@@ -81,7 +81,8 @@ C> \verbatim | |||||
C> LWORK is INTEGER | C> LWORK is INTEGER | ||||
C> \endverbatim | C> \endverbatim | ||||
C> \verbatim | C> \verbatim | ||||
C> The dimension of the array WORK. The dimension can be divided into three parts. | |||||
C> The dimension of the array WORK. LWORK >= 1 if MIN(M,N) = 0, | |||||
C> otherwise the dimension can be divided into three parts. | |||||
C> \endverbatim | C> \endverbatim | ||||
C> \verbatim | C> \verbatim | ||||
C> 1) The part for the triangular factor T. If the very last T is not bigger | C> 1) The part for the triangular factor T. If the very last T is not bigger | ||||
@@ -212,7 +213,13 @@ C> | |||||
LLWORK = MAX (MAX((N-M)*K, (N-M)*NB), MAX(K*NB, NB*NB)) | LLWORK = MAX (MAX((N-M)*K, (N-M)*NB), MAX(K*NB, NB*NB)) | ||||
LLWORK = SCEIL(REAL(LLWORK)/REAL(NB)) | LLWORK = SCEIL(REAL(LLWORK)/REAL(NB)) | ||||
IF ( NT.GT.NB ) THEN | |||||
IF( K.EQ.0 ) THEN | |||||
LBWORK = 0 | |||||
LWKOPT = 1 | |||||
WORK( 1 ) = LWKOPT | |||||
ELSE IF ( NT.GT.NB ) THEN | |||||
LBWORK = K-NT | LBWORK = K-NT | ||||
* | * | ||||
@@ -239,8 +246,9 @@ C> | |||||
INFO = -2 | INFO = -2 | ||||
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN | ELSE IF( LDA.LT.MAX( 1, M ) ) THEN | ||||
INFO = -4 | INFO = -4 | ||||
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN | |||||
INFO = -7 | |||||
ELSE IF ( .NOT.LQUERY ) THEN | |||||
IF( LWORK.LE.0 .OR. ( M.GT.0 .AND. LWORK.LT.MAX( 1, N ) ) ) | |||||
$ INFO = -7 | |||||
END IF | END IF | ||||
IF( INFO.NE.0 ) THEN | IF( INFO.NE.0 ) THEN | ||||
CALL XERBLA( 'CGEQRF', -INFO ) | CALL XERBLA( 'CGEQRF', -INFO ) | ||||
@@ -252,7 +260,6 @@ C> | |||||
* Quick return if possible | * Quick return if possible | ||||
* | * | ||||
IF( K.EQ.0 ) THEN | IF( K.EQ.0 ) THEN | ||||
WORK( 1 ) = 1 | |||||
RETURN | RETURN | ||||
END IF | END IF | ||||
* | * | ||||
@@ -81,7 +81,8 @@ C> \verbatim | |||||
C> LWORK is INTEGER | C> LWORK is INTEGER | ||||
C> \endverbatim | C> \endverbatim | ||||
C> \verbatim | C> \verbatim | ||||
C> The dimension of the array WORK. The dimension can be divided into three parts. | |||||
C> The dimension of the array WORK. LWORK >= 1 if MIN(M,N) = 0, | |||||
C> otherwise the dimension can be divided into three parts. | |||||
C> \endverbatim | C> \endverbatim | ||||
C> \verbatim | C> \verbatim | ||||
C> 1) The part for the triangular factor T. If the very last T is not bigger | C> 1) The part for the triangular factor T. If the very last T is not bigger | ||||
@@ -212,7 +213,13 @@ C> | |||||
LLWORK = MAX (MAX((N-M)*K, (N-M)*NB), MAX(K*NB, NB*NB)) | LLWORK = MAX (MAX((N-M)*K, (N-M)*NB), MAX(K*NB, NB*NB)) | ||||
LLWORK = SCEIL(REAL(LLWORK)/REAL(NB)) | LLWORK = SCEIL(REAL(LLWORK)/REAL(NB)) | ||||
IF ( NT.GT.NB ) THEN | |||||
IF( K.EQ.0 ) THEN | |||||
LBWORK = 0 | |||||
LWKOPT = 1 | |||||
WORK( 1 ) = LWKOPT | |||||
ELSE IF ( NT.GT.NB ) THEN | |||||
LBWORK = K-NT | LBWORK = K-NT | ||||
* | * | ||||
@@ -239,8 +246,9 @@ C> | |||||
INFO = -2 | INFO = -2 | ||||
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN | ELSE IF( LDA.LT.MAX( 1, M ) ) THEN | ||||
INFO = -4 | INFO = -4 | ||||
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN | |||||
INFO = -7 | |||||
ELSE IF ( .NOT.LQUERY ) THEN | |||||
IF( LWORK.LE.0 .OR. ( M.GT.0 .AND. LWORK.LT.MAX( 1, N ) ) ) | |||||
$ INFO = -7 | |||||
END IF | END IF | ||||
IF( INFO.NE.0 ) THEN | IF( INFO.NE.0 ) THEN | ||||
CALL XERBLA( 'DGEQRF', -INFO ) | CALL XERBLA( 'DGEQRF', -INFO ) | ||||
@@ -252,7 +260,6 @@ C> | |||||
* Quick return if possible | * Quick return if possible | ||||
* | * | ||||
IF( K.EQ.0 ) THEN | IF( K.EQ.0 ) THEN | ||||
WORK( 1 ) = 1 | |||||
RETURN | RETURN | ||||
END IF | END IF | ||||
* | * | ||||
@@ -81,7 +81,8 @@ C> \verbatim | |||||
C> LWORK is INTEGER | C> LWORK is INTEGER | ||||
C> \endverbatim | C> \endverbatim | ||||
C> \verbatim | C> \verbatim | ||||
C> The dimension of the array WORK. The dimension can be divided into three parts. | |||||
C> The dimension of the array WORK. LWORK >= 1 if MIN(M,N) = 0, | |||||
C> otherwise the dimension can be divided into three parts. | |||||
C> \endverbatim | C> \endverbatim | ||||
C> \verbatim | C> \verbatim | ||||
C> 1) The part for the triangular factor T. If the very last T is not bigger | C> 1) The part for the triangular factor T. If the very last T is not bigger | ||||
@@ -212,7 +213,13 @@ C> | |||||
LLWORK = MAX (MAX((N-M)*K, (N-M)*NB), MAX(K*NB, NB*NB)) | LLWORK = MAX (MAX((N-M)*K, (N-M)*NB), MAX(K*NB, NB*NB)) | ||||
LLWORK = SCEIL(REAL(LLWORK)/REAL(NB)) | LLWORK = SCEIL(REAL(LLWORK)/REAL(NB)) | ||||
IF ( NT.GT.NB ) THEN | |||||
IF( K.EQ.0 ) THEN | |||||
LBWORK = 0 | |||||
LWKOPT = 1 | |||||
WORK( 1 ) = LWKOPT | |||||
ELSE IF ( NT.GT.NB ) THEN | |||||
LBWORK = K-NT | LBWORK = K-NT | ||||
* | * | ||||
@@ -239,8 +246,9 @@ C> | |||||
INFO = -2 | INFO = -2 | ||||
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN | ELSE IF( LDA.LT.MAX( 1, M ) ) THEN | ||||
INFO = -4 | INFO = -4 | ||||
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN | |||||
INFO = -7 | |||||
ELSE IF ( .NOT.LQUERY ) THEN | |||||
IF( LWORK.LE.0 .OR. ( M.GT.0 .AND. LWORK.LT.MAX( 1, N ) ) ) | |||||
$ INFO = -7 | |||||
END IF | END IF | ||||
IF( INFO.NE.0 ) THEN | IF( INFO.NE.0 ) THEN | ||||
CALL XERBLA( 'SGEQRF', -INFO ) | CALL XERBLA( 'SGEQRF', -INFO ) | ||||
@@ -252,7 +260,6 @@ C> | |||||
* Quick return if possible | * Quick return if possible | ||||
* | * | ||||
IF( K.EQ.0 ) THEN | IF( K.EQ.0 ) THEN | ||||
WORK( 1 ) = 1 | |||||
RETURN | RETURN | ||||
END IF | END IF | ||||
* | * | ||||
@@ -81,7 +81,8 @@ C> \verbatim | |||||
C> LWORK is INTEGER | C> LWORK is INTEGER | ||||
C> \endverbatim | C> \endverbatim | ||||
C> \verbatim | C> \verbatim | ||||
C> The dimension of the array WORK. The dimension can be divided into three parts. | |||||
C> The dimension of the array WORK. LWORK >= 1 if MIN(M,N) = 0, | |||||
C> otherwise the dimension can be divided into three parts. | |||||
C> \endverbatim | C> \endverbatim | ||||
C> \verbatim | C> \verbatim | ||||
C> 1) The part for the triangular factor T. If the very last T is not bigger | C> 1) The part for the triangular factor T. If the very last T is not bigger | ||||
@@ -212,7 +213,13 @@ C> | |||||
LLWORK = MAX (MAX((N-M)*K, (N-M)*NB), MAX(K*NB, NB*NB)) | LLWORK = MAX (MAX((N-M)*K, (N-M)*NB), MAX(K*NB, NB*NB)) | ||||
LLWORK = SCEIL(REAL(LLWORK)/REAL(NB)) | LLWORK = SCEIL(REAL(LLWORK)/REAL(NB)) | ||||
IF ( NT.GT.NB ) THEN | |||||
IF( K.EQ.0 ) THEN | |||||
LBWORK = 0 | |||||
LWKOPT = 1 | |||||
WORK( 1 ) = LWKOPT | |||||
ELSE IF ( NT.GT.NB ) THEN | |||||
LBWORK = K-NT | LBWORK = K-NT | ||||
* | * | ||||
@@ -239,8 +246,9 @@ C> | |||||
INFO = -2 | INFO = -2 | ||||
ELSE IF( LDA.LT.MAX( 1, M ) ) THEN | ELSE IF( LDA.LT.MAX( 1, M ) ) THEN | ||||
INFO = -4 | INFO = -4 | ||||
ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN | |||||
INFO = -7 | |||||
ELSE IF ( .NOT.LQUERY ) THEN | |||||
IF( LWORK.LE.0 .OR. ( M.GT.0 .AND. LWORK.LT.MAX( 1, N ) ) ) | |||||
$ INFO = -7 | |||||
END IF | END IF | ||||
IF( INFO.NE.0 ) THEN | IF( INFO.NE.0 ) THEN | ||||
CALL XERBLA( 'ZGEQRF', -INFO ) | CALL XERBLA( 'ZGEQRF', -INFO ) | ||||
@@ -252,7 +260,6 @@ C> | |||||
* Quick return if possible | * Quick return if possible | ||||
* | * | ||||
IF( K.EQ.0 ) THEN | IF( K.EQ.0 ) THEN | ||||
WORK( 1 ) = 1 | |||||
RETURN | RETURN | ||||
END IF | END IF | ||||
* | * | ||||