@@ -18,7 +18,7 @@ | |||
* Definition: | |||
* =========== | |||
* | |||
* SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* RECURSIVE SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* | |||
* .. Scalar Arguments .. | |||
* CHARACTER DIRECT, STOREV | |||
@@ -130,7 +130,7 @@ | |||
*> \author Univ. of Colorado Denver | |||
*> \author NAG Ltd. | |||
* | |||
*> \ingroup complexOTHERauxiliary | |||
*> \ingroup larft | |||
* | |||
*> \par Further Details: | |||
* ===================== | |||
@@ -159,167 +159,473 @@ | |||
*> \endverbatim | |||
*> | |||
* ===================================================================== | |||
SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
RECURSIVE SUBROUTINE CLARFT( DIRECT, STOREV, N, K, V, LDV, | |||
$ TAU, T, LDT ) | |||
* | |||
* -- LAPACK auxiliary routine -- | |||
* -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
* | |||
* .. Scalar Arguments .. | |||
CHARACTER DIRECT, STOREV | |||
INTEGER K, LDT, LDV, N | |||
* .. Scalar Arguments | |||
* | |||
CHARACTER DIRECT, STOREV | |||
INTEGER K, LDT, LDV, N | |||
* .. | |||
* .. Array Arguments .. | |||
COMPLEX T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* ===================================================================== | |||
COMPLEX T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* .. Parameters .. | |||
COMPLEX ONE, ZERO | |||
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ), | |||
$ ZERO = ( 0.0E+0, 0.0E+0 ) ) | |||
* .. | |||
* | |||
COMPLEX ONE, NEG_ONE, ZERO | |||
PARAMETER(ONE=1.0E+0, ZERO = 0.0E+0, NEG_ONE=-1.0E+0) | |||
* | |||
* .. Local Scalars .. | |||
INTEGER I, J, PREVLASTV, LASTV | |||
* .. | |||
* | |||
INTEGER I,J,L | |||
LOGICAL QR,LQ,QL,DIRF,COLV | |||
* | |||
* .. External Subroutines .. | |||
EXTERNAL CGEMM, CGEMV, CTRMV | |||
* .. | |||
* .. External Functions .. | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* | |||
EXTERNAL CTRMM,CGEMM,CLACPY | |||
* | |||
* .. External Functions.. | |||
* | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* | |||
* .. Intrinsic Functions.. | |||
* | |||
INTRINSIC CONJG | |||
* | |||
* The general scheme used is inspired by the approach inside DGEQRT3 | |||
* which was (at the time of writing this code): | |||
* Based on the algorithm of Elmroth and Gustavson, | |||
* IBM J. Res. Develop. Vol 44 No. 4 July 2000. | |||
* .. | |||
* .. Executable Statements .. | |||
* | |||
* Quick return if possible | |||
* | |||
IF( N.EQ.0 ) | |||
$ RETURN | |||
* | |||
IF( LSAME( DIRECT, 'F' ) ) THEN | |||
PREVLASTV = N | |||
DO I = 1, K | |||
PREVLASTV = MAX( PREVLASTV, I ) | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = 1, I | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * CONJG( V( I , J ) ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i) | |||
* | |||
CALL CGEMV( 'Conjugate transpose', J-I, I-1, | |||
$ -TAU( I ), V( I+1, 1 ), LDV, | |||
$ V( I+1, I ), 1, | |||
$ ONE, T( 1, I ), 1 ) | |||
ELSE | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( J , I ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H | |||
* | |||
CALL CGEMM( 'N', 'C', I-1, 1, J-I, -TAU( I ), | |||
$ V( 1, I+1 ), LDV, V( I, I+1 ), LDV, | |||
$ ONE, T( 1, I ), LDT ) | |||
END IF | |||
* | |||
* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) | |||
* | |||
CALL CTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, | |||
$ LDT, T( 1, I ), 1 ) | |||
T( I, I ) = TAU( I ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MAX( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
IF(N.EQ.0.OR.K.EQ.0) THEN | |||
RETURN | |||
END IF | |||
* | |||
* Base case | |||
* | |||
IF(N.EQ.1.OR.K.EQ.1) THEN | |||
T(1,1) = TAU(1) | |||
RETURN | |||
END IF | |||
* | |||
* Beginning of executable statements | |||
* | |||
L = K / 2 | |||
* | |||
* Determine what kind of Q we need to compute | |||
* We assume that if the user doesn't provide 'F' for DIRECT, | |||
* then they meant to provide 'B' and if they don't provide | |||
* 'C' for STOREV, then they meant to provide 'R' | |||
* | |||
DIRF = LSAME(DIRECT,'F') | |||
COLV = LSAME(STOREV,'C') | |||
* | |||
* QR happens when we have forward direction in column storage | |||
* | |||
QR = DIRF.AND.COLV | |||
* | |||
* LQ happens when we have forward direction in row storage | |||
* | |||
LQ = DIRF.AND.(.NOT.COLV) | |||
* | |||
* QL happens when we have backward direction in column storage | |||
* | |||
QL = (.NOT.DIRF).AND.COLV | |||
* | |||
* The last case is RQ. Due to how we structured this, if the | |||
* above 3 are false, then RQ must be true, so we never store | |||
* this | |||
* RQ happens when we have backward direction in row storage | |||
* RQ = (.NOT.DIRF).AND.(.NOT.COLV) | |||
* | |||
IF(QR) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |---------------| | |||
* |V_{1,1} 0 | | |||
* |V_{2,1} V_{2,2}| | |||
* |V_{3,1} V_{3,2}| | |||
* |---------------| | |||
* | |||
* V_{1,1}\in\C^{l,l} unit lower triangular | |||
* V_{2,1}\in\C^{k-l,l} rectangular | |||
* V_{3,1}\in\C^{n-k,l} rectangular | |||
* | |||
* V_{2,2}\in\C^{k-l,k-l} unit lower triangular | |||
* V_{3,2}\in\C^{n-k,k-l} rectangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} T_{1,2}| | |||
* |0 T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\C^{l, l} upper triangular | |||
* T_{2,2}\in\C^{k-l, k-l} upper triangular | |||
* T_{1,2}\in\C^{l, k-l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_1*T_{1,1}*V_1')*(I - V_2*T_{2,2}*V_2') | |||
* = I - V_1*T_{1,1}*V_1' - V_2*T_{2,2}*V_2' + V_1*T_{1,1}*V_1'*V_2*T_{2,2}*V_2' | |||
* | |||
* Define T{1,2} = -T_{1,1}*V_1'*V_2*T_{2,2} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |-------| | |||
* |V_1 V_2| | |||
* |-------| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V*T*V' | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{1,2} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL CLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL CLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV, | |||
$ TAU(L+1), T(L+1, L+1), LDT) | |||
* | |||
* Compute T_{1,2} | |||
* T_{1,2} = V_{2,1}' | |||
* | |||
DO J = 1, L | |||
DO I = 1, K-L | |||
T(J, L+I) = CONJG(V(L+I, J)) | |||
END DO | |||
END DO | |||
ELSE | |||
PREVLASTV = 1 | |||
DO I = K, 1, -1 | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = I, K | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( I.LT.K ) THEN | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * CONJG( V( N-K+I , J ) ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i) | |||
* | |||
CALL CGEMV( 'Conjugate transpose', N-K+I-J, K-I, | |||
$ -TAU( I ), V( J, I+1 ), LDV, V( J, I ), | |||
$ 1, ONE, T( I+1, I ), 1 ) | |||
ELSE | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( J, N-K+I ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H | |||
* | |||
CALL CGEMM( 'N', 'C', K-I, 1, N-K+I-J, -TAU( I ), | |||
$ V( I+1, J ), LDV, V( I, J ), LDV, | |||
$ ONE, T( I+1, I ), LDT ) | |||
END IF | |||
* | |||
* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) | |||
* | |||
CALL CTRMV( 'Lower', 'No transpose', 'Non-unit', K-I, | |||
$ T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MIN( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
T( I, I ) = TAU( I ) | |||
END IF | |||
* | |||
* T_{1,2} = T_{1,2}*V_{2,2} | |||
* | |||
CALL CTRMM('Right', 'Lower', 'No transpose', 'Unit', L, | |||
$ K-L, ONE, V(L+1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = V_{3,1}'*V_{3,2} + T_{1,2} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL CGEMM('Conjugate', 'No transpose', L, K-L, N-K, ONE, | |||
$ V(K+1, 1), LDV, V(K+1, L+1), LDV, ONE, T(1, L+1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{1,2} = V_1'*V_2 | |||
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2} | |||
* respectively. | |||
* | |||
* T_{1,2} = -T_{1,1}*T_{1,2} | |||
* | |||
CALL CTRMM('Left', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*T_{2,2} | |||
* | |||
CALL CTRMM('Right', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T(L+1, L+1), LDT, T(1, L+1), LDT) | |||
ELSE IF(LQ) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |----------------------| | |||
* |V_{1,1} V_{1,2} V{1,3}| | |||
* |0 V_{2,2} V{2,3}| | |||
* |----------------------| | |||
* | |||
* V_{1,1}\in\C^{l,l} unit upper triangular | |||
* V_{1,2}\in\C^{l,k-l} rectangular | |||
* V_{1,3}\in\C^{l,n-k} rectangular | |||
* | |||
* V_{2,2}\in\C^{k-l,k-l} unit upper triangular | |||
* V_{2,3}\in\C^{k-l,n-k} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} T_{1,2}| | |||
* |0 T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\C^{l, l} upper triangular | |||
* T_{2,2}\in\C^{k-l, k-l} upper triangular | |||
* T_{1,2}\in\C^{l, k-l} rectangular | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_1'*T_{1,1}*V_1)*(I - V_2'*T_{2,2}*V_2) | |||
* = I - V_1'*T_{1,1}*V_1 - V_2'*T_{2,2}*V_2 + V_1'*T_{1,1}*V_1*V_2'*T_{2,2}*V_2 | |||
* | |||
* Define T_{1,2} = -T_{1,1}*V_1*V_2'*T_{2,2} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |---| | |||
* |V_1| | |||
* |V_2| | |||
* |---| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V'*T*V | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{1,2} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL CLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL CLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV, | |||
$ TAU(L+1), T(L+1, L+1), LDT) | |||
* | |||
* Compute T_{1,2} | |||
* T_{1,2} = V_{1,2} | |||
* | |||
CALL CLACPY('All', L, K-L, V(1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*V_{2,2}' | |||
* | |||
CALL CTRMM('Right', 'Upper', 'Conjugate', 'Unit', L, K-L, | |||
$ ONE, V(L+1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = V_{1,3}*V_{2,3}' + T_{1,2} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL CGEMM('No transpose', 'Conjugate', L, K-L, N-K, ONE, | |||
$ V(1, K+1), LDV, V(L+1, K+1), LDV, ONE, T(1, L+1), LDT) | |||
* | |||
* At this point, we have that T_{1,2} = V_1*V_2' | |||
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2} | |||
* respectively. | |||
* | |||
* T_{1,2} = -T_{1,1}*T_{1,2} | |||
* | |||
CALL CTRMM('Left', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*T_{2,2} | |||
* | |||
CALL CTRMM('Right', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T(L+1,L+1), LDT, T(1, L+1), LDT) | |||
ELSE IF(QL) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |---------------| | |||
* |V_{1,1} V_{1,2}| | |||
* |V_{2,1} V_{2,2}| | |||
* |0 V_{3,2}| | |||
* |---------------| | |||
* | |||
* V_{1,1}\in\C^{n-k,k-l} rectangular | |||
* V_{2,1}\in\C^{k-l,k-l} unit upper triangular | |||
* | |||
* V_{1,2}\in\C^{n-k,l} rectangular | |||
* V_{2,2}\in\C^{k-l,l} rectangular | |||
* V_{3,2}\in\C^{l,l} unit upper triangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} 0 | | |||
* |T_{2,1} T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\C^{k-l, k-l} non-unit lower triangular | |||
* T_{2,2}\in\C^{l, l} non-unit lower triangular | |||
* T_{2,1}\in\C^{k-l, l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_2*T_{2,2}*V_2')*(I - V_1*T_{1,1}*V_1') | |||
* = I - V_2*T_{2,2}*V_2' - V_1*T_{1,1}*V_1' + V_2*T_{2,2}*V_2'*V_1*T_{1,1}*V_1' | |||
* | |||
* Define T_{2,1} = -T_{2,2}*V_2'*V_1*T_{1,1} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |-------| | |||
* |V_1 V_2| | |||
* |-------| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V*T*V' | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{2,1} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL CLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL CLARFT(DIRECT, STOREV, N, L, V(1, K-L+1), LDV, | |||
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT) | |||
* | |||
* Compute T_{2,1} | |||
* T_{2,1} = V_{2,2}' | |||
* | |||
DO J = 1, K-L | |||
DO I = 1, L | |||
T(K-L+I, J) = CONJG(V(N-K+J, K-L+I)) | |||
END DO | |||
END DO | |||
END IF | |||
RETURN | |||
* | |||
* End of CLARFT | |||
* T_{2,1} = T_{2,1}*V_{2,1} | |||
* | |||
CALL CTRMM('Right', 'Upper', 'No transpose', 'Unit', L, | |||
$ K-L, ONE, V(N-K+1, 1), LDV, T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = V_{2,2}'*V_{2,1} + T_{2,1} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL CGEMM('Conjugate', 'No transpose', L, K-L, N-K, ONE, | |||
$ V(1, K-L+1), LDV, V, LDV, ONE, T(K-L+1, 1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{2,1} = V_2'*V_1 | |||
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1} | |||
* respectively. | |||
* | |||
* T_{2,1} = -T_{2,2}*T_{2,1} | |||
* | |||
CALL CTRMM('Left', 'Lower', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
END | |||
* T_{2,1} = T_{2,1}*T_{1,1} | |||
* | |||
CALL CTRMM('Right', 'Lower', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT) | |||
ELSE | |||
* | |||
* Else means RQ case | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |-----------------------| | |||
* |V_{1,1} V_{1,2} 0 | | |||
* |V_{2,1} V_{2,2} V_{2,3}| | |||
* |-----------------------| | |||
* | |||
* V_{1,1}\in\C^{k-l,n-k} rectangular | |||
* V_{1,2}\in\C^{k-l,k-l} unit lower triangular | |||
* | |||
* V_{2,1}\in\C^{l,n-k} rectangular | |||
* V_{2,2}\in\C^{l,k-l} rectangular | |||
* V_{2,3}\in\C^{l,l} unit lower triangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} 0 | | |||
* |T_{2,1} T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\C^{k-l, k-l} non-unit lower triangular | |||
* T_{2,2}\in\C^{l, l} non-unit lower triangular | |||
* T_{2,1}\in\C^{k-l, l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_2'*T_{2,2}*V_2)*(I - V_1'*T_{1,1}*V_1) | |||
* = I - V_2'*T_{2,2}*V_2 - V_1'*T_{1,1}*V_1 + V_2'*T_{2,2}*V_2*V_1'*T_{1,1}*V_1 | |||
* | |||
* Define T_{2,1} = -T_{2,2}*V_2*V_1'*T_{1,1} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |---| | |||
* |V_1| | |||
* |V_2| | |||
* |---| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V'*T*V | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{2,1} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL CLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL CLARFT(DIRECT, STOREV, N, L, V(K-L+1,1), LDV, | |||
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT) | |||
* | |||
* Compute T_{2,1} | |||
* T_{2,1} = V_{2,2} | |||
* | |||
CALL CLACPY('All', L, K-L, V(K-L+1, N-K+1), LDV, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = T_{2,1}*V_{1,2}' | |||
* | |||
CALL CTRMM('Right', 'Lower', 'Conjugate', 'Unit', L, K-L, | |||
$ ONE, V(1, N-K+1), LDV, T(K-L+1,1), LDT) | |||
* | |||
* T_{2,1} = V_{2,1}*V_{1,1}' + T_{2,1} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL CGEMM('No transpose', 'Conjugate', L, K-L, N-K, ONE, | |||
$ V(K-L+1, 1), LDV, V, LDV, ONE, T(K-L+1, 1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{2,1} = V_2*V_1' | |||
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1} | |||
* respectively. | |||
* | |||
* T_{2,1} = -T_{2,2}*T_{2,1} | |||
* | |||
CALL CTRMM('Left', 'Lower', 'No tranpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = T_{2,1}*T_{1,1} | |||
* | |||
CALL CTRMM('Right', 'Lower', 'No tranpose', 'Non-unit', L, | |||
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT) | |||
END IF | |||
END SUBROUTINE |
@@ -18,7 +18,7 @@ | |||
* Definition: | |||
* =========== | |||
* | |||
* SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* RECURSIVE SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* | |||
* .. Scalar Arguments .. | |||
* CHARACTER DIRECT, STOREV | |||
@@ -130,7 +130,7 @@ | |||
*> \author Univ. of Colorado Denver | |||
*> \author NAG Ltd. | |||
* | |||
*> \ingroup doubleOTHERauxiliary | |||
*> \ingroup larft | |||
* | |||
*> \par Further Details: | |||
* ===================== | |||
@@ -159,165 +159,470 @@ | |||
*> \endverbatim | |||
*> | |||
* ===================================================================== | |||
SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
RECURSIVE SUBROUTINE DLARFT( DIRECT, STOREV, N, K, V, LDV, | |||
$ TAU, T, LDT ) | |||
* | |||
* -- LAPACK auxiliary routine -- | |||
* -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
* | |||
* .. Scalar Arguments .. | |||
* .. Scalar Arguments | |||
* | |||
CHARACTER DIRECT, STOREV | |||
INTEGER K, LDT, LDV, N | |||
* .. | |||
* .. Array Arguments .. | |||
* | |||
DOUBLE PRECISION T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* ===================================================================== | |||
* | |||
* .. Parameters .. | |||
DOUBLE PRECISION ONE, ZERO | |||
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) | |||
* .. | |||
* | |||
DOUBLE PRECISION ONE, NEG_ONE, ZERO | |||
PARAMETER(ONE=1.0D+0, ZERO = 0.0D+0, NEG_ONE=-1.0D+0) | |||
* | |||
* .. Local Scalars .. | |||
INTEGER I, J, PREVLASTV, LASTV | |||
* .. | |||
* | |||
INTEGER I,J,L | |||
LOGICAL QR,LQ,QL,DIRF,COLV | |||
* | |||
* .. External Subroutines .. | |||
EXTERNAL DGEMV, DTRMV | |||
* .. | |||
* .. External Functions .. | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* | |||
EXTERNAL DTRMM,DGEMM,DLACPY | |||
* | |||
* .. External Functions.. | |||
* | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* | |||
* The general scheme used is inspired by the approach inside DGEQRT3 | |||
* which was (at the time of writing this code): | |||
* Based on the algorithm of Elmroth and Gustavson, | |||
* IBM J. Res. Develop. Vol 44 No. 4 July 2000. | |||
* .. | |||
* .. Executable Statements .. | |||
* | |||
* Quick return if possible | |||
* | |||
IF( N.EQ.0 ) | |||
$ RETURN | |||
* | |||
IF( LSAME( DIRECT, 'F' ) ) THEN | |||
PREVLASTV = N | |||
DO I = 1, K | |||
PREVLASTV = MAX( I, PREVLASTV ) | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = 1, I | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( I , J ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i) | |||
* | |||
CALL DGEMV( 'Transpose', J-I, I-1, -TAU( I ), | |||
$ V( I+1, 1 ), LDV, V( I+1, I ), 1, ONE, | |||
$ T( 1, I ), 1 ) | |||
ELSE | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( J , I ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T | |||
* | |||
CALL DGEMV( 'No transpose', I-1, J-I, -TAU( I ), | |||
$ V( 1, I+1 ), LDV, V( I, I+1 ), LDV, ONE, | |||
$ T( 1, I ), 1 ) | |||
END IF | |||
* | |||
* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) | |||
* | |||
CALL DTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, | |||
$ LDT, T( 1, I ), 1 ) | |||
T( I, I ) = TAU( I ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MAX( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
IF(N.EQ.0.OR.K.EQ.0) THEN | |||
RETURN | |||
END IF | |||
* | |||
* Base case | |||
* | |||
IF(N.EQ.1.OR.K.EQ.1) THEN | |||
T(1,1) = TAU(1) | |||
RETURN | |||
END IF | |||
* | |||
* Beginning of executable statements | |||
* | |||
L = K / 2 | |||
* | |||
* Determine what kind of Q we need to compute | |||
* We assume that if the user doesn't provide 'F' for DIRECT, | |||
* then they meant to provide 'B' and if they don't provide | |||
* 'C' for STOREV, then they meant to provide 'R' | |||
* | |||
DIRF = LSAME(DIRECT,'F') | |||
COLV = LSAME(STOREV,'C') | |||
* | |||
* QR happens when we have forward direction in column storage | |||
* | |||
QR = DIRF.AND.COLV | |||
* | |||
* LQ happens when we have forward direction in row storage | |||
* | |||
LQ = DIRF.AND.(.NOT.COLV) | |||
* | |||
* QL happens when we have backward direction in column storage | |||
* | |||
QL = (.NOT.DIRF).AND.COLV | |||
* | |||
* The last case is RQ. Due to how we structured this, if the | |||
* above 3 are false, then RQ must be true, so we never store | |||
* this | |||
* RQ happens when we have backward direction in row storage | |||
* RQ = (.NOT.DIRF).AND.(.NOT.COLV) | |||
* | |||
IF(QR) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |---------------| | |||
* |V_{1,1} 0 | | |||
* |V_{2,1} V_{2,2}| | |||
* |V_{3,1} V_{3,2}| | |||
* |---------------| | |||
* | |||
* V_{1,1}\in\R^{l,l} unit lower triangular | |||
* V_{2,1}\in\R^{k-l,l} rectangular | |||
* V_{3,1}\in\R^{n-k,l} rectangular | |||
* | |||
* V_{2,2}\in\R^{k-l,k-l} unit lower triangular | |||
* V_{3,2}\in\R^{n-k,k-l} rectangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} T_{1,2}| | |||
* |0 T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\R^{l, l} upper triangular | |||
* T_{2,2}\in\R^{k-l, k-l} upper triangular | |||
* T_{1,2}\in\R^{l, k-l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_1*T_{1,1}*V_1')*(I - V_2*T_{2,2}*V_2') | |||
* = I - V_1*T_{1,1}*V_1' - V_2*T_{2,2}*V_2' + V_1*T_{1,1}*V_1'*V_2*T_{2,2}*V_2' | |||
* | |||
* Define T_{1,2} = -T_{1,1}*V_1'*V_2*T_{2,2} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |-------| | |||
* |V_1 V_2| | |||
* |-------| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V*T*V' | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{1,2} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL DLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL DLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV, | |||
$ TAU(L+1), T(L+1, L+1), LDT) | |||
* | |||
* Compute T_{1,2} | |||
* T_{1,2} = V_{2,1}' | |||
* | |||
DO J = 1, L | |||
DO I = 1, K-L | |||
T(J, L+I) = V(L+I, J) | |||
END DO | |||
END DO | |||
ELSE | |||
PREVLASTV = 1 | |||
DO I = K, 1, -1 | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = I, K | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( I.LT.K ) THEN | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( N-K+I , J ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i) | |||
* | |||
CALL DGEMV( 'Transpose', N-K+I-J, K-I, -TAU( I ), | |||
$ V( J, I+1 ), LDV, V( J, I ), 1, ONE, | |||
$ T( I+1, I ), 1 ) | |||
ELSE | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( J, N-K+I ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T | |||
* | |||
CALL DGEMV( 'No transpose', K-I, N-K+I-J, | |||
$ -TAU( I ), V( I+1, J ), LDV, V( I, J ), LDV, | |||
$ ONE, T( I+1, I ), 1 ) | |||
END IF | |||
* | |||
* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) | |||
* | |||
CALL DTRMV( 'Lower', 'No transpose', 'Non-unit', K-I, | |||
$ T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MIN( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
T( I, I ) = TAU( I ) | |||
END IF | |||
* | |||
* T_{1,2} = T_{1,2}*V_{2,2} | |||
* | |||
CALL DTRMM('Right', 'Lower', 'No transpose', 'Unit', L, | |||
$ K-L, ONE, V(L+1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = V_{3,1}'*V_{3,2} + T_{1,2} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL DGEMM('Transpose', 'No transpose', L, K-L, N-K, ONE, | |||
$ V(K+1, 1), LDV, V(K+1, L+1), LDV, ONE, | |||
$ T(1, L+1), LDT) | |||
* | |||
* At this point, we have that T_{1,2} = V_1'*V_2 | |||
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2} | |||
* respectively. | |||
* | |||
* T_{1,2} = -T_{1,1}*T_{1,2} | |||
* | |||
CALL DTRMM('Left', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*T_{2,2} | |||
* | |||
CALL DTRMM('Right', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T(L+1, L+1), LDT, T(1, L+1), LDT) | |||
ELSE IF(LQ) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |----------------------| | |||
* |V_{1,1} V_{1,2} V{1,3}| | |||
* |0 V_{2,2} V{2,3}| | |||
* |----------------------| | |||
* | |||
* V_{1,1}\in\R^{l,l} unit upper triangular | |||
* V_{1,2}\in\R^{l,k-l} rectangular | |||
* V_{1,3}\in\R^{l,n-k} rectangular | |||
* | |||
* V_{2,2}\in\R^{k-l,k-l} unit upper triangular | |||
* V_{2,3}\in\R^{k-l,n-k} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} T_{1,2}| | |||
* |0 T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\R^{l, l} upper triangular | |||
* T_{2,2}\in\R^{k-l, k-l} upper triangular | |||
* T_{1,2}\in\R^{l, k-l} rectangular | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_1'*T_{1,1}*V_1)*(I - V_2'*T_{2,2}*V_2) | |||
* = I - V_1'*T_{1,1}*V_1 - V_2'*T_{2,2}*V_2 + V_1'*T_{1,1}*V_1*V_2'*T_{2,2}*V_2 | |||
* | |||
* Define T_{1,2} = -T_{1,1}*V_1*V_2'*T_{2,2} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |---| | |||
* |V_1| | |||
* |V_2| | |||
* |---| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V'*T*V | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{1,2} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL DLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL DLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV, | |||
$ TAU(L+1), T(L+1, L+1), LDT) | |||
* | |||
* Compute T_{1,2} | |||
* T_{1,2} = V_{1,2} | |||
* | |||
CALL DLACPY('All', L, K-L, V(1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*V_{2,2}' | |||
* | |||
CALL DTRMM('Right', 'Upper', 'Transpose', 'Unit', L, K-L, | |||
$ ONE, V(L+1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = V_{1,3}*V_{2,3}' + T_{1,2} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL DGEMM('No transpose', 'Transpose', L, K-L, N-K, ONE, | |||
$ V(1, K+1), LDV, V(L+1, K+1), LDV, ONE, | |||
$ T(1, L+1), LDT) | |||
* | |||
* At this point, we have that T_{1,2} = V_1*V_2' | |||
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2} | |||
* respectively. | |||
* | |||
* T_{1,2} = -T_{1,1}*T_{1,2} | |||
* | |||
CALL DTRMM('Left', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*T_{2,2} | |||
* | |||
CALL DTRMM('Right', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T(L+1, L+1), LDT, T(1, L+1), LDT) | |||
ELSE IF(QL) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |---------------| | |||
* |V_{1,1} V_{1,2}| | |||
* |V_{2,1} V_{2,2}| | |||
* |0 V_{3,2}| | |||
* |---------------| | |||
* | |||
* V_{1,1}\in\R^{n-k,k-l} rectangular | |||
* V_{2,1}\in\R^{k-l,k-l} unit upper triangular | |||
* | |||
* V_{1,2}\in\R^{n-k,l} rectangular | |||
* V_{2,2}\in\R^{k-l,l} rectangular | |||
* V_{3,2}\in\R^{l,l} unit upper triangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} 0 | | |||
* |T_{2,1} T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\R^{k-l, k-l} non-unit lower triangular | |||
* T_{2,2}\in\R^{l, l} non-unit lower triangular | |||
* T_{2,1}\in\R^{k-l, l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_2*T_{2,2}*V_2')*(I - V_1*T_{1,1}*V_1') | |||
* = I - V_2*T_{2,2}*V_2' - V_1*T_{1,1}*V_1' + V_2*T_{2,2}*V_2'*V_1*T_{1,1}*V_1' | |||
* | |||
* Define T_{2,1} = -T_{2,2}*V_2'*V_1*T_{1,1} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |-------| | |||
* |V_1 V_2| | |||
* |-------| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V*T*V' | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{2,1} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL DLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL DLARFT(DIRECT, STOREV, N, L, V(1, K-L+1), LDV, | |||
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT) | |||
* | |||
* Compute T_{2,1} | |||
* T_{2,1} = V_{2,2}' | |||
* | |||
DO J = 1, K-L | |||
DO I = 1, L | |||
T(K-L+I, J) = V(N-K+J, K-L+I) | |||
END DO | |||
END DO | |||
END IF | |||
RETURN | |||
* | |||
* End of DLARFT | |||
* T_{2,1} = T_{2,1}*V_{2,1} | |||
* | |||
CALL DTRMM('Right', 'Upper', 'No transpose', 'Unit', L, | |||
$ K-L, ONE, V(N-K+1, 1), LDV, T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = V_{2,2}'*V_{2,1} + T_{2,1} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL DGEMM('Transpose', 'No transpose', L, K-L, N-K, ONE, | |||
$ V(1, K-L+1), LDV, V, LDV, ONE, T(K-L+1, 1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{2,1} = V_2'*V_1 | |||
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1} | |||
* respectively. | |||
* | |||
* T_{2,1} = -T_{2,2}*T_{2,1} | |||
* | |||
CALL DTRMM('Left', 'Lower', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
END | |||
* T_{2,1} = T_{2,1}*T_{1,1} | |||
* | |||
CALL DTRMM('Right', 'Lower', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT) | |||
ELSE | |||
* | |||
* Else means RQ case | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |-----------------------| | |||
* |V_{1,1} V_{1,2} 0 | | |||
* |V_{2,1} V_{2,2} V_{2,3}| | |||
* |-----------------------| | |||
* | |||
* V_{1,1}\in\R^{k-l,n-k} rectangular | |||
* V_{1,2}\in\R^{k-l,k-l} unit lower triangular | |||
* | |||
* V_{2,1}\in\R^{l,n-k} rectangular | |||
* V_{2,2}\in\R^{l,k-l} rectangular | |||
* V_{2,3}\in\R^{l,l} unit lower triangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} 0 | | |||
* |T_{2,1} T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\R^{k-l, k-l} non-unit lower triangular | |||
* T_{2,2}\in\R^{l, l} non-unit lower triangular | |||
* T_{2,1}\in\R^{k-l, l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_2'*T_{2,2}*V_2)*(I - V_1'*T_{1,1}*V_1) | |||
* = I - V_2'*T_{2,2}*V_2 - V_1'*T_{1,1}*V_1 + V_2'*T_{2,2}*V_2*V_1'*T_{1,1}*V_1 | |||
* | |||
* Define T_{2,1} = -T_{2,2}*V_2*V_1'*T_{1,1} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |---| | |||
* |V_1| | |||
* |V_2| | |||
* |---| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V'*T*V | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{2,1} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL DLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL DLARFT(DIRECT, STOREV, N, L, V(K-L+1, 1), LDV, | |||
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT) | |||
* | |||
* Compute T_{2,1} | |||
* T_{2,1} = V_{2,2} | |||
* | |||
CALL DLACPY('All', L, K-L, V(K-L+1, N-K+1), LDV, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = T_{2,1}*V_{1,2}' | |||
* | |||
CALL DTRMM('Right', 'Lower', 'Transpose', 'Unit', L, K-L, | |||
$ ONE, V(1, N-K+1), LDV, T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = V_{2,1}*V_{1,1}' + T_{2,1} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL DGEMM('No transpose', 'Transpose', L, K-L, N-K, ONE, | |||
$ V(K-L+1, 1), LDV, V, LDV, ONE, T(K-L+1, 1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{2,1} = V_2*V_1' | |||
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1} | |||
* respectively. | |||
* | |||
* T_{2,1} = -T_{2,2}*T_{2,1} | |||
* | |||
CALL DTRMM('Left', 'Lower', 'No tranpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = T_{2,1}*T_{1,1} | |||
* | |||
CALL DTRMM('Right', 'Lower', 'No tranpose', 'Non-unit', L, | |||
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT) | |||
END IF | |||
END SUBROUTINE |
@@ -18,7 +18,7 @@ | |||
* Definition: | |||
* =========== | |||
* | |||
* SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* RECURSIVE SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* | |||
* .. Scalar Arguments .. | |||
* CHARACTER DIRECT, STOREV | |||
@@ -127,10 +127,10 @@ | |||
* | |||
*> \author Univ. of Tennessee | |||
*> \author Univ. of California Berkeley | |||
*> \author Univ. of Colorado Denver | |||
*> \author Johnathan Rhyne, Univ. of Colorado Denver (original author, 2024) | |||
*> \author NAG Ltd. | |||
* | |||
*> \ingroup realOTHERauxiliary | |||
*> \ingroup larft | |||
* | |||
*> \par Further Details: | |||
* ===================== | |||
@@ -159,165 +159,470 @@ | |||
*> \endverbatim | |||
*> | |||
* ===================================================================== | |||
SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
RECURSIVE SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, | |||
$ TAU, T, LDT ) | |||
* | |||
* -- LAPACK auxiliary routine -- | |||
* -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
* | |||
* .. Scalar Arguments .. | |||
* .. Scalar Arguments | |||
* | |||
CHARACTER DIRECT, STOREV | |||
INTEGER K, LDT, LDV, N | |||
* .. | |||
* .. Array Arguments .. | |||
* | |||
REAL T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* ===================================================================== | |||
* | |||
* .. Parameters .. | |||
REAL ONE, ZERO | |||
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 ) | |||
* .. | |||
* | |||
REAL ONE, NEG_ONE, ZERO | |||
PARAMETER(ONE=1.0E+0, ZERO = 0.0E+0, NEG_ONE=-1.0E+0) | |||
* | |||
* .. Local Scalars .. | |||
INTEGER I, J, PREVLASTV, LASTV | |||
* .. | |||
* | |||
INTEGER I,J,L | |||
LOGICAL QR,LQ,QL,DIRF,COLV | |||
* | |||
* .. External Subroutines .. | |||
EXTERNAL SGEMV, STRMV | |||
* .. | |||
* .. External Functions .. | |||
* | |||
EXTERNAL STRMM,SGEMM,SLACPY | |||
* | |||
* .. External Functions.. | |||
* | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* | |||
* The general scheme used is inspired by the approach inside DGEQRT3 | |||
* which was (at the time of writing this code): | |||
* Based on the algorithm of Elmroth and Gustavson, | |||
* IBM J. Res. Develop. Vol 44 No. 4 July 2000. | |||
* .. | |||
* .. Executable Statements .. | |||
* | |||
* Quick return if possible | |||
* | |||
IF( N.EQ.0 ) | |||
$ RETURN | |||
* | |||
IF( LSAME( DIRECT, 'F' ) ) THEN | |||
PREVLASTV = N | |||
DO I = 1, K | |||
PREVLASTV = MAX( I, PREVLASTV ) | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = 1, I | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( I , J ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**T * V(i:j,i) | |||
* | |||
CALL SGEMV( 'Transpose', J-I, I-1, -TAU( I ), | |||
$ V( I+1, 1 ), LDV, V( I+1, I ), 1, ONE, | |||
$ T( 1, I ), 1 ) | |||
ELSE | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( J , I ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**T | |||
* | |||
CALL SGEMV( 'No transpose', I-1, J-I, -TAU( I ), | |||
$ V( 1, I+1 ), LDV, V( I, I+1 ), LDV, | |||
$ ONE, T( 1, I ), 1 ) | |||
END IF | |||
* | |||
* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) | |||
* | |||
CALL STRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, | |||
$ LDT, T( 1, I ), 1 ) | |||
T( I, I ) = TAU( I ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MAX( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
IF(N.EQ.0.OR.K.EQ.0) THEN | |||
RETURN | |||
END IF | |||
* | |||
* Base case | |||
* | |||
IF(N.EQ.1.OR.K.EQ.1) THEN | |||
T(1,1) = TAU(1) | |||
RETURN | |||
END IF | |||
* | |||
* Beginning of executable statements | |||
* | |||
L = K / 2 | |||
* | |||
* Determine what kind of Q we need to compute | |||
* We assume that if the user doesn't provide 'F' for DIRECT, | |||
* then they meant to provide 'B' and if they don't provide | |||
* 'C' for STOREV, then they meant to provide 'R' | |||
* | |||
DIRF = LSAME(DIRECT,'F') | |||
COLV = LSAME(STOREV,'C') | |||
* | |||
* QR happens when we have forward direction in column storage | |||
* | |||
QR = DIRF.AND.COLV | |||
* | |||
* LQ happens when we have forward direction in row storage | |||
* | |||
LQ = DIRF.AND.(.NOT.COLV) | |||
* | |||
* QL happens when we have backward direction in column storage | |||
* | |||
QL = (.NOT.DIRF).AND.COLV | |||
* | |||
* The last case is RQ. Due to how we structured this, if the | |||
* above 3 are false, then RQ must be true, so we never store | |||
* this | |||
* RQ happens when we have backward direction in row storage | |||
* RQ = (.NOT.DIRF).AND.(.NOT.COLV) | |||
* | |||
IF(QR) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |---------------| | |||
* |V_{1,1} 0 | | |||
* |V_{2,1} V_{2,2}| | |||
* |V_{3,1} V_{3,2}| | |||
* |---------------| | |||
* | |||
* V_{1,1}\in\R^{l,l} unit lower triangular | |||
* V_{2,1}\in\R^{k-l,l} rectangular | |||
* V_{3,1}\in\R^{n-k,l} rectangular | |||
* | |||
* V_{2,2}\in\R^{k-l,k-l} unit lower triangular | |||
* V_{3,2}\in\R^{n-k,k-l} rectangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} T_{1,2}| | |||
* |0 T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\R^{l, l} upper triangular | |||
* T_{2,2}\in\R^{k-l, k-l} upper triangular | |||
* T_{1,2}\in\R^{l, k-l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_1*T_{1,1}*V_1')*(I - V_2*T_{2,2}*V_2') | |||
* = I - V_1*T_{1,1}*V_1' - V_2*T_{2,2}*V_2' + V_1*T_{1,1}*V_1'*V_2*T_{2,2}*V_2' | |||
* | |||
* Define T_{1,2} = -T_{1,1}*V_1'*V_2*T_{2,2} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |-------| | |||
* |V_1 V_2| | |||
* |-------| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V*T*V' | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{1,2} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL SLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL SLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV, | |||
$ TAU(L+1), T(L+1, L+1), LDT) | |||
* | |||
* Compute T_{1,2} | |||
* T_{1,2} = V_{2,1}' | |||
* | |||
DO J = 1, L | |||
DO I = 1, K-L | |||
T(J, L+I) = V(L+I, J) | |||
END DO | |||
END DO | |||
ELSE | |||
PREVLASTV = 1 | |||
DO I = K, 1, -1 | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = I, K | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( I.LT.K ) THEN | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( N-K+I , J ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**T * V(j:n-k+i,i) | |||
* | |||
CALL SGEMV( 'Transpose', N-K+I-J, K-I, -TAU( I ), | |||
$ V( J, I+1 ), LDV, V( J, I ), 1, ONE, | |||
$ T( I+1, I ), 1 ) | |||
ELSE | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( J, N-K+I ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**T | |||
* | |||
CALL SGEMV( 'No transpose', K-I, N-K+I-J, | |||
$ -TAU( I ), V( I+1, J ), LDV, V( I, J ), LDV, | |||
$ ONE, T( I+1, I ), 1 ) | |||
END IF | |||
* | |||
* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) | |||
* | |||
CALL STRMV( 'Lower', 'No transpose', 'Non-unit', K-I, | |||
$ T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MIN( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
T( I, I ) = TAU( I ) | |||
END IF | |||
* | |||
* T_{1,2} = T_{1,2}*V_{2,2} | |||
* | |||
CALL STRMM('Right', 'Lower', 'No transpose', 'Unit', L, | |||
$ K-L, ONE, V(L+1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = V_{3,1}'*V_{3,2} + T_{1,2} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL SGEMM('Transpose', 'No transpose', L, K-L, N-K, ONE, | |||
$ V(K+1, 1), LDV, V(K+1, L+1), LDV, ONE, | |||
$ T(1, L+1), LDT) | |||
* | |||
* At this point, we have that T_{1,2} = V_1'*V_2 | |||
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2} | |||
* respectively. | |||
* | |||
* T_{1,2} = -T_{1,1}*T_{1,2} | |||
* | |||
CALL STRMM('Left', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*T_{2,2} | |||
* | |||
CALL STRMM('Right', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T(L+1, L+1), LDT, T(1, L+1), LDT) | |||
ELSE IF(LQ) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |----------------------| | |||
* |V_{1,1} V_{1,2} V{1,3}| | |||
* |0 V_{2,2} V{2,3}| | |||
* |----------------------| | |||
* | |||
* V_{1,1}\in\R^{l,l} unit upper triangular | |||
* V_{1,2}\in\R^{l,k-l} rectangular | |||
* V_{1,3}\in\R^{l,n-k} rectangular | |||
* | |||
* V_{2,2}\in\R^{k-l,k-l} unit upper triangular | |||
* V_{2,3}\in\R^{k-l,n-k} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} T_{1,2}| | |||
* |0 T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\R^{l, l} upper triangular | |||
* T_{2,2}\in\R^{k-l, k-l} upper triangular | |||
* T_{1,2}\in\R^{l, k-l} rectangular | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_1'*T_{1,1}*V_1)*(I - V_2'*T_{2,2}*V_2) | |||
* = I - V_1'*T_{1,1}*V_1 - V_2'*T_{2,2}*V_2 + V_1'*T_{1,1}*V_1*V_2'*T_{2,2}*V_2 | |||
* | |||
* Define T_{1,2} = -T_{1,1}*V_1*V_2'*T_{2,2} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |---| | |||
* |V_1| | |||
* |V_2| | |||
* |---| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V'*T*V | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{1,2} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL SLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL SLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV, | |||
$ TAU(L+1), T(L+1, L+1), LDT) | |||
* | |||
* Compute T_{1,2} | |||
* T_{1,2} = V_{1,2} | |||
* | |||
CALL SLACPY('All', L, K-L, V(1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*V_{2,2}' | |||
* | |||
CALL STRMM('Right', 'Upper', 'Transpose', 'Unit', L, K-L, | |||
$ ONE, V(L+1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = V_{1,3}*V_{2,3}' + T_{1,2} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL SGEMM('No transpose', 'Transpose', L, K-L, N-K, ONE, | |||
$ V(1, K+1), LDV, V(L+1, K+1), LDV, ONE, | |||
$ T(1, L+1), LDT) | |||
* | |||
* At this point, we have that T_{1,2} = V_1*V_2' | |||
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2} | |||
* respectively. | |||
* | |||
* T_{1,2} = -T_{1,1}*T_{1,2} | |||
* | |||
CALL STRMM('Left', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*T_{2,2} | |||
* | |||
CALL STRMM('Right', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T(L+1, L+1), LDT, T(1, L+1), LDT) | |||
ELSE IF(QL) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |---------------| | |||
* |V_{1,1} V_{1,2}| | |||
* |V_{2,1} V_{2,2}| | |||
* |0 V_{3,2}| | |||
* |---------------| | |||
* | |||
* V_{1,1}\in\R^{n-k,k-l} rectangular | |||
* V_{2,1}\in\R^{k-l,k-l} unit upper triangular | |||
* | |||
* V_{1,2}\in\R^{n-k,l} rectangular | |||
* V_{2,2}\in\R^{k-l,l} rectangular | |||
* V_{3,2}\in\R^{l,l} unit upper triangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} 0 | | |||
* |T_{2,1} T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\R^{k-l, k-l} non-unit lower triangular | |||
* T_{2,2}\in\R^{l, l} non-unit lower triangular | |||
* T_{2,1}\in\R^{k-l, l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_2*T_{2,2}*V_2')*(I - V_1*T_{1,1}*V_1') | |||
* = I - V_2*T_{2,2}*V_2' - V_1*T_{1,1}*V_1' + V_2*T_{2,2}*V_2'*V_1*T_{1,1}*V_1' | |||
* | |||
* Define T_{2,1} = -T_{2,2}*V_2'*V_1*T_{1,1} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |-------| | |||
* |V_1 V_2| | |||
* |-------| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V*T*V' | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{2,1} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL SLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL SLARFT(DIRECT, STOREV, N, L, V(1, K-L+1), LDV, | |||
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT) | |||
* | |||
* Compute T_{2,1} | |||
* T_{2,1} = V_{2,2}' | |||
* | |||
DO J = 1, K-L | |||
DO I = 1, L | |||
T(K-L+I, J) = V(N-K+J, K-L+I) | |||
END DO | |||
END DO | |||
END IF | |||
RETURN | |||
* | |||
* End of SLARFT | |||
* T_{2,1} = T_{2,1}*V_{2,1} | |||
* | |||
CALL STRMM('Right', 'Upper', 'No transpose', 'Unit', L, | |||
$ K-L, ONE, V(N-K+1, 1), LDV, T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = V_{2,2}'*V_{2,1} + T_{2,1} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL SGEMM('Transpose', 'No transpose', L, K-L, N-K, ONE, | |||
$ V(1, K-L+1), LDV, V, LDV, ONE, T(K-L+1, 1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{2,1} = V_2'*V_1 | |||
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1} | |||
* respectively. | |||
* | |||
* T_{2,1} = -T_{2,2}*T_{2,1} | |||
* | |||
CALL STRMM('Left', 'Lower', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
END | |||
* T_{2,1} = T_{2,1}*T_{1,1} | |||
* | |||
CALL STRMM('Right', 'Lower', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT) | |||
ELSE | |||
* | |||
* Else means RQ case | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |-----------------------| | |||
* |V_{1,1} V_{1,2} 0 | | |||
* |V_{2,1} V_{2,2} V_{2,3}| | |||
* |-----------------------| | |||
* | |||
* V_{1,1}\in\R^{k-l,n-k} rectangular | |||
* V_{1,2}\in\R^{k-l,k-l} unit lower triangular | |||
* | |||
* V_{2,1}\in\R^{l,n-k} rectangular | |||
* V_{2,2}\in\R^{l,k-l} rectangular | |||
* V_{2,3}\in\R^{l,l} unit lower triangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} 0 | | |||
* |T_{2,1} T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\R^{k-l, k-l} non-unit lower triangular | |||
* T_{2,2}\in\R^{l, l} non-unit lower triangular | |||
* T_{2,1}\in\R^{k-l, l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_2'*T_{2,2}*V_2)*(I - V_1'*T_{1,1}*V_1) | |||
* = I - V_2'*T_{2,2}*V_2 - V_1'*T_{1,1}*V_1 + V_2'*T_{2,2}*V_2*V_1'*T_{1,1}*V_1 | |||
* | |||
* Define T_{2,1} = -T_{2,2}*V_2*V_1'*T_{1,1} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |---| | |||
* |V_1| | |||
* |V_2| | |||
* |---| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V'TV | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{2,1} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL SLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL SLARFT(DIRECT, STOREV, N, L, V(K-L+1, 1), LDV, | |||
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT) | |||
* | |||
* Compute T_{2,1} | |||
* T_{2,1} = V_{2,2} | |||
* | |||
CALL SLACPY('All', L, K-L, V(K-L+1, N-K+1), LDV, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = T_{2,1}*V_{1,2}' | |||
* | |||
CALL STRMM('Right', 'Lower', 'Transpose', 'Unit', L, K-L, | |||
$ ONE, V(1, N-K+1), LDV, T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = V_{2,1}*V_{1,1}' + T_{2,1} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL SGEMM('No transpose', 'Transpose', L, K-L, N-K, ONE, | |||
$ V(K-L+1, 1), LDV, V, LDV, ONE, T(K-L+1, 1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{2,1} = V_2*V_1' | |||
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1} | |||
* respectively. | |||
* | |||
* T_{2,1} = -T_{2,2}*T_{2,1} | |||
* | |||
CALL STRMM('Left', 'Lower', 'No tranpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = T_{2,1}*T_{1,1} | |||
* | |||
CALL STRMM('Right', 'Lower', 'No tranpose', 'Non-unit', L, | |||
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT) | |||
END IF | |||
END SUBROUTINE |
@@ -18,7 +18,7 @@ | |||
* Definition: | |||
* =========== | |||
* | |||
* SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* RECURSIVE SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
* | |||
* .. Scalar Arguments .. | |||
* CHARACTER DIRECT, STOREV | |||
@@ -130,7 +130,7 @@ | |||
*> \author Univ. of Colorado Denver | |||
*> \author NAG Ltd. | |||
* | |||
*> \ingroup complex16OTHERauxiliary | |||
*> \ingroup larft | |||
* | |||
*> \par Further Details: | |||
* ===================== | |||
@@ -159,166 +159,474 @@ | |||
*> \endverbatim | |||
*> | |||
* ===================================================================== | |||
SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT ) | |||
RECURSIVE SUBROUTINE ZLARFT( DIRECT, STOREV, N, K, V, LDV, | |||
$ TAU, T, LDT ) | |||
* | |||
* -- LAPACK auxiliary routine -- | |||
* -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
* | |||
* .. Scalar Arguments .. | |||
CHARACTER DIRECT, STOREV | |||
INTEGER K, LDT, LDV, N | |||
* .. Scalar Arguments | |||
* | |||
CHARACTER DIRECT, STOREV | |||
INTEGER K, LDT, LDV, N | |||
* .. | |||
* .. Array Arguments .. | |||
COMPLEX*16 T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* ===================================================================== | |||
COMPLEX*16 T( LDT, * ), TAU( * ), V( LDV, * ) | |||
* .. | |||
* | |||
* .. Parameters .. | |||
COMPLEX*16 ONE, ZERO | |||
PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ), | |||
$ ZERO = ( 0.0D+0, 0.0D+0 ) ) | |||
* .. | |||
* | |||
COMPLEX*16 ONE, NEG_ONE, ZERO | |||
PARAMETER(ONE=1.0D+0, ZERO = 0.0D+0, NEG_ONE=-1.0D+0) | |||
* | |||
* .. Local Scalars .. | |||
INTEGER I, J, PREVLASTV, LASTV | |||
* .. | |||
* | |||
INTEGER I,J,L | |||
LOGICAL QR,LQ,QL,DIRF,COLV | |||
* | |||
* .. External Subroutines .. | |||
EXTERNAL ZGEMV, ZTRMV, ZGEMM | |||
* .. | |||
* .. External Functions .. | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* | |||
EXTERNAL ZTRMM,ZGEMM,ZLACPY | |||
* | |||
* .. External Functions.. | |||
* | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
* | |||
* .. Intrinsic Functions.. | |||
* | |||
INTRINSIC CONJG | |||
* | |||
* The general scheme used is inspired by the approach inside DGEQRT3 | |||
* which was (at the time of writing this code): | |||
* Based on the algorithm of Elmroth and Gustavson, | |||
* IBM J. Res. Develop. Vol 44 No. 4 July 2000. | |||
* .. | |||
* .. Executable Statements .. | |||
* | |||
* Quick return if possible | |||
* | |||
IF( N.EQ.0 ) | |||
$ RETURN | |||
* | |||
IF( LSAME( DIRECT, 'F' ) ) THEN | |||
PREVLASTV = N | |||
DO I = 1, K | |||
PREVLASTV = MAX( PREVLASTV, I ) | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = 1, I | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * CONJG( V( I , J ) ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(i:j,1:i-1)**H * V(i:j,i) | |||
* | |||
CALL ZGEMV( 'Conjugate transpose', J-I, I-1, | |||
$ -TAU( I ), V( I+1, 1 ), LDV, | |||
$ V( I+1, I ), 1, ONE, T( 1, I ), 1 ) | |||
ELSE | |||
* Skip any trailing zeros. | |||
DO LASTV = N, I+1, -1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = 1, I-1 | |||
T( J, I ) = -TAU( I ) * V( J , I ) | |||
END DO | |||
J = MIN( LASTV, PREVLASTV ) | |||
* | |||
* T(1:i-1,i) := - tau(i) * V(1:i-1,i:j) * V(i,i:j)**H | |||
* | |||
CALL ZGEMM( 'N', 'C', I-1, 1, J-I, -TAU( I ), | |||
$ V( 1, I+1 ), LDV, V( I, I+1 ), LDV, | |||
$ ONE, T( 1, I ), LDT ) | |||
END IF | |||
* | |||
* T(1:i-1,i) := T(1:i-1,1:i-1) * T(1:i-1,i) | |||
* | |||
CALL ZTRMV( 'Upper', 'No transpose', 'Non-unit', I-1, T, | |||
$ LDT, T( 1, I ), 1 ) | |||
T( I, I ) = TAU( I ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MAX( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
IF(N.EQ.0.OR.K.EQ.0) THEN | |||
RETURN | |||
END IF | |||
* | |||
* Base case | |||
* | |||
IF(N.EQ.1.OR.K.EQ.1) THEN | |||
T(1,1) = TAU(1) | |||
RETURN | |||
END IF | |||
* | |||
* Beginning of executable statements | |||
* | |||
L = K / 2 | |||
* | |||
* Determine what kind of Q we need to compute | |||
* We assume that if the user doesn't provide 'F' for DIRECT, | |||
* then they meant to provide 'B' and if they don't provide | |||
* 'C' for STOREV, then they meant to provide 'R' | |||
* | |||
DIRF = LSAME(DIRECT,'F') | |||
COLV = LSAME(STOREV,'C') | |||
* | |||
* QR happens when we have forward direction in column storage | |||
* | |||
QR = DIRF.AND.COLV | |||
* | |||
* LQ happens when we have forward direction in row storage | |||
* | |||
LQ = DIRF.AND.(.NOT.COLV) | |||
* | |||
* QL happens when we have backward direction in column storage | |||
* | |||
QL = (.NOT.DIRF).AND.COLV | |||
* | |||
* The last case is RQ. Due to how we structured this, if the | |||
* above 3 are false, then RQ must be true, so we never store | |||
* this | |||
* RQ happens when we have backward direction in row storage | |||
* RQ = (.NOT.DIRF).AND.(.NOT.COLV) | |||
* | |||
IF(QR) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |---------------| | |||
* |V_{1,1} 0 | | |||
* |V_{2,1} V_{2,2}| | |||
* |V_{3,1} V_{3,2}| | |||
* |---------------| | |||
* | |||
* V_{1,1}\in\C^{l,l} unit lower triangular | |||
* V_{2,1}\in\C^{k-l,l} rectangular | |||
* V_{3,1}\in\C^{n-k,l} rectangular | |||
* | |||
* V_{2,2}\in\C^{k-l,k-l} unit lower triangular | |||
* V_{3,2}\in\C^{n-k,k-l} rectangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} T_{1,2}| | |||
* |0 T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\C^{l, l} upper triangular | |||
* T_{2,2}\in\C^{k-l, k-l} upper triangular | |||
* T_{1,2}\in\C^{l, k-l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_1*T_{1,1}*V_1')*(I - V_2*T_{2,2}*V_2') | |||
* = I - V_1*T_{1,1}*V_1' - V_2*T_{2,2}*V_2' + V_1*T_{1,1}*V_1'*V_2*T_{2,2}*V_2' | |||
* | |||
* Define T_{1,2} = -T_{1,1}*V_1'*V_2*T_{2,2} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |-------| | |||
* |V_1 V_2| | |||
* |-------| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V*T*V' | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{1,2} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL ZLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL ZLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV, | |||
$ TAU(L+1), T(L+1, L+1), LDT) | |||
* | |||
* Compute T_{1,2} | |||
* T_{1,2} = V_{2,1}' | |||
* | |||
DO J = 1, L | |||
DO I = 1, K-L | |||
T(J, L+I) = CONJG(V(L+I, J)) | |||
END DO | |||
END DO | |||
ELSE | |||
PREVLASTV = 1 | |||
DO I = K, 1, -1 | |||
IF( TAU( I ).EQ.ZERO ) THEN | |||
* | |||
* H(i) = I | |||
* | |||
DO J = I, K | |||
T( J, I ) = ZERO | |||
END DO | |||
ELSE | |||
* | |||
* general case | |||
* | |||
IF( I.LT.K ) THEN | |||
IF( LSAME( STOREV, 'C' ) ) THEN | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( LASTV, I ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * CONJG( V( N-K+I , J ) ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(j:n-k+i,i+1:k)**H * V(j:n-k+i,i) | |||
* | |||
CALL ZGEMV( 'Conjugate transpose', N-K+I-J, K-I, | |||
$ -TAU( I ), V( J, I+1 ), LDV, V( J, I ), | |||
$ 1, ONE, T( I+1, I ), 1 ) | |||
ELSE | |||
* Skip any leading zeros. | |||
DO LASTV = 1, I-1 | |||
IF( V( I, LASTV ).NE.ZERO ) EXIT | |||
END DO | |||
DO J = I+1, K | |||
T( J, I ) = -TAU( I ) * V( J, N-K+I ) | |||
END DO | |||
J = MAX( LASTV, PREVLASTV ) | |||
* | |||
* T(i+1:k,i) = -tau(i) * V(i+1:k,j:n-k+i) * V(i,j:n-k+i)**H | |||
* | |||
CALL ZGEMM( 'N', 'C', K-I, 1, N-K+I-J, -TAU( I ), | |||
$ V( I+1, J ), LDV, V( I, J ), LDV, | |||
$ ONE, T( I+1, I ), LDT ) | |||
END IF | |||
* | |||
* T(i+1:k,i) := T(i+1:k,i+1:k) * T(i+1:k,i) | |||
* | |||
CALL ZTRMV( 'Lower', 'No transpose', 'Non-unit', K-I, | |||
$ T( I+1, I+1 ), LDT, T( I+1, I ), 1 ) | |||
IF( I.GT.1 ) THEN | |||
PREVLASTV = MIN( PREVLASTV, LASTV ) | |||
ELSE | |||
PREVLASTV = LASTV | |||
END IF | |||
END IF | |||
T( I, I ) = TAU( I ) | |||
END IF | |||
* | |||
* T_{1,2} = T_{1,2}*V_{2,2} | |||
* | |||
CALL ZTRMM('Right', 'Lower', 'No transpose', 'Unit', L, | |||
$ K-L, ONE, V(L+1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = V_{3,1}'*V_{3,2} + T_{1,2} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL ZGEMM('Conjugate', 'No transpose', L, K-L, N-K, ONE, | |||
$ V(K+1, 1), LDV, V(K+1, L+1), LDV, ONE, | |||
$ T(1, L+1), LDT) | |||
* | |||
* At this point, we have that T_{1,2} = V_1'*V_2 | |||
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2} | |||
* respectively. | |||
* | |||
* T_{1,2} = -T_{1,1}*T_{1,2} | |||
* | |||
CALL ZTRMM('Left', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*T_{2,2} | |||
* | |||
CALL ZTRMM('Right', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T(L+1, L+1), LDT, T(1, L+1), LDT) | |||
ELSE IF(LQ) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |----------------------| | |||
* |V_{1,1} V_{1,2} V{1,3}| | |||
* |0 V_{2,2} V{2,3}| | |||
* |----------------------| | |||
* | |||
* V_{1,1}\in\C^{l,l} unit upper triangular | |||
* V_{1,2}\in\C^{l,k-l} rectangular | |||
* V_{1,3}\in\C^{l,n-k} rectangular | |||
* | |||
* V_{2,2}\in\C^{k-l,k-l} unit upper triangular | |||
* V_{2,3}\in\C^{k-l,n-k} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} T_{1,2}| | |||
* |0 T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\C^{l, l} upper triangular | |||
* T_{2,2}\in\C^{k-l, k-l} upper triangular | |||
* T_{1,2}\in\C^{l, k-l} rectangular | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_1'*T_{1,1}*V_1)*(I - V_2'*T_{2,2}*V_2) | |||
* = I - V_1'*T_{1,1}*V_1 - V_2'*T_{2,2}*V_2 + V_1'*T_{1,1}*V_1*V_2'*T_{2,2}*V_2 | |||
* | |||
* Define T_{1,2} = -T_{1,1}*V_1*V_2'*T_{2,2} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |---| | |||
* |V_1| | |||
* |V_2| | |||
* |---| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V'*T*V | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{1,2} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL ZLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL ZLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV, | |||
$ TAU(L+1), T(L+1, L+1), LDT) | |||
* | |||
* Compute T_{1,2} | |||
* T_{1,2} = V_{1,2} | |||
* | |||
CALL ZLACPY('All', L, K-L, V(1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*V_{2,2}' | |||
* | |||
CALL ZTRMM('Right', 'Upper', 'Conjugate', 'Unit', L, K-L, | |||
$ ONE, V(L+1, L+1), LDV, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = V_{1,3}*V_{2,3}' + T_{1,2} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL ZGEMM('No transpose', 'Conjugate', L, K-L, N-K, ONE, | |||
$ V(1, K+1), LDV, V(L+1, K+1), LDV, ONE, | |||
$ T(1, L+1), LDT) | |||
* | |||
* At this point, we have that T_{1,2} = V_1*V_2' | |||
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2} | |||
* respectively. | |||
* | |||
* T_{1,2} = -T_{1,1}*T_{1,2} | |||
* | |||
CALL ZTRMM('Left', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT) | |||
* | |||
* T_{1,2} = T_{1,2}*T_{2,2} | |||
* | |||
CALL ZTRMM('Right', 'Upper', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T(L+1, L+1), LDT, T(1, L+1), LDT) | |||
ELSE IF(QL) THEN | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |---------------| | |||
* |V_{1,1} V_{1,2}| | |||
* |V_{2,1} V_{2,2}| | |||
* |0 V_{3,2}| | |||
* |---------------| | |||
* | |||
* V_{1,1}\in\C^{n-k,k-l} rectangular | |||
* V_{2,1}\in\C^{k-l,k-l} unit upper triangular | |||
* | |||
* V_{1,2}\in\C^{n-k,l} rectangular | |||
* V_{2,2}\in\C^{k-l,l} rectangular | |||
* V_{3,2}\in\C^{l,l} unit upper triangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} 0 | | |||
* |T_{2,1} T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\C^{k-l, k-l} non-unit lower triangular | |||
* T_{2,2}\in\C^{l, l} non-unit lower triangular | |||
* T_{2,1}\in\C^{k-l, l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_2*T_{2,2}*V_2')*(I - V_1*T_{1,1}*V_1') | |||
* = I - V_2*T_{2,2}*V_2' - V_1*T_{1,1}*V_1' + V_2*T_{2,2}*V_2'*V_1*T_{1,1}*V_1' | |||
* | |||
* Define T_{2,1} = -T_{2,2}*V_2'*V_1*T_{1,1} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |-------| | |||
* |V_1 V_2| | |||
* |-------| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V*T*V' | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{2,1} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL ZLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL ZLARFT(DIRECT, STOREV, N, L, V(1, K-L+1), LDV, | |||
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT) | |||
* | |||
* Compute T_{2,1} | |||
* T_{2,1} = V_{2,2}' | |||
* | |||
DO J = 1, K-L | |||
DO I = 1, L | |||
T(K-L+I, J) = CONJG(V(N-K+J, K-L+I)) | |||
END DO | |||
END DO | |||
END IF | |||
RETURN | |||
* | |||
* End of ZLARFT | |||
* T_{2,1} = T_{2,1}*V_{2,1} | |||
* | |||
CALL ZTRMM('Right', 'Upper', 'No transpose', 'Unit', L, | |||
$ K-L, ONE, V(N-K+1, 1), LDV, T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = V_{2,2}'*V_{2,1} + T_{2,1} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL ZGEMM('Conjugate', 'No transpose', L, K-L, N-K, ONE, | |||
$ V(1, K-L+1), LDV, V, LDV, ONE, T(K-L+1, 1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{2,1} = V_2'*V_1 | |||
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1} | |||
* respectively. | |||
* | |||
* T_{2,1} = -T_{2,2}*T_{2,1} | |||
* | |||
CALL ZTRMM('Left', 'Lower', 'No transpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
END | |||
* T_{2,1} = T_{2,1}*T_{1,1} | |||
* | |||
CALL ZTRMM('Right', 'Lower', 'No transpose', 'Non-unit', L, | |||
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT) | |||
ELSE | |||
* | |||
* Else means RQ case | |||
* | |||
* Break V apart into 6 components | |||
* | |||
* V = |-----------------------| | |||
* |V_{1,1} V_{1,2} 0 | | |||
* |V_{2,1} V_{2,2} V_{2,3}| | |||
* |-----------------------| | |||
* | |||
* V_{1,1}\in\C^{k-l,n-k} rectangular | |||
* V_{1,2}\in\C^{k-l,k-l} unit lower triangular | |||
* | |||
* V_{2,1}\in\C^{l,n-k} rectangular | |||
* V_{2,2}\in\C^{l,k-l} rectangular | |||
* V_{2,3}\in\C^{l,l} unit lower triangular | |||
* | |||
* We will construct the T matrix | |||
* T = |---------------| | |||
* |T_{1,1} 0 | | |||
* |T_{2,1} T_{2,2}| | |||
* |---------------| | |||
* | |||
* T is the triangular factor obtained from block reflectors. | |||
* To motivate the structure, assume we have already computed T_{1,1} | |||
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2 | |||
* | |||
* T_{1,1}\in\C^{k-l, k-l} non-unit lower triangular | |||
* T_{2,2}\in\C^{l, l} non-unit lower triangular | |||
* T_{2,1}\in\C^{k-l, l} rectangular | |||
* | |||
* Where l = floor(k/2) | |||
* | |||
* Then, consider the product: | |||
* | |||
* (I - V_2'*T_{2,2}*V_2)*(I - V_1'*T_{1,1}*V_1) | |||
* = I - V_2'*T_{2,2}*V_2 - V_1'*T_{1,1}*V_1 + V_2'*T_{2,2}*V_2*V_1'*T_{1,1}*V_1 | |||
* | |||
* Define T_{2,1} = -T_{2,2}*V_2*V_1'*T_{1,1} | |||
* | |||
* Then, we can define the matrix V as | |||
* V = |---| | |||
* |V_1| | |||
* |V_2| | |||
* |---| | |||
* | |||
* So, our product is equivalent to the matrix product | |||
* I - V'*T*V | |||
* This means, we can compute T_{1,1} and T_{2,2}, then use this information | |||
* to compute T_{2,1} | |||
* | |||
* Compute T_{1,1} recursively | |||
* | |||
CALL ZLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT) | |||
* | |||
* Compute T_{2,2} recursively | |||
* | |||
CALL ZLARFT(DIRECT, STOREV, N, L, V(K-L+1, 1), LDV, | |||
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT) | |||
* | |||
* Compute T_{2,1} | |||
* T_{2,1} = V_{2,2} | |||
* | |||
CALL ZLACPY('All', L, K-L, V(K-L+1, N-K+1), LDV, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = T_{2,1}*V_{1,2}' | |||
* | |||
CALL ZTRMM('Right', 'Lower', 'Conjugate', 'Unit', L, K-L, | |||
$ ONE, V(1, N-K+1), LDV, T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = V_{2,1}*V_{1,1}' + T_{2,1} | |||
* Note: We assume K <= N, and GEMM will do nothing if N=K | |||
* | |||
CALL ZGEMM('No transpose', 'Conjugate', L, K-L, N-K, ONE, | |||
$ V(K-L+1, 1), LDV, V, LDV, ONE, T(K-L+1, 1), | |||
$ LDT) | |||
* | |||
* At this point, we have that T_{2,1} = V_2*V_1' | |||
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1} | |||
* respectively. | |||
* | |||
* T_{2,1} = -T_{2,2}*T_{2,1} | |||
* | |||
CALL ZTRMM('Left', 'Lower', 'No tranpose', 'Non-unit', L, | |||
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT, | |||
$ T(K-L+1, 1), LDT) | |||
* | |||
* T_{2,1} = T_{2,1}*T_{1,1} | |||
* | |||
CALL ZTRMM('Right', 'Lower', 'No tranpose', 'Non-unit', L, | |||
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT) | |||
END IF | |||
END SUBROUTINE |