|
|
@@ -27,32 +27,36 @@ USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
|
|
|
|
|
|
|
#include "common.h" |
|
|
|
#if !defined(DOUBLE) |
|
|
|
#define VSETVL(n) RISCV_RVV(vsetvl_e32m4)(n) |
|
|
|
#define FLOAT_V_T vfloat32m4_t |
|
|
|
#define VLEV_FLOAT RISCV_RVV(vle32_v_f32m4) |
|
|
|
#define VLSEV_FLOAT RISCV_RVV(vlse32_v_f32m4) |
|
|
|
#define VSEV_FLOAT RISCV_RVV(vse32_v_f32m4) |
|
|
|
#define VSSEV_FLOAT RISCV_RVV(vsse32_v_f32m4) |
|
|
|
#define VFMACCVF_FLOAT RISCV_RVV(vfmacc_vf_f32m4) |
|
|
|
#define VFNMSACVF_FLOAT RISCV_RVV(vfnmsac_vf_f32m4) |
|
|
|
#define VSETVL(n) RISCV_RVV(vsetvl_e32m2)(n) |
|
|
|
#define FLOAT_V_T vfloat32m2_t |
|
|
|
#define VLEV_FLOAT RISCV_RVV(vle32_v_f32m2) |
|
|
|
#define VLSEV_FLOAT RISCV_RVV(vlse32_v_f32m2) |
|
|
|
#define VSEV_FLOAT RISCV_RVV(vse32_v_f32m2) |
|
|
|
#define VSSEV_FLOAT RISCV_RVV(vsse32_v_f32m2) |
|
|
|
#define VFMACCVF_FLOAT RISCV_RVV(vfmacc_vf_f32m2) |
|
|
|
#define VFNMSACVF_FLOAT RISCV_RVV(vfnmsac_vf_f32m2) |
|
|
|
#define VFMUL_VF_FLOAT RISCV_RVV(vfmul_vf_f32m2) |
|
|
|
#define VSEV_FLOAT RISCV_RVV(vse32_v_f32m2) |
|
|
|
#else |
|
|
|
#define VSETVL(n) RISCV_RVV(vsetvl_e64m4)(n) |
|
|
|
#define FLOAT_V_T vfloat64m4_t |
|
|
|
#define VLEV_FLOAT RISCV_RVV(vle64_v_f64m4) |
|
|
|
#define VLSEV_FLOAT RISCV_RVV(vlse64_v_f64m4) |
|
|
|
#define VSEV_FLOAT RISCV_RVV(vse64_v_f64m4) |
|
|
|
#define VSSEV_FLOAT RISCV_RVV(vsse64_v_f64m4) |
|
|
|
#define VFMACCVF_FLOAT RISCV_RVV(vfmacc_vf_f64m4) |
|
|
|
#define VFNMSACVF_FLOAT RISCV_RVV(vfnmsac_vf_f64m4) |
|
|
|
#define VSETVL(n) RISCV_RVV(vsetvl_e64m2)(n) |
|
|
|
#define FLOAT_V_T vfloat64m2_t |
|
|
|
#define VLEV_FLOAT RISCV_RVV(vle64_v_f64m2) |
|
|
|
#define VLSEV_FLOAT RISCV_RVV(vlse64_v_f64m2) |
|
|
|
#define VSEV_FLOAT RISCV_RVV(vse64_v_f64m2) |
|
|
|
#define VSSEV_FLOAT RISCV_RVV(vsse64_v_f64m2) |
|
|
|
#define VFMACCVF_FLOAT RISCV_RVV(vfmacc_vf_f64m2) |
|
|
|
#define VFNMSACVF_FLOAT RISCV_RVV(vfnmsac_vf_f64m2) |
|
|
|
#define VFMUL_VF_FLOAT RISCV_RVV(vfmul_vf_f64m2) |
|
|
|
#define VSEV_FLOAT RISCV_RVV(vse64_v_f64m2) |
|
|
|
#endif |
|
|
|
|
|
|
|
int CNAME(BLASLONG m, BLASLONG n, BLASLONG dummy1, FLOAT alpha_r, FLOAT alpha_i, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y, FLOAT *buffer) |
|
|
|
{ |
|
|
|
BLASLONG i = 0, j = 0, k = 0; |
|
|
|
BLASLONG i = 0, j = 0, k = 0; |
|
|
|
BLASLONG ix = 0, iy = 0; |
|
|
|
FLOAT *a_ptr = a; |
|
|
|
FLOAT temp_r = 0.0, temp_i = 0.0; |
|
|
|
FLOAT_V_T va0, va1, vy0, vy1; |
|
|
|
FLOAT temp_r = 0.0, temp_i = 0.0, temp_r1, temp_i1, temp_r2, temp_i2, temp_r3, temp_i3, temp_rr[4], temp_ii[4]; |
|
|
|
FLOAT_V_T va0, va1, vy0, vy1, vy0_new, vy1_new, va2, va3, va4, va5, va6, va7, temp_iv, temp_rv, x_v0, x_v1, temp_v1, temp_v2, temp_v3, temp_v4; |
|
|
|
unsigned int gvl = 0; |
|
|
|
BLASLONG stride_a = sizeof(FLOAT) * 2; |
|
|
|
BLASLONG stride_y = inc_y * sizeof(FLOAT) * 2; |
|
|
@@ -60,104 +64,248 @@ int CNAME(BLASLONG m, BLASLONG n, BLASLONG dummy1, FLOAT alpha_r, FLOAT alpha_i, |
|
|
|
BLASLONG inc_yv = inc_y * gvl * 2; |
|
|
|
BLASLONG inc_x2 = inc_x * 2; |
|
|
|
BLASLONG lda2 = lda * 2; |
|
|
|
for(k=0,j=0; k<m/gvl; k++){ |
|
|
|
vy0_new = VLSEV_FLOAT(&y[iy], stride_y, gvl); |
|
|
|
vy1_new = VLSEV_FLOAT(&y[iy + 1], stride_y, gvl); |
|
|
|
for (k = 0, j = 0; k < m / gvl; k++) |
|
|
|
{ |
|
|
|
a_ptr = a; |
|
|
|
ix = 0; |
|
|
|
vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl); |
|
|
|
vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl); |
|
|
|
for(i = 0; i < n; i++){ |
|
|
|
vy0 = vy0_new; |
|
|
|
vy1 = vy1_new; |
|
|
|
|
|
|
|
if (k < m / gvl - 1) |
|
|
|
{ |
|
|
|
vy0_new = VLSEV_FLOAT(&y[iy + inc_yv], stride_y, gvl); |
|
|
|
vy1_new = VLSEV_FLOAT(&y[iy + inc_yv + 1], stride_y, gvl); |
|
|
|
} |
|
|
|
for (i = 0; i < n % 4; i++) |
|
|
|
{ |
|
|
|
#if !defined(XCONJ) |
|
|
|
temp_r = alpha_r * x[ix] - alpha_i * x[ix+1]; |
|
|
|
temp_i = alpha_r * x[ix+1] + alpha_i * x[ix]; |
|
|
|
temp_r = alpha_r * x[ix] - alpha_i * x[ix + 1]; |
|
|
|
temp_i = alpha_r * x[ix + 1] + alpha_i * x[ix]; |
|
|
|
#else |
|
|
|
temp_r = alpha_r * x[ix] + alpha_i * x[ix+1]; |
|
|
|
temp_i = alpha_r * x[ix+1] - alpha_i * x[ix]; |
|
|
|
temp_r = alpha_r * x[ix] + alpha_i * x[ix + 1]; |
|
|
|
temp_i = alpha_r * x[ix + 1] - alpha_i * x[ix]; |
|
|
|
#endif |
|
|
|
|
|
|
|
va0 = VLSEV_FLOAT(&a_ptr[j], stride_a, gvl); |
|
|
|
va1 = VLSEV_FLOAT(&a_ptr[j+1], stride_a, gvl); |
|
|
|
va1 = VLSEV_FLOAT(&a_ptr[j + 1], stride_a, gvl); |
|
|
|
#if !defined(CONJ) |
|
|
|
#if !defined(XCONJ) |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl); |
|
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_i, va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_r, va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_i, va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl); |
|
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_i, va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_r, va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_i, va0, gvl); |
|
|
|
#else |
|
|
|
|
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_i, va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_r, va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_i, va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_i, va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_r, va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_i, va0, gvl); |
|
|
|
#endif |
|
|
|
|
|
|
|
#else |
|
|
|
|
|
|
|
#if !defined(XCONJ) |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_i, va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_r, va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_i, va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_i, va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_r, va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_i, va0, gvl); |
|
|
|
#else |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl); |
|
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_i, va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_r, va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_i, va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl); |
|
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_i, va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_r, va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_i, va0, gvl); |
|
|
|
#endif |
|
|
|
|
|
|
|
#endif |
|
|
|
a_ptr += lda2; |
|
|
|
ix += inc_x2; |
|
|
|
} |
|
|
|
|
|
|
|
for (; i < n; i += 4) |
|
|
|
{ |
|
|
|
#if !defined(XCONJ) |
|
|
|
|
|
|
|
x_v0 = VLSEV_FLOAT(&x[ix], inc_x2 * sizeof(FLOAT), 4); |
|
|
|
x_v1 = VLSEV_FLOAT(&x[ix + 1], inc_x2 * sizeof(FLOAT), 4); |
|
|
|
temp_rv = VFMUL_VF_FLOAT(x_v0, alpha_r, 4); |
|
|
|
temp_iv = VFMUL_VF_FLOAT(x_v0, alpha_i, 4); |
|
|
|
temp_rv = VFNMSACVF_FLOAT(temp_rv, alpha_i, x_v1, 4); |
|
|
|
temp_iv = VFMACCVF_FLOAT(temp_iv, alpha_r, x_v1, 4); |
|
|
|
VSEV_FLOAT(&temp_rr[0], temp_rv, 4); |
|
|
|
VSEV_FLOAT(&temp_ii[0], temp_iv, 4); |
|
|
|
|
|
|
|
#else |
|
|
|
x_v0 = VLSEV_FLOAT(&x[ix], inc_x2 * sizeof(FLOAT), 4); |
|
|
|
x_v1 = VLSEV_FLOAT(&x[ix + 1], inc_x2 * sizeof(FLOAT), 4); |
|
|
|
temp_rv = VFMUL_VF_FLOAT(x_v0, alpha_r, 4); |
|
|
|
temp_iv = VFMUL_VF_FLOAT(x_v0, alpha_i, 4); |
|
|
|
temp_rv = VFMACCVF_FLOAT(temp_rv, alpha_i, x_v1, 4); |
|
|
|
temp_iv = VFNMSACVF_FLOAT(temp_iv, alpha_r, x_v1, 4); |
|
|
|
VSEV_FLOAT(&temp_rr[0], temp_rv, 4); |
|
|
|
VSEV_FLOAT(&temp_ii[0], temp_iv, 4); |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
va0 = VLSEV_FLOAT(&a_ptr[j], stride_a, gvl); |
|
|
|
va1 = VLSEV_FLOAT(&a_ptr[j + 1], stride_a, gvl); |
|
|
|
va2 = VLSEV_FLOAT(&a_ptr[j + lda2], stride_a, gvl); |
|
|
|
va3 = VLSEV_FLOAT(&a_ptr[j + lda2 + 1], stride_a, gvl); |
|
|
|
va4 = VLSEV_FLOAT(&a_ptr[j + lda2 * 2], stride_a, gvl); |
|
|
|
va5 = VLSEV_FLOAT(&a_ptr[j + lda2 * 2 + 1], stride_a, gvl); |
|
|
|
va6 = VLSEV_FLOAT(&a_ptr[j + lda2 * 3], stride_a, gvl); |
|
|
|
va7 = VLSEV_FLOAT(&a_ptr[j + lda2 * 3 + 1], stride_a, gvl); |
|
|
|
|
|
|
|
#if !defined(CONJ) |
|
|
|
#if !defined(XCONJ) |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_rr[0], va0, gvl); |
|
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_ii[0], va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_rr[0], va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_ii[0], va0, gvl); |
|
|
|
|
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_rr[1], va2, gvl); |
|
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_ii[1], va3, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_rr[1], va3, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_ii[1], va2, gvl); |
|
|
|
|
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_rr[2], va4, gvl); |
|
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_ii[2], va5, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_rr[2], va5, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_ii[2], va4, gvl); |
|
|
|
|
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_rr[3], va6, gvl); |
|
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_ii[3], va7, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_rr[3], va7, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_ii[3], va6, gvl); |
|
|
|
|
|
|
|
#else |
|
|
|
|
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_rr[0], va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_ii[0], va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_rr[0], va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_ii[0], va0, gvl); |
|
|
|
|
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_rr[1], va2, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_ii[1], va3, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_rr[1], va3, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_ii[1], va2, gvl); |
|
|
|
|
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_rr[2], va4, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_ii[2], va5, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_rr[2], va5, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_ii[2], va4, gvl); |
|
|
|
|
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_rr[3], va6, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_ii[3], va7, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_rr[3], va7, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_ii[3], va6, gvl); |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
#else |
|
|
|
|
|
|
|
#if !defined(XCONJ) |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_rr[0], va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_ii[0], va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_rr[0], va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_ii[0], va0, gvl); |
|
|
|
|
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_rr[1], va2, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_ii[1], va3, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_rr[1], va3, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_ii[1], va2, gvl); |
|
|
|
|
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_rr[2], va4, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_ii[2], va5, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_rr[2], va5, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_ii[2], va4, gvl); |
|
|
|
|
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_rr[3], va6, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_ii[3], va7, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_rr[3], va7, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_ii[3], va6, gvl); |
|
|
|
|
|
|
|
#else |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_rr[0], va0, gvl); |
|
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_ii[0], va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_rr[0], va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_ii[0], va0, gvl); |
|
|
|
|
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_rr[1], va2, gvl); |
|
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_ii[1], va3, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_rr[1], va3, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_ii[1], va2, gvl); |
|
|
|
|
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_rr[2], va4, gvl); |
|
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_ii[2], va5, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_rr[2], va5, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_ii[2], va4, gvl); |
|
|
|
|
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_rr[3], va6, gvl); |
|
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_ii[3], va7, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_rr[3], va7, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_ii[3], va6, gvl); |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
#endif |
|
|
|
a_ptr += lda2 * 4; |
|
|
|
ix += inc_x2 * 4; |
|
|
|
} |
|
|
|
|
|
|
|
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl); |
|
|
|
VSSEV_FLOAT(&y[iy+1], stride_y, vy1, gvl); |
|
|
|
VSSEV_FLOAT(&y[iy + 1], stride_y, vy1, gvl); |
|
|
|
j += gvl * 2; |
|
|
|
iy += inc_yv; |
|
|
|
} |
|
|
|
//tail |
|
|
|
if(j/2 < m){ |
|
|
|
gvl = VSETVL(m-j/2); |
|
|
|
// tail |
|
|
|
if (j / 2 < m) |
|
|
|
{ |
|
|
|
gvl = VSETVL(m - j / 2); |
|
|
|
a_ptr = a; |
|
|
|
ix = 0; |
|
|
|
vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl); |
|
|
|
vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl); |
|
|
|
for(i = 0; i < n; i++){ |
|
|
|
vy1 = VLSEV_FLOAT(&y[iy + 1], stride_y, gvl); |
|
|
|
for (i = 0; i < n; i++) |
|
|
|
{ |
|
|
|
#if !defined(XCONJ) |
|
|
|
temp_r = alpha_r * x[ix] - alpha_i * x[ix+1]; |
|
|
|
temp_i = alpha_r * x[ix+1] + alpha_i * x[ix]; |
|
|
|
temp_r = alpha_r * x[ix] - alpha_i * x[ix + 1]; |
|
|
|
temp_i = alpha_r * x[ix + 1] + alpha_i * x[ix]; |
|
|
|
#else |
|
|
|
temp_r = alpha_r * x[ix] + alpha_i * x[ix+1]; |
|
|
|
temp_i = alpha_r * x[ix+1] - alpha_i * x[ix]; |
|
|
|
temp_r = alpha_r * x[ix] + alpha_i * x[ix + 1]; |
|
|
|
temp_i = alpha_r * x[ix + 1] - alpha_i * x[ix]; |
|
|
|
#endif |
|
|
|
|
|
|
|
va0 = VLSEV_FLOAT(&a_ptr[j], stride_a, gvl); |
|
|
|
va1 = VLSEV_FLOAT(&a_ptr[j+1], stride_a, gvl); |
|
|
|
va1 = VLSEV_FLOAT(&a_ptr[j + 1], stride_a, gvl); |
|
|
|
#if !defined(CONJ) |
|
|
|
|
|
|
|
#if !defined(XCONJ) |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl); |
|
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_i, va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_r, va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_i, va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl); |
|
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_i, va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_r, va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_i, va0, gvl); |
|
|
|
#else |
|
|
|
|
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_i, va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_r, va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_i, va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_i, va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_r, va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_i, va0, gvl); |
|
|
|
#endif |
|
|
|
|
|
|
|
#else |
|
|
|
|
|
|
|
#if !defined(XCONJ) |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_i, va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_r, va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_i, va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_i, va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_r, va1, gvl); |
|
|
|
vy1 = VFMACCVF_FLOAT(vy1, temp_i, va0, gvl); |
|
|
|
#else |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl); |
|
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_i, va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_r, va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_i, va0, gvl); |
|
|
|
vy0 = VFMACCVF_FLOAT(vy0, temp_r, va0, gvl); |
|
|
|
vy0 = VFNMSACVF_FLOAT(vy0, temp_i, va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_r, va1, gvl); |
|
|
|
vy1 = VFNMSACVF_FLOAT(vy1, temp_i, va0, gvl); |
|
|
|
#endif |
|
|
|
|
|
|
|
#endif |
|
|
@@ -165,9 +313,8 @@ int CNAME(BLASLONG m, BLASLONG n, BLASLONG dummy1, FLOAT alpha_r, FLOAT alpha_i, |
|
|
|
ix += inc_x2; |
|
|
|
} |
|
|
|
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl); |
|
|
|
VSSEV_FLOAT(&y[iy+1], stride_y, vy1, gvl); |
|
|
|
VSSEV_FLOAT(&y[iy + 1], stride_y, vy1, gvl); |
|
|
|
} |
|
|
|
return(0); |
|
|
|
return (0); |
|
|
|
} |
|
|
|
|
|
|
|
|