of the matrix V and the storage of the vectors which define | |||
*> the H(i) is best illustrated by the following example with n = 5 and | |||
*> k = 3. The elements equal to 1 are not stored. | |||
*> | |||
*> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R': | |||
*> | |||
*> V = ( 1 ) V = ( 1 v1 v1 v1 v1 ) | |||
*> ( v1 1 ) ( 1 v2 v2 v2 ) | |||
*> ( v1 v2 1 ) ( 1 v3 v3 ) | |||
*> ( v1 v2 v3 ) | |||
*> ( v1 v2 v3 ) | |||
*> | |||
*> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R': | |||
*> | |||
*> V = ( v1 v2 v3 ) V = ( v1 v1 1 ) | |||
*> ( v1 v2 v3 ) ( v2 v2 v2 1 ) | |||
*> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 ) | |||
*> ( 1 v3 ) | |||
*> ( 1 ) | |||
*> \endverbatim | |||
*> | |||
* ===================================================================== | |||
SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* | |||
* -- LAPACK auxiliary routine -- | |||
* -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
* | |||
* .. Scalar Arguments .. | |||
CHARACTER DIRECT, STOREV | |||
INTEGER K, LDT, LDV, N | |||
* .. | |||
* .. Array Arguments .. | |||
COMPLEX*16 T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* ===================================================================== | |||
* | |||
* .. Parameters .. | |||
COMPLEX*16 ONE, ZERO | |||
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ), | |||
$ ZERO = ( 0.0D+0, 0.0D+0 ) ) | |||
* .. | |||
* .. Local Scalars .. | |||
INTEGER I, J, PREVLASTV, LASTV | |||
* .. | |||
* .. External Subroutines .. | |||
EXTERNAL ZGEMV, ZTRMV, ZGEMM | |||
* .. | |||
* .. External Functions .. | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* .. | |||
* .. Executable Statements .. | |||
* | |||
* Quick return if possible | |||
* | |||
IF( N.EQ.0 ) | |||
$ RETURN | |||
* | |||
IF( LSAME( DIRECT, 'F' ) ) THEN | |||
PREVLASTV = N | |||
DO I = 1, K | |||
PREVLASTV = MAX( PREVLASTV, I ) | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = 1, I | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * CONJG( V( I , J ) ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i) | |||
* | |||
CALL ZGEMV( 'Conjugate transpose', J-I, I-1, | |||
$ -TAU( I ), V( I+1, 1 ), LDV, | |||
$ V( I+1, I ), 1, ONE, T( 1, I ), 1 ) | |||
ELSE | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( J , I ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H | |||
* | |||
CALL ZGEMM( 'N', 'C', I-1, 1, J-I, -TAU( I ), | |||
$ V( 1, I+1 ), LDV, V( I, I+1 ), LDV, | |||
$ ONE, T( 1, I ), LDT ) | |||
END IF | |||
* | |||
* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) | |||
* | |||
CALL ZTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, | |||
$ T, | |||
$ LDT, T( 1, I ), 1 ) | |||
T( I, I ) = TAU( I ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MAX( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
END DO | |||
ELSE | |||
PREVLASTV = 1 | |||
DO I = K, 1, -1 | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = I, K | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( I.LT.K ) THEN | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * CONJG( V( N-K+I , J ) ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i) | |||
* | |||
CALL ZGEMV( 'Conjugate transpose', N-K+I-J, K-I, | |||
$ -TAU( I ), V( J, I+1 ), LDV, V( J, I ), | |||
$ 1, ONE, T( I+1, I ), 1 ) | |||
ELSE | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( J, N-K+I ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H | |||
* | |||
CALL ZGEMM( 'N', 'C', K-I, 1, N-K+I-J, | |||
$ -TAU( I ), | |||
$ V( I+1, J ), LDV, V( I, J ), LDV, | |||
$ ONE, T( I+1, I ), LDT ) | |||
END IF | |||
* | |||
* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) | |||
* | |||
CALL ZTRMV( 'Lower', 'No transpose', 'Non-unit', | |||
$ K-I, | |||
$ T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MIN( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
T( I, I ) = TAU( I ) | |||
END IF | |||
END DO | |||
END IF | |||
RETURN | |||
* | |||
* End of ZLARFT | |||
* | |||
END |
@@ -18,7 +18,7 @@ | |||
* Definition: | |||
* =========== | |||
* | |||
* SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* RECURSIVE SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* | |||
* .. Scalar Arguments .. | |||
* CHARACTER DIRECT, STOREV | |||
@@ -130,7 +130,7 @@ | |||
*> \author Univ. of Colorado Denver | |||
*> \author NAG Ltd. | |||
* | |||
*> \ingroup complexOTHERauxiliary | |||
*> \ingroup larft | |||
* | |||
*> \par Further Details: | |||
* ===================== | |||
@@ -159,167 +159,473 @@ | |||
*> \endverbatim | |||
*> | |||
* ===================================================================== | |||
SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
RECURSIVE SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, | |||
$ TAU, T, LDT ) | |||
* | |||
* -- LAPACK auxiliary routine -- | |||
* -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
* | |||
* .. Scalar Arguments .. | |||
CHARACTER DIRECT, STOREV | |||
INTEGER K, LDT, LDV, N | |||
* .. Scalar Arguments | |||
* | |||
CHARACTER DIRECT, STOREV | |||
INTEGER K, LDT, LDV, N | |||
* .. | |||
* .. Array Arguments .. | |||
COMPLEX T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* ===================================================================== | |||
COMPLEX T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* .. Parameters .. | |||
COMPLEX ONE, ZERO | |||
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ), | |||
$ ZERO = ( 0.0E+0, 0.0E+0 ) ) | |||
* .. | |||
* | |||
COMPLEX ONE, NEG_ONE, ZERO | |||
PARAMETER(ONE=1.0E+0, ZERO = 0.0E+0, NEG_ONE=-1.0E+0) | |||
* | |||
* .. Local Scalars .. | |||
INTEGER I, J, PREVLASTV, LASTV | |||
* .. | |||
* | |||
INTEGER I,J,L | |||
LOGICAL QR,LQ,QL,DIRF,COLV | |||
* | |||
* .. External Subroutines .. | |||
EXTERNAL CGEMM, CGEMV, CTRMV | |||
* .. | |||
* .. External Functions .. | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* | |||
EXTERNAL CTRMM,CGEMM,CLACPY | |||
* | |||
* .. External Functions.. | |||
* | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* | |||
* .. Intrinsic Functions.. | |||
* | |||
INTRINSIC CONJG | |||
* | |||
* The general scheme used is inspired by the approach inside DGEQRT3 | |||
* which was (at the time of writing this code): | |||
* Based on the algorithm of Elmroth and Gustavson, | |||
* IBM J. Res. Develop. Vol 44 No. 4 July 2000. | |||
* .. | |||
* .. Executable Statements .. | |||
* | |||
* Quick return if possible | |||
* | |||
IF( N.EQ.0 ) | |||
$ RETURN | |||
* | |||
IF( LSAME( DIRECT, 'F' ) ) THEN | |||
PREVLASTV = N | |||
DO I = 1, K | |||
PREVLASTV = MAX( PREVLASTV, I ) | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = 1, I | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * CONJG( V( I , J ) ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i) | |||
* | |||
CALL CGEMV( 'Conjugate transpose', J-I, I-1, | |||
$ -TAU( I ), V( I+1, 1 ), LDV, | |||
$ V( I+1, I ), 1, | |||
$ ONE, T( 1, I ), 1 ) | |||
ELSE | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( J , I ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H | |||
* | |||
CALL CGEMM( 'N', 'C', I-1, 1, J-I, -TAU( I ), | |||
$ V( 1, I+1 ), LDV, V( I, I+1 ), LDV, | |||
$ ONE, T( 1, I ), LDT ) | |||
END IF | |||
* | |||
* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) | |||
* | |||
CALL CTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, | |||
$ LDT, T( 1, I ), 1 ) | |||
T( I, I ) = TAU( I ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MAX( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
IF(N.EQ.0.OR.K.EQ.0) THEN | |||
RETURN | |||
END IF | |||
* | |||
* Base case | |||
* | |||
IF(N.EQ.1.OR.K.EQ.1) THEN | |||
T(1,1) = TAU(1) | |||
RETURN | |||
END IF | |||
* | |||
* Beginning of executable statements | |||
* | |||
L = K / 2 | |||
* | |||
* Determine what kind of Q we need to compute | |||
* We assume that if the user doesn't provide 'F' for DIRECT, | |||
* then they meant to provide 'B' and if they don't provide | |||
* 'C' for STOREV, then they meant to provide 'R' | |||
* | |||
DIRF = LSAME(DIRECT,'F') | |||
COLV = LSAME(STOREV,'C') | |||
* | |||
* QR happens when we have forward direction in column storage | |||
* | |||
QR = DIRF.AND.COLV | |||
* | |||
* LQ happens when we have forward direction in row storage | |||
* | |||
LQ = DIRF.AND.(.NOT.COLV) | |||
* | |||
* QL happens when we have backward direction in column storage | |||
* | |||
QL = (.NOT.DIRF).AND.COLV | |||
* | |||
* The last case is RQ. Due to how we structured this, if the | |||
* above 3 are false, then RQ must be true, so we never store | |||
* this | |||
* RQ happens when we have backward direction in row storage | |||
* RQ = (.NOT.DIRF).AND.(.NOT.COLV) | |||
* | |||
IF(QR) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |---------------| | |||
* |V_{1,1} 0 | | |||
* |V_{2,1} V_{2,2}| | |||
* |V_{3,1} V_{3,2}| | |||
* |---------------| | |||
* | |||
* V_{1,1}\in\C^{l,l} unit lower triangular | |||
* V_{2,1}\in\C^{k-l,l} rectangular | |||
* V_{3,1}\in\C^{n-k,l} rectangular | |||
* | |||
* V_{2,2}\in\C^{k-l,k-l} unit lower triangular | |||
* V_{3,2}\in\C^{n-k,k-l} rectangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} T_{1,2}| | |||
* |0 T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\C^{l, l} upper triangular | |||
* T_{2,2}\in\C^{k-l, k-l} upper triangular | |||
* T_{1,2}\in\C^{l, k-l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_1*T_{1,1}*V_1')*(I - V_2*T_{2,2}*V_2') | |||
* = I - V_1*T_{1,1}*V_1' - V_2*T_{2,2}*V_2' + V_1*T_{1,1}*V_1'*V_2*T_{2,2}*V_2' | |||
* | |||
* Define T{1,2} = -T_{1,1}*V_1'*V_2*T_{2,2} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |-------| | |||
* |V_1 V_2| | |||
* |-------| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V*T*V' | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{1,2} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL CLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL CLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV, | |||
$ TAU(L+1), T(L+1, L+1), LDT) | |||
* | |||
* Compute T_{1,2} | |||
* T_{1,2} = V_{2,1}' | |||
* | |||
DO J = 1, L | |||
DO I = 1, K-L | |||
T(J, L+I) = CONJG(V(L+I, J)) | |||
END DO | |||
END DO | |||
ELSE | |||
PREVLASTV = 1 | |||
DO I = K, 1, -1 | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = I, K | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( I.LT.K ) THEN | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * CONJG( V( N-K+I , J ) ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i) | |||
* | |||
CALL CGEMV( 'Conjugate transpose', N-K+I-J, K-I, | |||
$ -TAU( I ), V( J, I+1 ), LDV, V( J, I ), | |||
$ 1, ONE, T( I+1, I ), 1 ) | |||
ELSE | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( J, N-K+I ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H | |||
* | |||
CALL CGEMM( 'N', 'C', K-I, 1, N-K+I-J, -TAU( I ), | |||
$ V( I+1, J ), LDV, V( I, J ), LDV, | |||
$ ONE, T( I+1, I ), LDT ) | |||
END IF | |||
* | |||
* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) | |||
* | |||
CALL CTRMV( 'Lower', 'No transpose', 'Non-unit', K-I, | |||
$ T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MIN( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
T( I, I ) = TAU( I ) | |||
END IF | |||
* | |||
* T_{1,2} = T_{1,2}*V_{2,2} | |||
* | |||
CALL CTRMM('Right', 'Lower', 'No transpose', 'Unit', L, | |||
$ K-L, ONE, V(L+1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = V_{3,1}'*V_{3,2} + T_{1,2} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL CGEMM('Conjugate', 'No transpose', L, K-L, N-K, ONE, | |||
$ V(K+1, 1), LDV, V(K+1, L+1), LDV, ONE, T(1, L+1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{1,2} = V_1'*V_2 | |||
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2} | |||
* respectively. | |||
* | |||
* T_{1,2} = -T_{1,1}*T_{1,2} | |||
* | |||
CALL CTRMM('Left', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*T_{2,2} | |||
* | |||
CALL CTRMM('Right', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T(L+1, L+1), LDT, T(1, L+1), LDT) | |||
ELSE IF(LQ) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |----------------------| | |||
* |V_{1,1} V_{1,2} V{1,3}| | |||
* |0 V_{2,2} V{2,3}| | |||
* |----------------------| | |||
* | |||
* V_{1,1}\in\C^{l,l} unit upper triangular | |||
* V_{1,2}\in\C^{l,k-l} rectangular | |||
* V_{1,3}\in\C^{l,n-k} rectangular | |||
* | |||
* V_{2,2}\in\C^{k-l,k-l} unit upper triangular | |||
* V_{2,3}\in\C^{k-l,n-k} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} T_{1,2}| | |||
* |0 T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\C^{l, l} upper triangular | |||
* T_{2,2}\in\C^{k-l, k-l} upper triangular | |||
* T_{1,2}\in\C^{l, k-l} rectangular | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_1'*T_{1,1}*V_1)*(I - V_2'*T_{2,2}*V_2) | |||
* = I - V_1'*T_{1,1}*V_1 - V_2'*T_{2,2}*V_2 + V_1'*T_{1,1}*V_1*V_2'*T_{2,2}*V_2 | |||
* | |||
* Define T_{1,2} = -T_{1,1}*V_1*V_2'*T_{2,2} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |---| | |||
* |V_1| | |||
* |V_2| | |||
* |---| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V'*T*V | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{1,2} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL CLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL CLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV, | |||
$ TAU(L+1), T(L+1, L+1), LDT) | |||
* | |||
* Compute T_{1,2} | |||
* T_{1,2} = V_{1,2} | |||
* | |||
CALL CLACPY('All', L, K-L, V(1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*V_{2,2}' | |||
* | |||
CALL CTRMM('Right', 'Upper', 'Conjugate', 'Unit', L, K-L, | |||
$ ONE, V(L+1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = V_{1,3}*V_{2,3}' + T_{1,2} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL CGEMM('No transpose', 'Conjugate', L, K-L, N-K, ONE, | |||
$ V(1, K+1), LDV, V(L+1, K+1), LDV, ONE, T(1, L+1), LDT) | |||
* | |||
* At this point, we have that T_{1,2} = V_1*V_2' | |||
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2} | |||
* respectively. | |||
* | |||
* T_{1,2} = -T_{1,1}*T_{1,2} | |||
* | |||
CALL CTRMM('Left', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*T_{2,2} | |||
* | |||
CALL CTRMM('Right', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T(L+1,L+1), LDT, T(1, L+1), LDT) | |||
ELSE IF(QL) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |---------------| | |||
* |V_{1,1} V_{1,2}| | |||
* |V_{2,1} V_{2,2}| | |||
* |0 V_{3,2}| | |||
* |---------------| | |||
* | |||
* V_{1,1}\in\C^{n-k,k-l} rectangular | |||
* V_{2,1}\in\C^{k-l,k-l} unit upper triangular | |||
* | |||
* V_{1,2}\in\C^{n-k,l} rectangular | |||
* V_{2,2}\in\C^{k-l,l} rectangular | |||
* V_{3,2}\in\C^{l,l} unit upper triangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} 0 | | |||
* |T_{2,1} T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\C^{k-l, k-l} non-unit lower triangular | |||
* T_{2,2}\in\C^{l, l} non-unit lower triangular | |||
* T_{2,1}\in\C^{k-l, l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_2*T_{2,2}*V_2')*(I - V_1*T_{1,1}*V_1') | |||
* = I - V_2*T_{2,2}*V_2' - V_1*T_{1,1}*V_1' + V_2*T_{2,2}*V_2'*V_1*T_{1,1}*V_1' | |||
* | |||
* Define T_{2,1} = -T_{2,2}*V_2'*V_1*T_{1,1} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |-------| | |||
* |V_1 V_2| | |||
* |-------| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V*T*V' | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{2,1} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL CLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL CLARFT(DIRECT, STOREV, N, L, V(1, K-L+1), LDV, | |||
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT) | |||
* | |||
* Compute T_{2,1} | |||
* T_{2,1} = V_{2,2}' | |||
* | |||
DO J = 1, K-L | |||
DO I = 1, L | |||
T(K-L+I, J) = CONJG(V(N-K+J, K-L+I)) | |||
END DO | |||
END DO | |||
END IF | |||
RETURN | |||
* | |||
* End of CLARFT | |||
* T_{2,1} = T_{2,1}*V_{2,1} | |||
* | |||
CALL CTRMM('Right', 'Upper', 'No transpose', 'Unit', L, | |||
$ K-L, ONE, V(N-K+1, 1), LDV, T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = V_{2,2}'*V_{2,1} + T_{2,1} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL CGEMM('Conjugate', 'No transpose', L, K-L, N-K, ONE, | |||
$ V(1, K-L+1), LDV, V, LDV, ONE, T(K-L+1, 1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{2,1} = V_2'*V_1 | |||
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1} | |||
* respectively. | |||
* | |||
* T_{2,1} = -T_{2,2}*T_{2,1} | |||
* | |||
CALL CTRMM('Left', 'Lower', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
END | |||
* T_{2,1} = T_{2,1}*T_{1,1} | |||
* | |||
CALL CTRMM('Right', 'Lower', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT) | |||
ELSE | |||
* | |||
* Else means RQ case | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |-----------------------| | |||
* |V_{1,1} V_{1,2} 0 | | |||
* |V_{2,1} V_{2,2} V_{2,3}| | |||
* |-----------------------| | |||
* | |||
* V_{1,1}\in\C^{k-l,n-k} rectangular | |||
* V_{1,2}\in\C^{k-l,k-l} unit lower triangular | |||
* | |||
* V_{2,1}\in\C^{l,n-k} rectangular | |||
* V_{2,2}\in\C^{l,k-l} rectangular | |||
* V_{2,3}\in\C^{l,l} unit lower triangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} 0 | | |||
* |T_{2,1} T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\C^{k-l, k-l} non-unit lower triangular | |||
* T_{2,2}\in\C^{l, l} non-unit lower triangular | |||
* T_{2,1}\in\C^{k-l, l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_2'*T_{2,2}*V_2)*(I - V_1'*T_{1,1}*V_1) | |||
* = I - V_2'*T_{2,2}*V_2 - V_1'*T_{1,1}*V_1 + V_2'*T_{2,2}*V_2*V_1'*T_{1,1}*V_1 | |||
* | |||
* Define T_{2,1} = -T_{2,2}*V_2*V_1'*T_{1,1} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |---| | |||
* |V_1| | |||
* |V_2| | |||
* |---| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V'*T*V | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{2,1} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL CLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL CLARFT(DIRECT, STOREV, N, L, V(K-L+1,1), LDV, | |||
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT) | |||
* | |||
* Compute T_{2,1} | |||
* T_{2,1} = V_{2,2} | |||
* | |||
CALL CLACPY('All', L, K-L, V(K-L+1, N-K+1), LDV, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = T_{2,1}*V_{1,2}' | |||
* | |||
CALL CTRMM('Right', 'Lower', 'Conjugate', 'Unit', L, K-L, | |||
$ ONE, V(1, N-K+1), LDV, T(K-L+1,1), LDT) | |||
* | |||
* T_{2,1} = V_{2,1}*V_{1,1}' + T_{2,1} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL CGEMM('No transpose', 'Conjugate', L, K-L, N-K, ONE, | |||
$ V(K-L+1, 1), LDV, V, LDV, ONE, T(K-L+1, 1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{2,1} = V_2*V_1' | |||
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1} | |||
* respectively. | |||
* | |||
* T_{2,1} = -T_{2,2}*T_{2,1} | |||
* | |||
CALL CTRMM('Left', 'Lower', 'No tranpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = T_{2,1}*T_{1,1} | |||
* | |||
CALL CTRMM('Right', 'Lower', 'No tranpose', 'Non-unit', L, | |||
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT) | |||
END IF | |||
END SUBROUTINE |
@@ -18,7 +18,7 @@ | |||
* Definition: | |||
* =========== | |||
* | |||
* SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* RECURSIVE SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* | |||
* .. Scalar Arguments .. | |||
* CHARACTER DIRECT, STOREV | |||
@@ -130,7 +130,7 @@ | |||
*> \author Univ. of Colorado Denver | |||
*> \author NAG Ltd. | |||
* | |||
*> \ingroup doubleOTHERauxiliary | |||
*> \ingroup larft | |||
* | |||
*> \par Further Details: | |||
* ===================== | |||
@@ -159,165 +159,470 @@ | |||
*> \endverbatim | |||
*> | |||
* ===================================================================== | |||
SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
RECURSIVE SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, | |||
$ TAU, T, LDT ) | |||
* | |||
* -- LAPACK auxiliary routine -- | |||
* -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
* | |||
* .. Scalar Arguments .. | |||
* .. Scalar Arguments | |||
* | |||
CHARACTER DIRECT, STOREV | |||
INTEGER K, LDT, LDV, N | |||
* .. | |||
* .. Array Arguments .. | |||
* | |||
DOUBLE PRECISION T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* ===================================================================== | |||
* | |||
* .. Parameters .. | |||
DOUBLE PRECISION ONE, ZERO | |||
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) | |||
* .. | |||
* | |||
DOUBLE PRECISION ONE, NEG_ONE, ZERO | |||
PARAMETER(ONE=1.0D+0, ZERO = 0.0D+0, NEG_ONE=-1.0D+0) | |||
* | |||
* .. Local Scalars .. | |||
INTEGER I, J, PREVLASTV, LASTV | |||
* .. | |||
* | |||
INTEGER I,J,L | |||
LOGICAL QR,LQ,QL,DIRF,COLV | |||
* | |||
* .. External Subroutines .. | |||
EXTERNAL DGEMV, DTRMV | |||
* .. | |||
* .. External Functions .. | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* | |||
EXTERNAL DTRMM,DGEMM,DLACPY | |||
* | |||
* .. External Functions.. | |||
* | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* | |||
* The general scheme used is inspired by the approach inside DGEQRT3 | |||
* which was (at the time of writing this code): | |||
* Based on the algorithm of Elmroth and Gustavson, | |||
* IBM J. Res. Develop. Vol 44 No. 4 July 2000. | |||
* .. | |||
* .. Executable Statements .. | |||
* | |||
* Quick return if possible | |||
* | |||
IF( N.EQ.0 ) | |||
$ RETURN | |||
* | |||
IF( LSAME( DIRECT, 'F' ) ) THEN | |||
PREVLASTV = N | |||
DO I = 1, K | |||
PREVLASTV = MAX( I, PREVLASTV ) | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = 1, I | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( I , J ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i) | |||
* | |||
CALL DGEMV( 'Transpose', J-I, I-1, -TAU( I ), | |||
$ V( I+1, 1 ), LDV, V( I+1, I ), 1, ONE, | |||
$ T( 1, I ), 1 ) | |||
ELSE | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( J , I ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T | |||
* | |||
CALL DGEMV( 'No transpose', I-1, J-I, -TAU( I ), | |||
$ V( 1, I+1 ), LDV, V( I, I+1 ), LDV, ONE, | |||
$ T( 1, I ), 1 ) | |||
END IF | |||
* | |||
* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) | |||
* | |||
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, | |||
$ LDT, T( 1, I ), 1 ) | |||
T( I, I ) = TAU( I ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MAX( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
IF(N.EQ.0.OR.K.EQ.0) THEN | |||
RETURN | |||
END IF | |||
* | |||
* Base case | |||
* | |||
IF(N.EQ.1.OR.K.EQ.1) THEN | |||
T(1,1) = TAU(1) | |||
RETURN | |||
END IF | |||
* | |||
* Beginning of executable statements | |||
* | |||
L = K / 2 | |||
* | |||
* Determine what kind of Q we need to compute | |||
* We assume that if the user doesn't provide 'F' for DIRECT, | |||
* then they meant to provide 'B' and if they don't provide | |||
* 'C' for STOREV, then they meant to provide 'R' | |||
* | |||
DIRF = LSAME(DIRECT,'F') | |||
COLV = LSAME(STOREV,'C') | |||
* | |||
* QR happens when we have forward direction in column storage | |||
* | |||
QR = DIRF.AND.COLV | |||
* | |||
* LQ happens when we have forward direction in row storage | |||
* | |||
LQ = DIRF.AND.(.NOT.COLV) | |||
* | |||
* QL happens when we have backward direction in column storage | |||
* | |||
QL = (.NOT.DIRF).AND.COLV | |||
* | |||
* The last case is RQ. Due to how we structured this, if the | |||
* above 3 are false, then RQ must be true, so we never store | |||
* this | |||
* RQ happens when we have backward direction in row storage | |||
* RQ = (.NOT.DIRF).AND.(.NOT.COLV) | |||
* | |||
IF(QR) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |---------------| | |||
* |V_{1,1} 0 | | |||
* |V_{2,1} V_{2,2}| | |||
* |V_{3,1} V_{3,2}| | |||
* |---------------| | |||
* | |||
* V_{1,1}\in\R^{l,l} unit lower triangular | |||
* V_{2,1}\in\R^{k-l,l} rectangular | |||
* V_{3,1}\in\R^{n-k,l} rectangular | |||
* | |||
* V_{2,2}\in\R^{k-l,k-l} unit lower triangular | |||
* V_{3,2}\in\R^{n-k,k-l} rectangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} T_{1,2}| | |||
* |0 T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\R^{l, l} upper triangular | |||
* T_{2,2}\in\R^{k-l, k-l} upper triangular | |||
* T_{1,2}\in\R^{l, k-l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_1*T_{1,1}*V_1')*(I - V_2*T_{2,2}*V_2') | |||
* = I - V_1*T_{1,1}*V_1' - V_2*T_{2,2}*V_2' + V_1*T_{1,1}*V_1'*V_2*T_{2,2}*V_2' | |||
* | |||
* Define T_{1,2} = -T_{1,1}*V_1'*V_2*T_{2,2} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |-------| | |||
* |V_1 V_2| | |||
* |-------| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V*T*V' | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{1,2} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL DLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL DLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV, | |||
$ TAU(L+1), T(L+1, L+1), LDT) | |||
* | |||
* Compute T_{1,2} | |||
* T_{1,2} = V_{2,1}' | |||
* | |||
DO J = 1, L | |||
DO I = 1, K-L | |||
T(J, L+I) = V(L+I, J) | |||
END DO | |||
END DO | |||
ELSE | |||
PREVLASTV = 1 | |||
DO I = K, 1, -1 | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = I, K | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( I.LT.K ) THEN | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( N-K+I , J ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i) | |||
* | |||
CALL DGEMV( 'Transpose', N-K+I-J, K-I, -TAU( I ), | |||
$ V( J, I+1 ), LDV, V( J, I ), 1, ONE, | |||
$ T( I+1, I ), 1 ) | |||
ELSE | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( J, N-K+I ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T | |||
* | |||
CALL DGEMV( 'No transpose', K-I, N-K+I-J, | |||
$ -TAU( I ), V( I+1, J ), LDV, V( I, J ), LDV, | |||
$ ONE, T( I+1, I ), 1 ) | |||
END IF | |||
* | |||
* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) | |||
* | |||
CALL DTRMV( 'Lower', 'No transpose', 'Non-unit', K-I, | |||
$ T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MIN( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
T( I, I ) = TAU( I ) | |||
END IF | |||
* | |||
* T_{1,2} = T_{1,2}*V_{2,2} | |||
* | |||
CALL DTRMM('Right', 'Lower', 'No transpose', 'Unit', L, | |||
$ K-L, ONE, V(L+1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = V_{3,1}'*V_{3,2} + T_{1,2} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL DGEMM('Transpose', 'No transpose', L, K-L, N-K, ONE, | |||
$ V(K+1, 1), LDV, V(K+1, L+1), LDV, ONE, | |||
$ T(1, L+1), LDT) | |||
* | |||
* At this point, we have that T_{1,2} = V_1'*V_2 | |||
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2} | |||
* respectively. | |||
* | |||
* T_{1,2} = -T_{1,1}*T_{1,2} | |||
* | |||
CALL DTRMM('Left', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*T_{2,2} | |||
* | |||
CALL DTRMM('Right', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T(L+1, L+1), LDT, T(1, L+1), LDT) | |||
ELSE IF(LQ) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |----------------------| | |||
* |V_{1,1} V_{1,2} V{1,3}| | |||
* |0 V_{2,2} V{2,3}| | |||
* |----------------------| | |||
* | |||
* V_{1,1}\in\R^{l,l} unit upper triangular | |||
* V_{1,2}\in\R^{l,k-l} rectangular | |||
* V_{1,3}\in\R^{l,n-k} rectangular | |||
* | |||
* V_{2,2}\in\R^{k-l,k-l} unit upper triangular | |||
* V_{2,3}\in\R^{k-l,n-k} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} T_{1,2}| | |||
* |0 T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\R^{l, l} upper triangular | |||
* T_{2,2}\in\R^{k-l, k-l} upper triangular | |||
* T_{1,2}\in\R^{l, k-l} rectangular | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_1'*T_{1,1}*V_1)*(I - V_2'*T_{2,2}*V_2) | |||
* = I - V_1'*T_{1,1}*V_1 - V_2'*T_{2,2}*V_2 + V_1'*T_{1,1}*V_1*V_2'*T_{2,2}*V_2 | |||
* | |||
* Define T_{1,2} = -T_{1,1}*V_1*V_2'*T_{2,2} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |---| | |||
* |V_1| | |||
* |V_2| | |||
* |---| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V'*T*V | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{1,2} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL DLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL DLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV, | |||
$ TAU(L+1), T(L+1, L+1), LDT) | |||
* | |||
* Compute T_{1,2} | |||
* T_{1,2} = V_{1,2} | |||
* | |||
CALL DLACPY('All', L, K-L, V(1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*V_{2,2}' | |||
* | |||
CALL DTRMM('Right', 'Upper', 'Transpose', 'Unit', L, K-L, | |||
$ ONE, V(L+1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = V_{1,3}*V_{2,3}' + T_{1,2} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL DGEMM('No transpose', 'Transpose', L, K-L, N-K, ONE, | |||
$ V(1, K+1), LDV, V(L+1, K+1), LDV, ONE, | |||
$ T(1, L+1), LDT) | |||
* | |||
* At this point, we have that T_{1,2} = V_1*V_2' | |||
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2} | |||
* respectively. | |||
* | |||
* T_{1,2} = -T_{1,1}*T_{1,2} | |||
* | |||
CALL DTRMM('Left', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*T_{2,2} | |||
* | |||
CALL DTRMM('Right', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T(L+1, L+1), LDT, T(1, L+1), LDT) | |||
ELSE IF(QL) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |---------------| | |||
* |V_{1,1} V_{1,2}| | |||
* |V_{2,1} V_{2,2}| | |||
* |0 V_{3,2}| | |||
* |---------------| | |||
* | |||
* V_{1,1}\in\R^{n-k,k-l} rectangular | |||
* V_{2,1}\in\R^{k-l,k-l} unit upper triangular | |||
* | |||
* V_{1,2}\in\R^{n-k,l} rectangular | |||
* V_{2,2}\in\R^{k-l,l} rectangular | |||
* V_{3,2}\in\R^{l,l} unit upper triangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} 0 | | |||
* |T_{2,1} T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\R^{k-l, k-l} non-unit lower triangular | |||
* T_{2,2}\in\R^{l, l} non-unit lower triangular | |||
* T_{2,1}\in\R^{k-l, l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_2*T_{2,2}*V_2')*(I - V_1*T_{1,1}*V_1') | |||
* = I - V_2*T_{2,2}*V_2' - V_1*T_{1,1}*V_1' + V_2*T_{2,2}*V_2'*V_1*T_{1,1}*V_1' | |||
* | |||
* Define T_{2,1} = -T_{2,2}*V_2'*V_1*T_{1,1} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |-------| | |||
* |V_1 V_2| | |||
* |-------| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V*T*V' | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{2,1} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL DLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL DLARFT(DIRECT, STOREV, N, L, V(1, K-L+1), LDV, | |||
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT) | |||
* | |||
* Compute T_{2,1} | |||
* T_{2,1} = V_{2,2}' | |||
* | |||
DO J = 1, K-L | |||
DO I = 1, L | |||
T(K-L+I, J) = V(N-K+J, K-L+I) | |||
END DO | |||
END DO | |||
END IF | |||
RETURN | |||
* | |||
* End of DLARFT | |||
* T_{2,1} = T_{2,1}*V_{2,1} | |||
* | |||
CALL DTRMM('Right', 'Upper', 'No transpose', 'Unit', L, | |||
$ K-L, ONE, V(N-K+1, 1), LDV, T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = V_{2,2}'*V_{2,1} + T_{2,1} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL DGEMM('Transpose', 'No transpose', L, K-L, N-K, ONE, | |||
$ V(1, K-L+1), LDV, V, LDV, ONE, T(K-L+1, 1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{2,1} = V_2'*V_1 | |||
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1} | |||
* respectively. | |||
* | |||
* T_{2,1} = -T_{2,2}*T_{2,1} | |||
* | |||
CALL DTRMM('Left', 'Lower', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
END | |||
* T_{2,1} = T_{2,1}*T_{1,1} | |||
* | |||
CALL DTRMM('Right', 'Lower', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT) | |||
ELSE | |||
* | |||
* Else means RQ case | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |-----------------------| | |||
* |V_{1,1} V_{1,2} 0 | | |||
* |V_{2,1} V_{2,2} V_{2,3}| | |||
* |-----------------------| | |||
* | |||
* V_{1,1}\in\R^{k-l,n-k} rectangular | |||
* V_{1,2}\in\R^{k-l,k-l} unit lower triangular | |||
* | |||
* V_{2,1}\in\R^{l,n-k} rectangular | |||
* V_{2,2}\in\R^{l,k-l} rectangular | |||
* V_{2,3}\in\R^{l,l} unit lower triangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} 0 | | |||
* |T_{2,1} T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\R^{k-l, k-l} non-unit lower triangular | |||
* T_{2,2}\in\R^{l, l} non-unit lower triangular | |||
* T_{2,1}\in\R^{k-l, l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_2'*T_{2,2}*V_2)*(I - V_1'*T_{1,1}*V_1) | |||
* = I - V_2'*T_{2,2}*V_2 - V_1'*T_{1,1}*V_1 + V_2'*T_{2,2}*V_2*V_1'*T_{1,1}*V_1 | |||
* | |||
* Define T_{2,1} = -T_{2,2}*V_2*V_1'*T_{1,1} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |---| | |||
* |V_1| | |||
* |V_2| | |||
* |---| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V'*T*V | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{2,1} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL DLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL DLARFT(DIRECT, STOREV, N, L, V(K-L+1, 1), LDV, | |||
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT) | |||
* | |||
* Compute T_{2,1} | |||
* T_{2,1} = V_{2,2} | |||
* | |||
CALL DLACPY('All', L, K-L, V(K-L+1, N-K+1), LDV, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = T_{2,1}*V_{1,2}' | |||
* | |||
CALL DTRMM('Right', 'Lower', 'Transpose', 'Unit', L, K-L, | |||
$ ONE, V(1, N-K+1), LDV, T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = V_{2,1}*V_{1,1}' + T_{2,1} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL DGEMM('No transpose', 'Transpose', L, K-L, N-K, ONE, | |||
$ V(K-L+1, 1), LDV, V, LDV, ONE, T(K-L+1, 1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{2,1} = V_2*V_1' | |||
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1} | |||
* respectively. | |||
* | |||
* T_{2,1} = -T_{2,2}*T_{2,1} | |||
* | |||
CALL DTRMM('Left', 'Lower', 'No tranpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = T_{2,1}*T_{1,1} | |||
* | |||
CALL DTRMM('Right', 'Lower', 'No tranpose', 'Non-unit', L, | |||
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT) | |||
END IF | |||
END SUBROUTINE |
@@ -18,7 +18,7 @@ | |||
* Definition: | |||
* =========== | |||
* | |||
* SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* RECURSIVE SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* | |||
* .. Scalar Arguments .. | |||
* CHARACTER DIRECT, STOREV | |||
@@ -127,10 +127,10 @@ | |||
* | |||
*> \author Univ. of Tennessee | |||
*> \author Univ. of California Berkeley | |||
*> \author Univ. of Colorado Denver | |||
*> \author Johnathan Rhyne, Univ. of Colorado Denver (original author, 2024) | |||
*> \author NAG Ltd. | |||
* | |||
*> \ingroup realOTHERauxiliary | |||
*> \ingroup larft | |||
* | |||
*> \par Further Details: | |||
* ===================== | |||
@@ -159,165 +159,470 @@ | |||
*> \endverbatim | |||
*> | |||
* ===================================================================== | |||
SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
RECURSIVE SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, | |||
$ TAU, T, LDT ) | |||
* | |||
* -- LAPACK auxiliary routine -- | |||
* -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
* | |||
* .. Scalar Arguments .. | |||
* .. Scalar Arguments | |||
* | |||
CHARACTER DIRECT, STOREV | |||
INTEGER K, LDT, LDV, N | |||
* .. | |||
* .. Array Arguments .. | |||
* | |||
REAL T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* ===================================================================== | |||
* | |||
* .. Parameters .. | |||
REAL ONE, ZERO | |||
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) | |||
* .. | |||
* | |||
REAL ONE, NEG_ONE, ZERO | |||
PARAMETER(ONE=1.0E+0, ZERO = 0.0E+0, NEG_ONE=-1.0E+0) | |||
* | |||
* .. Local Scalars .. | |||
INTEGER I, J, PREVLASTV, LASTV | |||
* .. | |||
* | |||
INTEGER I,J,L | |||
LOGICAL QR,LQ,QL,DIRF,COLV | |||
* | |||
* .. External Subroutines .. | |||
EXTERNAL SGEMV, STRMV | |||
* .. | |||
* .. External Functions .. | |||
* | |||
EXTERNAL STRMM,SGEMM,SLACPY | |||
* | |||
* .. External Functions.. | |||
* | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* | |||
* The general scheme used is inspired by the approach inside DGEQRT3 | |||
* which was (at the time of writing this code): | |||
* Based on the algorithm of Elmroth and Gustavson, | |||
* IBM J. Res. Develop. Vol 44 No. 4 July 2000. | |||
* .. | |||
* .. Executable Statements .. | |||
* | |||
* Quick return if possible | |||
* | |||
IF( N.EQ.0 ) | |||
$ RETURN | |||
* | |||
IF( LSAME( DIRECT, 'F' ) ) THEN | |||
PREVLASTV = N | |||
DO I = 1, K | |||
PREVLASTV = MAX( I, PREVLASTV ) | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = 1, I | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( I , J ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i) | |||
* | |||
CALL SGEMV( 'Transpose', J-I, I-1, -TAU( I ), | |||
$ V( I+1, 1 ), LDV, V( I+1, I ), 1, ONE, | |||
$ T( 1, I ), 1 ) | |||
ELSE | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( J , I ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T | |||
* | |||
CALL SGEMV( 'No transpose', I-1, J-I, -TAU( I ), | |||
$ V( 1, I+1 ), LDV, V( I, I+1 ), LDV, | |||
$ ONE, T( 1, I ), 1 ) | |||
END IF | |||
* | |||
* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) | |||
* | |||
CALL STRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, | |||
$ LDT, T( 1, I ), 1 ) | |||
T( I, I ) = TAU( I ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MAX( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
IF(N.EQ.0.OR.K.EQ.0) THEN | |||
RETURN | |||
END IF | |||
* | |||
* Base case | |||
* | |||
IF(N.EQ.1.OR.K.EQ.1) THEN | |||
T(1,1) = TAU(1) | |||
RETURN | |||
END IF | |||
* | |||
* Beginning of executable statements | |||
* | |||
L = K / 2 | |||
* | |||
* Determine what kind of Q we need to compute | |||
* We assume that if the user doesn't provide 'F' for DIRECT, | |||
* then they meant to provide 'B' and if they don't provide | |||
* 'C' for STOREV, then they meant to provide 'R' | |||
* | |||
DIRF = LSAME(DIRECT,'F') | |||
COLV = LSAME(STOREV,'C') | |||
* | |||
* QR happens when we have forward direction in column storage | |||
* | |||
QR = DIRF.AND.COLV | |||
* | |||
* LQ happens when we have forward direction in row storage | |||
* | |||
LQ = DIRF.AND.(.NOT.COLV) | |||
* | |||
* QL happens when we have backward direction in column storage | |||
* | |||
QL = (.NOT.DIRF).AND.COLV | |||
* | |||
* The last case is RQ. Due to how we structured this, if the | |||
* above 3 are false, then RQ must be true, so we never store | |||
* this | |||
* RQ happens when we have backward direction in row storage | |||
* RQ = (.NOT.DIRF).AND.(.NOT.COLV) | |||
* | |||
IF(QR) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |---------------| | |||
* |V_{1,1} 0 | | |||
* |V_{2,1} V_{2,2}| | |||
* |V_{3,1} V_{3,2}| | |||
* |---------------| | |||
* | |||
* V_{1,1}\in\R^{l,l} unit lower triangular | |||
* V_{2,1}\in\R^{k-l,l} rectangular | |||
* V_{3,1}\in\R^{n-k,l} rectangular | |||
* | |||
* V_{2,2}\in\R^{k-l,k-l} unit lower triangular | |||
* V_{3,2}\in\R^{n-k,k-l} rectangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} T_{1,2}| | |||
* |0 T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\R^{l, l} upper triangular | |||
* T_{2,2}\in\R^{k-l, k-l} upper triangular | |||
* T_{1,2}\in\R^{l, k-l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_1*T_{1,1}*V_1')*(I - V_2*T_{2,2}*V_2') | |||
* = I - V_1*T_{1,1}*V_1' - V_2*T_{2,2}*V_2' + V_1*T_{1,1}*V_1'*V_2*T_{2,2}*V_2' | |||
* | |||
* Define T_{1,2} = -T_{1,1}*V_1'*V_2*T_{2,2} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |-------| | |||
* |V_1 V_2| | |||
* |-------| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V*T*V' | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{1,2} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL SLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL SLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV, | |||
$ TAU(L+1), T(L+1, L+1), LDT) | |||
* | |||
* Compute T_{1,2} | |||
* T_{1,2} = V_{2,1}' | |||
* | |||
DO J = 1, L | |||
DO I = 1, K-L | |||
T(J, L+I) = V(L+I, J) | |||
END DO | |||
END DO | |||
ELSE | |||
PREVLASTV = 1 | |||
DO I = K, 1, -1 | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = I, K | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( I.LT.K ) THEN | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( N-K+I , J ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i) | |||
* | |||
CALL SGEMV( 'Transpose', N-K+I-J, K-I, -TAU( I ), | |||
$ V( J, I+1 ), LDV, V( J, I ), 1, ONE, | |||
$ T( I+1, I ), 1 ) | |||
ELSE | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( J, N-K+I ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T | |||
* | |||
CALL SGEMV( 'No transpose', K-I, N-K+I-J, | |||
$ -TAU( I ), V( I+1, J ), LDV, V( I, J ), LDV, | |||
$ ONE, T( I+1, I ), 1 ) | |||
END IF | |||
* | |||
* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) | |||
* | |||
CALL STRMV( 'Lower', 'No transpose', 'Non-unit', K-I, | |||
$ T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MIN( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
T( I, I ) = TAU( I ) | |||
END IF | |||
* | |||
* T_{1,2} = T_{1,2}*V_{2,2} | |||
* | |||
CALL STRMM('Right', 'Lower', 'No transpose', 'Unit', L, | |||
$ K-L, ONE, V(L+1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = V_{3,1}'*V_{3,2} + T_{1,2} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL SGEMM('Transpose', 'No transpose', L, K-L, N-K, ONE, | |||
$ V(K+1, 1), LDV, V(K+1, L+1), LDV, ONE, | |||
$ T(1, L+1), LDT) | |||
* | |||
* At this point, we have that T_{1,2} = V_1'*V_2 | |||
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2} | |||
* respectively. | |||
* | |||
* T_{1,2} = -T_{1,1}*T_{1,2} | |||
* | |||
CALL STRMM('Left', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*T_{2,2} | |||
* | |||
CALL STRMM('Right', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T(L+1, L+1), LDT, T(1, L+1), LDT) | |||
ELSE IF(LQ) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |----------------------| | |||
* |V_{1,1} V_{1,2} V{1,3}| | |||
* |0 V_{2,2} V{2,3}| | |||
* |----------------------| | |||
* | |||
* V_{1,1}\in\R^{l,l} unit upper triangular | |||
* V_{1,2}\in\R^{l,k-l} rectangular | |||
* V_{1,3}\in\R^{l,n-k} rectangular | |||
* | |||
* V_{2,2}\in\R^{k-l,k-l} unit upper triangular | |||
* V_{2,3}\in\R^{k-l,n-k} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} T_{1,2}| | |||
* |0 T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\R^{l, l} upper triangular | |||
* T_{2,2}\in\R^{k-l, k-l} upper triangular | |||
* T_{1,2}\in\R^{l, k-l} rectangular | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_1'*T_{1,1}*V_1)*(I - V_2'*T_{2,2}*V_2) | |||
* = I - V_1'*T_{1,1}*V_1 - V_2'*T_{2,2}*V_2 + V_1'*T_{1,1}*V_1*V_2'*T_{2,2}*V_2 | |||
* | |||
* Define T_{1,2} = -T_{1,1}*V_1*V_2'*T_{2,2} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |---| | |||
* |V_1| | |||
* |V_2| | |||
* |---| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V'*T*V | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{1,2} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL SLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL SLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV, | |||
$ TAU(L+1), T(L+1, L+1), LDT) | |||
* | |||
* Compute T_{1,2} | |||
* T_{1,2} = V_{1,2} | |||
* | |||
CALL SLACPY('All', L, K-L, V(1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*V_{2,2}' | |||
* | |||
CALL STRMM('Right', 'Upper', 'Transpose', 'Unit', L, K-L, | |||
$ ONE, V(L+1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = V_{1,3}*V_{2,3}' + T_{1,2} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL SGEMM('No transpose', 'Transpose', L, K-L, N-K, ONE, | |||
$ V(1, K+1), LDV, V(L+1, K+1), LDV, ONE, | |||
$ T(1, L+1), LDT) | |||
* | |||
* At this point, we have that T_{1,2} = V_1*V_2' | |||
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2} | |||
* respectively. | |||
* | |||
* T_{1,2} = -T_{1,1}*T_{1,2} | |||
* | |||
CALL STRMM('Left', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*T_{2,2} | |||
* | |||
CALL STRMM('Right', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T(L+1, L+1), LDT, T(1, L+1), LDT) | |||
ELSE IF(QL) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |---------------| | |||
* |V_{1,1} V_{1,2}| | |||
* |V_{2,1} V_{2,2}| | |||
* |0 V_{3,2}| | |||
* |---------------| | |||
* | |||
* V_{1,1}\in\R^{n-k,k-l} rectangular | |||
* V_{2,1}\in\R^{k-l,k-l} unit upper triangular | |||
* | |||
* V_{1,2}\in\R^{n-k,l} rectangular | |||
* V_{2,2}\in\R^{k-l,l} rectangular | |||
* V_{3,2}\in\R^{l,l} unit upper triangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} 0 | | |||
* |T_{2,1} T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\R^{k-l, k-l} non-unit lower triangular | |||
* T_{2,2}\in\R^{l, l} non-unit lower triangular | |||
* T_{2,1}\in\R^{k-l, l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_2*T_{2,2}*V_2')*(I - V_1*T_{1,1}*V_1') | |||
* = I - V_2*T_{2,2}*V_2' - V_1*T_{1,1}*V_1' + V_2*T_{2,2}*V_2'*V_1*T_{1,1}*V_1' | |||
* | |||
* Define T_{2,1} = -T_{2,2}*V_2'*V_1*T_{1,1} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |-------| | |||
* |V_1 V_2| | |||
* |-------| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V*T*V' | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{2,1} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL SLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL SLARFT(DIRECT, STOREV, N, L, V(1, K-L+1), LDV, | |||
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT) | |||
* | |||
* Compute T_{2,1} | |||
* T_{2,1} = V_{2,2}' | |||
* | |||
DO J = 1, K-L | |||
DO I = 1, L | |||
T(K-L+I, J) = V(N-K+J, K-L+I) | |||
END DO | |||
END DO | |||
END IF | |||
RETURN | |||
* | |||
* End of SLARFT | |||
* T_{2,1} = T_{2,1}*V_{2,1} | |||
* | |||
CALL STRMM('Right', 'Upper', 'No transpose', 'Unit', L, | |||
$ K-L, ONE, V(N-K+1, 1), LDV, T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = V_{2,2}'*V_{2,1} + T_{2,1} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL SGEMM('Transpose', 'No transpose', L, K-L, N-K, ONE, | |||
$ V(1, K-L+1), LDV, V, LDV, ONE, T(K-L+1, 1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{2,1} = V_2'*V_1 | |||
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1} | |||
* respectively. | |||
* | |||
* T_{2,1} = -T_{2,2}*T_{2,1} | |||
* | |||
CALL STRMM('Left', 'Lower', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
END | |||
* T_{2,1} = T_{2,1}*T_{1,1} | |||
* | |||
CALL STRMM('Right', 'Lower', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT) | |||
ELSE | |||
* | |||
* Else means RQ case | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |-----------------------| | |||
* |V_{1,1} V_{1,2} 0 | | |||
* |V_{2,1} V_{2,2} V_{2,3}| | |||
* |-----------------------| | |||
* | |||
* V_{1,1}\in\R^{k-l,n-k} rectangular | |||
* V_{1,2}\in\R^{k-l,k-l} unit lower triangular | |||
* | |||
* V_{2,1}\in\R^{l,n-k} rectangular | |||
* V_{2,2}\in\R^{l,k-l} rectangular | |||
* V_{2,3}\in\R^{l,l} unit lower triangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} 0 | | |||
* |T_{2,1} T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\R^{k-l, k-l} non-unit lower triangular | |||
* T_{2,2}\in\R^{l, l} non-unit lower triangular | |||
* T_{2,1}\in\R^{k-l, l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_2'*T_{2,2}*V_2)*(I - V_1'*T_{1,1}*V_1) | |||
* = I - V_2'*T_{2,2}*V_2 - V_1'*T_{1,1}*V_1 + V_2'*T_{2,2}*V_2*V_1'*T_{1,1}*V_1 | |||
* | |||
* Define T_{2,1} = -T_{2,2}*V_2*V_1'*T_{1,1} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |---| | |||
* |V_1| | |||
* |V_2| | |||
* |---| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V'TV | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{2,1} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL SLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL SLARFT(DIRECT, STOREV, N, L, V(K-L+1, 1), LDV, | |||
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT) | |||
* | |||
* Compute T_{2,1} | |||
* T_{2,1} = V_{2,2} | |||
* | |||
CALL SLACPY('All', L, K-L, V(K-L+1, N-K+1), LDV, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = T_{2,1}*V_{1,2}' | |||
* | |||
CALL STRMM('Right', 'Lower', 'Transpose', 'Unit', L, K-L, | |||
$ ONE, V(1, N-K+1), LDV, T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = V_{2,1}*V_{1,1}' + T_{2,1} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL SGEMM('No transpose', 'Transpose', L, K-L, N-K, ONE, | |||
$ V(K-L+1, 1), LDV, V, LDV, ONE, T(K-L+1, 1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{2,1} = V_2*V_1' | |||
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1} | |||
* respectively. | |||
* | |||
* T_{2,1} = -T_{2,2}*T_{2,1} | |||
* | |||
CALL STRMM('Left', 'Lower', 'No tranpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = T_{2,1}*T_{1,1} | |||
* | |||
CALL STRMM('Right', 'Lower', 'No tranpose', 'Non-unit', L, | |||
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT) | |||
END IF | |||
END SUBROUTINE |
@@ -18,7 +18,7 @@ | |||
* Definition: | |||
* =========== | |||
* | |||
* SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* RECURSIVE SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* | |||
* .. Scalar Arguments .. | |||
* CHARACTER DIRECT, STOREV | |||
@@ -130,7 +130,7 @@ | |||
*> \author Univ. of Colorado Denver | |||
*> \author NAG Ltd. | |||
* | |||
*> \ingroup complex16OTHERauxiliary | |||
*> \ingroup larft | |||
* | |||
*> \par Further Details: | |||
* ===================== | |||
@@ -159,166 +159,474 @@ | |||
*> \endverbatim | |||
*> | |||
* ===================================================================== | |||
SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
RECURSIVE SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, | |||
$ TAU, T, LDT ) | |||
* | |||
* -- LAPACK auxiliary routine -- | |||
* -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
* | |||
* .. Scalar Arguments .. | |||
CHARACTER DIRECT, STOREV | |||
INTEGER K, LDT, LDV, N | |||
* .. Scalar Arguments | |||
* | |||
CHARACTER DIRECT, STOREV | |||
INTEGER K, LDT, LDV, N | |||
* .. | |||
* .. Array Arguments .. | |||
COMPLEX*16 T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* ===================================================================== | |||
COMPLEX*16 T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* .. Parameters .. | |||
COMPLEX*16 ONE, ZERO | |||
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ), | |||
$ ZERO = ( 0.0D+0, 0.0D+0 ) ) | |||
* .. | |||
* | |||
COMPLEX*16 ONE, NEG_ONE, ZERO | |||
PARAMETER(ONE=1.0D+0, ZERO = 0.0D+0, NEG_ONE=-1.0D+0) | |||
* | |||
* .. Local Scalars .. | |||
INTEGER I, J, PREVLASTV, LASTV | |||
* .. | |||
* | |||
INTEGER I,J,L | |||
LOGICAL QR,LQ,QL,DIRF,COLV | |||
* | |||
* .. External Subroutines .. | |||
EXTERNAL ZGEMV, ZTRMV, ZGEMM | |||
* .. | |||
* .. External Functions .. | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* | |||
EXTERNAL ZTRMM,ZGEMM,ZLACPY | |||
* | |||
* .. External Functions.. | |||
* | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* | |||
* .. Intrinsic Functions.. | |||
* | |||
INTRINSIC CONJG | |||
* | |||
* The general scheme used is inspired by the approach inside DGEQRT3 | |||
* which was (at the time of writing this code): | |||
* Based on the algorithm of Elmroth and Gustavson, | |||
* IBM J. Res. Develop. Vol 44 No. 4 July 2000. | |||
* .. | |||
* .. Executable Statements .. | |||
* | |||
* Quick return if possible | |||
* | |||
IF( N.EQ.0 ) | |||
$ RETURN | |||
* | |||
IF( LSAME( DIRECT, 'F' ) ) THEN | |||
PREVLASTV = N | |||
DO I = 1, K | |||
PREVLASTV = MAX( PREVLASTV, I ) | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = 1, I | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * CONJG( V( I , J ) ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i) | |||
* | |||
CALL ZGEMV( 'Conjugate transpose', J-I, I-1, | |||
$ -TAU( I ), V( I+1, 1 ), LDV, | |||
$ V( I+1, I ), 1, ONE, T( 1, I ), 1 ) | |||
ELSE | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( J , I ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H | |||
* | |||
CALL ZGEMM( 'N', 'C', I-1, 1, J-I, -TAU( I ), | |||
$ V( 1, I+1 ), LDV, V( I, I+1 ), LDV, | |||
$ ONE, T( 1, I ), LDT ) | |||
END IF | |||
* | |||
* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) | |||
* | |||
CALL ZTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, | |||
$ LDT, T( 1, I ), 1 ) | |||
T( I, I ) = TAU( I ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MAX( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
IF(N.EQ.0.OR.K.EQ.0) THEN | |||
RETURN | |||
END IF | |||
* | |||
* Base case | |||
* | |||
IF(N.EQ.1.OR.K.EQ.1) THEN | |||
T(1,1) = TAU(1) | |||
RETURN | |||
END IF | |||
* | |||
* Beginning of executable statements | |||
* | |||
L = K / 2 | |||
* | |||
* Determine what kind of Q we need to compute | |||
* We assume that if the user doesn't provide 'F' for DIRECT, | |||
* then they meant to provide 'B' and if they don't provide | |||
* 'C' for STOREV, then they meant to provide 'R' | |||
* | |||
DIRF = LSAME(DIRECT,'F') | |||
COLV = LSAME(STOREV,'C') | |||
* | |||
* QR happens when we have forward direction in column storage | |||
* | |||
QR = DIRF.AND.COLV | |||
* | |||
* LQ happens when we have forward direction in row storage | |||
* | |||
LQ = DIRF.AND.(.NOT.COLV) | |||
* | |||
* QL happens when we have backward direction in column storage | |||
* | |||
QL = (.NOT.DIRF).AND.COLV | |||
* | |||
* The last case is RQ. Due to how we structured this, if the | |||
* above 3 are false, then RQ must be true, so we never store | |||
* this | |||
* RQ happens when we have backward direction in row storage | |||
* RQ = (.NOT.DIRF).AND.(.NOT.COLV) | |||
* | |||
IF(QR) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |---------------| | |||
* |V_{1,1} 0 | | |||
* |V_{2,1} V_{2,2}| | |||
* |V_{3,1} V_{3,2}| | |||
* |---------------| | |||
* | |||
* V_{1,1}\in\C^{l,l} unit lower triangular | |||
* V_{2,1}\in\C^{k-l,l} rectangular | |||
* V_{3,1}\in\C^{n-k,l} rectangular | |||
* | |||
* V_{2,2}\in\C^{k-l,k-l} unit lower triangular | |||
* V_{3,2}\in\C^{n-k,k-l} rectangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} T_{1,2}| | |||
* |0 T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\C^{l, l} upper triangular | |||
* T_{2,2}\in\C^{k-l, k-l} upper triangular | |||
* T_{1,2}\in\C^{l, k-l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_1*T_{1,1}*V_1')*(I - V_2*T_{2,2}*V_2') | |||
* = I - V_1*T_{1,1}*V_1' - V_2*T_{2,2}*V_2' + V_1*T_{1,1}*V_1'*V_2*T_{2,2}*V_2' | |||
* | |||
* Define T_{1,2} = -T_{1,1}*V_1'*V_2*T_{2,2} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |-------| | |||
* |V_1 V_2| | |||
* |-------| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V*T*V' | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{1,2} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL ZLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL ZLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV, | |||
$ TAU(L+1), T(L+1, L+1), LDT) | |||
* | |||
* Compute T_{1,2} | |||
* T_{1,2} = V_{2,1}' | |||
* | |||
DO J = 1, L | |||
DO I = 1, K-L | |||
T(J, L+I) = CONJG(V(L+I, J)) | |||
END DO | |||
END DO | |||
ELSE | |||
PREVLASTV = 1 | |||
DO I = K, 1, -1 | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = I, K | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( I.LT.K ) THEN | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * CONJG( V( N-K+I , J ) ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i) | |||
* | |||
CALL ZGEMV( 'Conjugate transpose', N-K+I-J, K-I, | |||
$ -TAU( I ), V( J, I+1 ), LDV, V( J, I ), | |||
$ 1, ONE, T( I+1, I ), 1 ) | |||
ELSE | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( J, N-K+I ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H | |||
* | |||
CALL ZGEMM( 'N', 'C', K-I, 1, N-K+I-J, -TAU( I ), | |||
$ V( I+1, J ), LDV, V( I, J ), LDV, | |||
$ ONE, T( I+1, I ), LDT ) | |||
END IF | |||
* | |||
* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) | |||
* | |||
CALL ZTRMV( 'Lower', 'No transpose', 'Non-unit', K-I, | |||
$ T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MIN( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
T( I, I ) = TAU( I ) | |||
END IF | |||
* | |||
* T_{1,2} = T_{1,2}*V_{2,2} | |||
* | |||
CALL ZTRMM('Right', 'Lower', 'No transpose', 'Unit', L, | |||
$ K-L, ONE, V(L+1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = V_{3,1}'*V_{3,2} + T_{1,2} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL ZGEMM('Conjugate', 'No transpose', L, K-L, N-K, ONE, | |||
$ V(K+1, 1), LDV, V(K+1, L+1), LDV, ONE, | |||
$ T(1, L+1), LDT) | |||
* | |||
* At this point, we have that T_{1,2} = V_1'*V_2 | |||
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2} | |||
* respectively. | |||
* | |||
* T_{1,2} = -T_{1,1}*T_{1,2} | |||
* | |||
CALL ZTRMM('Left', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*T_{2,2} | |||
* | |||
CALL ZTRMM('Right', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T(L+1, L+1), LDT, T(1, L+1), LDT) | |||
ELSE IF(LQ) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |----------------------| | |||
* |V_{1,1} V_{1,2} V{1,3}| | |||
* |0 V_{2,2} V{2,3}| | |||
* |----------------------| | |||
* | |||
* V_{1,1}\in\C^{l,l} unit upper triangular | |||
* V_{1,2}\in\C^{l,k-l} rectangular | |||
* V_{1,3}\in\C^{l,n-k} rectangular | |||
* | |||
* V_{2,2}\in\C^{k-l,k-l} unit upper triangular | |||
* V_{2,3}\in\C^{k-l,n-k} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} T_{1,2}| | |||
* |0 T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\C^{l, l} upper triangular | |||
* T_{2,2}\in\C^{k-l, k-l} upper triangular | |||
* T_{1,2}\in\C^{l, k-l} rectangular | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_1'*T_{1,1}*V_1)*(I - V_2'*T_{2,2}*V_2) | |||
* = I - V_1'*T_{1,1}*V_1 - V_2'*T_{2,2}*V_2 + V_1'*T_{1,1}*V_1*V_2'*T_{2,2}*V_2 | |||
* | |||
* Define T_{1,2} = -T_{1,1}*V_1*V_2'*T_{2,2} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |---| | |||
* |V_1| | |||
* |V_2| | |||
* |---| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V'*T*V | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{1,2} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL ZLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL ZLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV, | |||
$ TAU(L+1), T(L+1, L+1), LDT) | |||
* | |||
* Compute T_{1,2} | |||
* T_{1,2} = V_{1,2} | |||
* | |||
CALL ZLACPY('All', L, K-L, V(1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*V_{2,2}' | |||
* | |||
CALL ZTRMM('Right', 'Upper', 'Conjugate', 'Unit', L, K-L, | |||
$ ONE, V(L+1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = V_{1,3}*V_{2,3}' + T_{1,2} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL ZGEMM('No transpose', 'Conjugate', L, K-L, N-K, ONE, | |||
$ V(1, K+1), LDV, V(L+1, K+1), LDV, ONE, | |||
$ T(1, L+1), LDT) | |||
* | |||
* At this point, we have that T_{1,2} = V_1*V_2' | |||
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2} | |||
* respectively. | |||
* | |||
* T_{1,2} = -T_{1,1}*T_{1,2} | |||
* | |||
CALL ZTRMM('Left', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*T_{2,2} | |||
* | |||
CALL ZTRMM('Right', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T(L+1, L+1), LDT, T(1, L+1), LDT) | |||
ELSE IF(QL) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |---------------| | |||
* |V_{1,1} V_{1,2}| | |||
* |V_{2,1} V_{2,2}| | |||
* |0 V_{3,2}| | |||
* |---------------| | |||
* | |||
* V_{1,1}\in\C^{n-k,k-l} rectangular | |||
* V_{2,1}\in\C^{k-l,k-l} unit upper triangular | |||
* | |||
* V_{1,2}\in\C^{n-k,l} rectangular | |||
* V_{2,2}\in\C^{k-l,l} rectangular | |||
* V_{3,2}\in\C^{l,l} unit upper triangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} 0 | | |||
* |T_{2,1} T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\C^{k-l, k-l} non-unit lower triangular | |||
* T_{2,2}\in\C^{l, l} non-unit lower triangular | |||
* T_{2,1}\in\C^{k-l, l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_2*T_{2,2}*V_2')*(I - V_1*T_{1,1}*V_1') | |||
* = I - V_2*T_{2,2}*V_2' - V_1*T_{1,1}*V_1' + V_2*T_{2,2}*V_2'*V_1*T_{1,1}*V_1' | |||
* | |||
* Define T_{2,1} = -T_{2,2}*V_2'*V_1*T_{1,1} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |-------| | |||
* |V_1 V_2| | |||
* |-------| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V*T*V' | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{2,1} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL ZLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL ZLARFT(DIRECT, STOREV, N, L, V(1, K-L+1), LDV, | |||
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT) | |||
* | |||
* Compute T_{2,1} | |||
* T_{2,1} = V_{2,2}' | |||
* | |||
DO J = 1, K-L | |||
DO I = 1, L | |||
T(K-L+I, J) = CONJG(V(N-K+J, K-L+I)) | |||
END DO | |||
END DO | |||
END IF | |||
RETURN | |||
* | |||
* End of ZLARFT | |||
* T_{2,1} = T_{2,1}*V_{2,1} | |||
* | |||
CALL ZTRMM('Right', 'Upper', 'No transpose', 'Unit', L, | |||
$ K-L, ONE, V(N-K+1, 1), LDV, T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = V_{2,2}'*V_{2,1} + T_{2,1} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL ZGEMM('Conjugate', 'No transpose', L, K-L, N-K, ONE, | |||
$ V(1, K-L+1), LDV, V, LDV, ONE, T(K-L+1, 1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{2,1} = V_2'*V_1 | |||
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1} | |||
* respectively. | |||
* | |||
* T_{2,1} = -T_{2,2}*T_{2,1} | |||
* | |||
CALL ZTRMM('Left', 'Lower', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
END | |||
* T_{2,1} = T_{2,1}*T_{1,1} | |||
* | |||
CALL ZTRMM('Right', 'Lower', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT) | |||
ELSE | |||
* | |||
* Else means RQ case | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |-----------------------| | |||
* |V_{1,1} V_{1,2} 0 | | |||
* |V_{2,1} V_{2,2} V_{2,3}| | |||
* |-----------------------| | |||
* | |||
* V_{1,1}\in\C^{k-l,n-k} rectangular | |||
* V_{1,2}\in\C^{k-l,k-l} unit lower triangular | |||
* | |||
* V_{2,1}\in\C^{l,n-k} rectangular | |||
* V_{2,2}\in\C^{l,k-l} rectangular | |||
* V_{2,3}\in\C^{l,l} unit lower triangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} 0 | | |||
* |T_{2,1} T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\C^{k-l, k-l} non-unit lower triangular | |||
* T_{2,2}\in\C^{l, l} non-unit lower triangular | |||
* T_{2,1}\in\C^{k-l, l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_2'*T_{2,2}*V_2)*(I - V_1'*T_{1,1}*V_1) | |||
* = I - V_2'*T_{2,2}*V_2 - V_1'*T_{1,1}*V_1 + V_2'*T_{2,2}*V_2*V_1'*T_{1,1}*V_1 | |||
* | |||
* Define T_{2,1} = -T_{2,2}*V_2*V_1'*T_{1,1} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |---| | |||
* |V_1| | |||
* |V_2| | |||
* |---| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V'*T*V | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{2,1} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL ZLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL ZLARFT(DIRECT, STOREV, N, L, V(K-L+1, 1), LDV, | |||
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT) | |||
* | |||
* Compute T_{2,1} | |||
* T_{2,1} = V_{2,2} | |||
* | |||
CALL ZLACPY('All', L, K-L, V(K-L+1, N-K+1), LDV, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = T_{2,1}*V_{1,2}' | |||
* | |||
CALL ZTRMM('Right', 'Lower', 'Conjugate', 'Unit', L, K-L, | |||
$ ONE, V(1, N-K+1), LDV, T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = V_{2,1}*V_{1,1}' + T_{2,1} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL ZGEMM('No transpose', 'Conjugate', L, K-L, N-K, ONE, | |||
$ V(K-L+1, 1), LDV, V, LDV, ONE, T(K-L+1, 1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{2,1} = V_2*V_1' | |||
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1} | |||
* respectively. | |||
* | |||
* T_{2,1} = -T_{2,2}*T_{2,1} | |||
* | |||
CALL ZTRMM('Left', 'Lower', 'No tranpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = T_{2,1}*T_{1,1} | |||
* | |||
CALL ZTRMM('Right', 'Lower', 'No tranpose', 'Non-unit', L, | |||
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT) | |||
END IF | |||
END SUBROUTINE |