|
|
@@ -1,599 +0,0 @@ |
|
|
|
*> \brief <b> DGESVX computes the solution to system of linear equations A * X = B for GE matrices</b> |
|
|
|
* |
|
|
|
* =========== DOCUMENTATION =========== |
|
|
|
* |
|
|
|
* Online html documentation available at |
|
|
|
* http://www.netlib.org/lapack/explore-html/ |
|
|
|
* |
|
|
|
*> \htmlonly |
|
|
|
*> Download DGESVX + dependencies |
|
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgesvx.f"> |
|
|
|
*> [TGZ]</a> |
|
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgesvx.f"> |
|
|
|
*> [ZIP]</a> |
|
|
|
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgesvx.f"> |
|
|
|
*> [TXT]</a> |
|
|
|
*> \endhtmlonly |
|
|
|
* |
|
|
|
* Definition: |
|
|
|
* =========== |
|
|
|
* |
|
|
|
* SUBROUTINE DGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, |
|
|
|
* EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, |
|
|
|
* WORK, IWORK, INFO ) |
|
|
|
* |
|
|
|
* .. Scalar Arguments .. |
|
|
|
* CHARACTER EQUED, FACT, TRANS |
|
|
|
* INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS |
|
|
|
* DOUBLE PRECISION RCOND |
|
|
|
* .. |
|
|
|
* .. Array Arguments .. |
|
|
|
* INTEGER IPIV( * ), IWORK( * ) |
|
|
|
* DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ), |
|
|
|
* $ BERR( * ), C( * ), FERR( * ), R( * ), |
|
|
|
* $ WORK( * ), X( LDX, * ) |
|
|
|
* .. |
|
|
|
* |
|
|
|
* |
|
|
|
*> \par Purpose: |
|
|
|
* ============= |
|
|
|
*> |
|
|
|
*> \verbatim |
|
|
|
*> |
|
|
|
*> DGESVX uses the LU factorization to compute the solution to a real |
|
|
|
*> system of linear equations |
|
|
|
*> A * X = B, |
|
|
|
*> where A is an N-by-N matrix and X and B are N-by-NRHS matrices. |
|
|
|
*> |
|
|
|
*> Error bounds on the solution and a condition estimate are also |
|
|
|
*> provided. |
|
|
|
*> \endverbatim |
|
|
|
* |
|
|
|
*> \par Description: |
|
|
|
* ================= |
|
|
|
*> |
|
|
|
*> \verbatim |
|
|
|
*> |
|
|
|
*> The following steps are performed: |
|
|
|
*> |
|
|
|
*> 1. If FACT = 'E', real scaling factors are computed to equilibrate |
|
|
|
*> the system: |
|
|
|
*> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B |
|
|
|
*> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B |
|
|
|
*> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B |
|
|
|
*> Whether or not the system will be equilibrated depends on the |
|
|
|
*> scaling of the matrix A, but if equilibration is used, A is |
|
|
|
*> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') |
|
|
|
*> or diag(C)*B (if TRANS = 'T' or 'C'). |
|
|
|
*> |
|
|
|
*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the |
|
|
|
*> matrix A (after equilibration if FACT = 'E') as |
|
|
|
*> A = P * L * U, |
|
|
|
*> where P is a permutation matrix, L is a unit lower triangular |
|
|
|
*> matrix, and U is upper triangular. |
|
|
|
*> |
|
|
|
*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine |
|
|
|
*> returns with INFO = i. Otherwise, the factored form of A is used |
|
|
|
*> to estimate the condition number of the matrix A. If the |
|
|
|
*> reciprocal of the condition number is less than machine precision, |
|
|
|
*> INFO = N+1 is returned as a warning, but the routine still goes on |
|
|
|
*> to solve for X and compute error bounds as described below. |
|
|
|
*> |
|
|
|
*> 4. The system of equations is solved for X using the factored form |
|
|
|
*> of A. |
|
|
|
*> |
|
|
|
*> 5. Iterative refinement is applied to improve the computed solution |
|
|
|
*> matrix and calculate error bounds and backward error estimates |
|
|
|
*> for it. |
|
|
|
*> |
|
|
|
*> 6. If equilibration was used, the matrix X is premultiplied by |
|
|
|
*> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so |
|
|
|
*> that it solves the original system before equilibration. |
|
|
|
*> \endverbatim |
|
|
|
* |
|
|
|
* Arguments: |
|
|
|
* ========== |
|
|
|
* |
|
|
|
*> \param[in] FACT |
|
|
|
*> \verbatim |
|
|
|
*> FACT is CHARACTER*1 |
|
|
|
*> Specifies whether or not the factored form of the matrix A is |
|
|
|
*> supplied on entry, and if not, whether the matrix A should be |
|
|
|
*> equilibrated before it is factored. |
|
|
|
*> = 'F': On entry, AF and IPIV contain the factored form of A. |
|
|
|
*> If EQUED is not 'N', the matrix A has been |
|
|
|
*> equilibrated with scaling factors given by R and C. |
|
|
|
*> A, AF, and IPIV are not modified. |
|
|
|
*> = 'N': The matrix A will be copied to AF and factored. |
|
|
|
*> = 'E': The matrix A will be equilibrated if necessary, then |
|
|
|
*> copied to AF and factored. |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[in] TRANS |
|
|
|
*> \verbatim |
|
|
|
*> TRANS is CHARACTER*1 |
|
|
|
*> Specifies the form of the system of equations: |
|
|
|
*> = 'N': A * X = B (No transpose) |
|
|
|
*> = 'T': A**T * X = B (Transpose) |
|
|
|
*> = 'C': A**H * X = B (Transpose) |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[in] N |
|
|
|
*> \verbatim |
|
|
|
*> N is INTEGER |
|
|
|
*> The number of linear equations, i.e., the order of the |
|
|
|
*> matrix A. N >= 0. |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[in] NRHS |
|
|
|
*> \verbatim |
|
|
|
*> NRHS is INTEGER |
|
|
|
*> The number of right hand sides, i.e., the number of columns |
|
|
|
*> of the matrices B and X. NRHS >= 0. |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[in,out] A |
|
|
|
*> \verbatim |
|
|
|
*> A is DOUBLE PRECISION array, dimension (LDA,N) |
|
|
|
*> On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is |
|
|
|
*> not 'N', then A must have been equilibrated by the scaling |
|
|
|
*> factors in R and/or C. A is not modified if FACT = 'F' or |
|
|
|
*> 'N', or if FACT = 'E' and EQUED = 'N' on exit. |
|
|
|
*> |
|
|
|
*> On exit, if EQUED .ne. 'N', A is scaled as follows: |
|
|
|
*> EQUED = 'R': A := diag(R) * A |
|
|
|
*> EQUED = 'C': A := A * diag(C) |
|
|
|
*> EQUED = 'B': A := diag(R) * A * diag(C). |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[in] LDA |
|
|
|
*> \verbatim |
|
|
|
*> LDA is INTEGER |
|
|
|
*> The leading dimension of the array A. LDA >= max(1,N). |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[in,out] AF |
|
|
|
*> \verbatim |
|
|
|
*> AF is DOUBLE PRECISION array, dimension (LDAF,N) |
|
|
|
*> If FACT = 'F', then AF is an input argument and on entry |
|
|
|
*> contains the factors L and U from the factorization |
|
|
|
*> A = P*L*U as computed by DGETRF. If EQUED .ne. 'N', then |
|
|
|
*> AF is the factored form of the equilibrated matrix A. |
|
|
|
*> |
|
|
|
*> If FACT = 'N', then AF is an output argument and on exit |
|
|
|
*> returns the factors L and U from the factorization A = P*L*U |
|
|
|
*> of the original matrix A. |
|
|
|
*> |
|
|
|
*> If FACT = 'E', then AF is an output argument and on exit |
|
|
|
*> returns the factors L and U from the factorization A = P*L*U |
|
|
|
*> of the equilibrated matrix A (see the description of A for |
|
|
|
*> the form of the equilibrated matrix). |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[in] LDAF |
|
|
|
*> \verbatim |
|
|
|
*> LDAF is INTEGER |
|
|
|
*> The leading dimension of the array AF. LDAF >= max(1,N). |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[in,out] IPIV |
|
|
|
*> \verbatim |
|
|
|
*> IPIV is INTEGER array, dimension (N) |
|
|
|
*> If FACT = 'F', then IPIV is an input argument and on entry |
|
|
|
*> contains the pivot indices from the factorization A = P*L*U |
|
|
|
*> as computed by DGETRF; row i of the matrix was interchanged |
|
|
|
*> with row IPIV(i). |
|
|
|
*> |
|
|
|
*> If FACT = 'N', then IPIV is an output argument and on exit |
|
|
|
*> contains the pivot indices from the factorization A = P*L*U |
|
|
|
*> of the original matrix A. |
|
|
|
*> |
|
|
|
*> If FACT = 'E', then IPIV is an output argument and on exit |
|
|
|
*> contains the pivot indices from the factorization A = P*L*U |
|
|
|
*> of the equilibrated matrix A. |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[in,out] EQUED |
|
|
|
*> \verbatim |
|
|
|
*> EQUED is CHARACTER*1 |
|
|
|
*> Specifies the form of equilibration that was done. |
|
|
|
*> = 'N': No equilibration (always true if FACT = 'N'). |
|
|
|
*> = 'R': Row equilibration, i.e., A has been premultiplied by |
|
|
|
*> diag(R). |
|
|
|
*> = 'C': Column equilibration, i.e., A has been postmultiplied |
|
|
|
*> by diag(C). |
|
|
|
*> = 'B': Both row and column equilibration, i.e., A has been |
|
|
|
*> replaced by diag(R) * A * diag(C). |
|
|
|
*> EQUED is an input argument if FACT = 'F'; otherwise, it is an |
|
|
|
*> output argument. |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[in,out] R |
|
|
|
*> \verbatim |
|
|
|
*> R is DOUBLE PRECISION array, dimension (N) |
|
|
|
*> The row scale factors for A. If EQUED = 'R' or 'B', A is |
|
|
|
*> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R |
|
|
|
*> is not accessed. R is an input argument if FACT = 'F'; |
|
|
|
*> otherwise, R is an output argument. If FACT = 'F' and |
|
|
|
*> EQUED = 'R' or 'B', each element of R must be positive. |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[in,out] C |
|
|
|
*> \verbatim |
|
|
|
*> C is DOUBLE PRECISION array, dimension (N) |
|
|
|
*> The column scale factors for A. If EQUED = 'C' or 'B', A is |
|
|
|
*> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C |
|
|
|
*> is not accessed. C is an input argument if FACT = 'F'; |
|
|
|
*> otherwise, C is an output argument. If FACT = 'F' and |
|
|
|
*> EQUED = 'C' or 'B', each element of C must be positive. |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[in,out] B |
|
|
|
*> \verbatim |
|
|
|
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS) |
|
|
|
*> On entry, the N-by-NRHS right hand side matrix B. |
|
|
|
*> On exit, |
|
|
|
*> if EQUED = 'N', B is not modified; |
|
|
|
*> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by |
|
|
|
*> diag(R)*B; |
|
|
|
*> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is |
|
|
|
*> overwritten by diag(C)*B. |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[in] LDB |
|
|
|
*> \verbatim |
|
|
|
*> LDB is INTEGER |
|
|
|
*> The leading dimension of the array B. LDB >= max(1,N). |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[out] X |
|
|
|
*> \verbatim |
|
|
|
*> X is DOUBLE PRECISION array, dimension (LDX,NRHS) |
|
|
|
*> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X |
|
|
|
*> to the original system of equations. Note that A and B are |
|
|
|
*> modified on exit if EQUED .ne. 'N', and the solution to the |
|
|
|
*> equilibrated system is inv(diag(C))*X if TRANS = 'N' and |
|
|
|
*> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' |
|
|
|
*> and EQUED = 'R' or 'B'. |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[in] LDX |
|
|
|
*> \verbatim |
|
|
|
*> LDX is INTEGER |
|
|
|
*> The leading dimension of the array X. LDX >= max(1,N). |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[out] RCOND |
|
|
|
*> \verbatim |
|
|
|
*> RCOND is DOUBLE PRECISION |
|
|
|
*> The estimate of the reciprocal condition number of the matrix |
|
|
|
*> A after equilibration (if done). If RCOND is less than the |
|
|
|
*> machine precision (in particular, if RCOND = 0), the matrix |
|
|
|
*> is singular to working precision. This condition is |
|
|
|
*> indicated by a return code of INFO > 0. |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[out] FERR |
|
|
|
*> \verbatim |
|
|
|
*> FERR is DOUBLE PRECISION array, dimension (NRHS) |
|
|
|
*> The estimated forward error bound for each solution vector |
|
|
|
*> X(j) (the j-th column of the solution matrix X). |
|
|
|
*> If XTRUE is the true solution corresponding to X(j), FERR(j) |
|
|
|
*> is an estimated upper bound for the magnitude of the largest |
|
|
|
*> element in (X(j) - XTRUE) divided by the magnitude of the |
|
|
|
*> largest element in X(j). The estimate is as reliable as |
|
|
|
*> the estimate for RCOND, and is almost always a slight |
|
|
|
*> overestimate of the true error. |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[out] BERR |
|
|
|
*> \verbatim |
|
|
|
*> BERR is DOUBLE PRECISION array, dimension (NRHS) |
|
|
|
*> The componentwise relative backward error of each solution |
|
|
|
*> vector X(j) (i.e., the smallest relative change in |
|
|
|
*> any element of A or B that makes X(j) an exact solution). |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[out] WORK |
|
|
|
*> \verbatim |
|
|
|
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,4*N)) |
|
|
|
*> On exit, WORK(1) contains the reciprocal pivot growth |
|
|
|
*> factor norm(A)/norm(U). The "max absolute element" norm is |
|
|
|
*> used. If WORK(1) is much less than 1, then the stability |
|
|
|
*> of the LU factorization of the (equilibrated) matrix A |
|
|
|
*> could be poor. This also means that the solution X, condition |
|
|
|
*> estimator RCOND, and forward error bound FERR could be |
|
|
|
*> unreliable. If factorization fails with 0<INFO<=N, then |
|
|
|
*> WORK(1) contains the reciprocal pivot growth factor for the |
|
|
|
*> leading INFO columns of A. |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[out] IWORK |
|
|
|
*> \verbatim |
|
|
|
*> IWORK is INTEGER array, dimension (N) |
|
|
|
*> \endverbatim |
|
|
|
*> |
|
|
|
*> \param[out] INFO |
|
|
|
*> \verbatim |
|
|
|
*> INFO is INTEGER |
|
|
|
*> = 0: successful exit |
|
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value |
|
|
|
*> > 0: if INFO = i, and i is |
|
|
|
*> <= N: U(i,i) is exactly zero. The factorization has |
|
|
|
*> been completed, but the factor U is exactly |
|
|
|
*> singular, so the solution and error bounds |
|
|
|
*> could not be computed. RCOND = 0 is returned. |
|
|
|
*> = N+1: U is nonsingular, but RCOND is less than machine |
|
|
|
*> precision, meaning that the matrix is singular |
|
|
|
*> to working precision. Nevertheless, the |
|
|
|
*> solution and error bounds are computed because |
|
|
|
*> there are a number of situations where the |
|
|
|
*> computed solution can be more accurate than the |
|
|
|
*> value of RCOND would suggest. |
|
|
|
*> \endverbatim |
|
|
|
* |
|
|
|
* Authors: |
|
|
|
* ======== |
|
|
|
* |
|
|
|
*> \author Univ. of Tennessee |
|
|
|
*> \author Univ. of California Berkeley |
|
|
|
*> \author Univ. of Colorado Denver |
|
|
|
*> \author NAG Ltd. |
|
|
|
* |
|
|
|
*> \ingroup doubleGEsolve |
|
|
|
* |
|
|
|
* ===================================================================== |
|
|
|
SUBROUTINE DGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, |
|
|
|
$ EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, |
|
|
|
$ WORK, IWORK, INFO ) |
|
|
|
* |
|
|
|
* -- LAPACK driver routine -- |
|
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, -- |
|
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- |
|
|
|
* |
|
|
|
* .. Scalar Arguments .. |
|
|
|
CHARACTER EQUED, FACT, TRANS |
|
|
|
INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS |
|
|
|
DOUBLE PRECISION RCOND |
|
|
|
* .. |
|
|
|
* .. Array Arguments .. |
|
|
|
INTEGER IPIV( * ), IWORK( * ) |
|
|
|
DOUBLE PRECISION A( LDA, * ), AF( LDAF, * ), B( LDB, * ), |
|
|
|
$ BERR( * ), C( * ), FERR( * ), R( * ), |
|
|
|
$ WORK( * ), X( LDX, * ) |
|
|
|
* .. |
|
|
|
* |
|
|
|
* ===================================================================== |
|
|
|
* |
|
|
|
* .. Parameters .. |
|
|
|
DOUBLE PRECISION ZERO, ONE |
|
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 ) |
|
|
|
* .. |
|
|
|
* .. Local Scalars .. |
|
|
|
LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU |
|
|
|
CHARACTER NORM |
|
|
|
INTEGER I, INFEQU, J |
|
|
|
DOUBLE PRECISION AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN, |
|
|
|
$ ROWCND, RPVGRW, SMLNUM |
|
|
|
* .. |
|
|
|
* .. External Functions .. |
|
|
|
LOGICAL LSAME |
|
|
|
DOUBLE PRECISION DLAMCH, DLANGE, DLANTR |
|
|
|
EXTERNAL LSAME, DLAMCH, DLANGE, DLANTR |
|
|
|
* .. |
|
|
|
* .. External Subroutines .. |
|
|
|
EXTERNAL DGECON, DGEEQU, DGERFS, DGETRF, DGETRS, DLACPY, |
|
|
|
$ DLAQGE, XERBLA |
|
|
|
* .. |
|
|
|
* .. Intrinsic Functions .. |
|
|
|
INTRINSIC MAX, MIN |
|
|
|
* .. |
|
|
|
* .. Executable Statements .. |
|
|
|
* |
|
|
|
INFO = 0 |
|
|
|
NOFACT = LSAME( FACT, 'N' ) |
|
|
|
EQUIL = LSAME( FACT, 'E' ) |
|
|
|
NOTRAN = LSAME( TRANS, 'N' ) |
|
|
|
IF( NOFACT .OR. EQUIL ) THEN |
|
|
|
EQUED = 'N' |
|
|
|
ROWEQU = .FALSE. |
|
|
|
COLEQU = .FALSE. |
|
|
|
ELSE |
|
|
|
ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) |
|
|
|
COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) |
|
|
|
SMLNUM = DLAMCH( 'Safe minimum' ) |
|
|
|
BIGNUM = ONE / SMLNUM |
|
|
|
END IF |
|
|
|
* |
|
|
|
* Test the input parameters. |
|
|
|
* |
|
|
|
IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) ) |
|
|
|
$ THEN |
|
|
|
INFO = -1 |
|
|
|
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT. |
|
|
|
$ LSAME( TRANS, 'C' ) ) THEN |
|
|
|
INFO = -2 |
|
|
|
ELSE IF( N.LT.0 ) THEN |
|
|
|
INFO = -3 |
|
|
|
ELSE IF( NRHS.LT.0 ) THEN |
|
|
|
INFO = -4 |
|
|
|
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN |
|
|
|
INFO = -6 |
|
|
|
ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN |
|
|
|
INFO = -8 |
|
|
|
ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT. |
|
|
|
$ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN |
|
|
|
INFO = -10 |
|
|
|
ELSE |
|
|
|
IF( ROWEQU ) THEN |
|
|
|
RCMIN = BIGNUM |
|
|
|
RCMAX = ZERO |
|
|
|
DO 10 J = 1, N |
|
|
|
RCMIN = MIN( RCMIN, R( J ) ) |
|
|
|
RCMAX = MAX( RCMAX, R( J ) ) |
|
|
|
10 CONTINUE |
|
|
|
IF( RCMIN.LE.ZERO ) THEN |
|
|
|
INFO = -11 |
|
|
|
ELSE IF( N.GT.0 ) THEN |
|
|
|
ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) |
|
|
|
ELSE |
|
|
|
ROWCND = ONE |
|
|
|
END IF |
|
|
|
END IF |
|
|
|
IF( COLEQU .AND. INFO.EQ.0 ) THEN |
|
|
|
RCMIN = BIGNUM |
|
|
|
RCMAX = ZERO |
|
|
|
DO 20 J = 1, N |
|
|
|
RCMIN = MIN( RCMIN, C( J ) ) |
|
|
|
RCMAX = MAX( RCMAX, C( J ) ) |
|
|
|
20 CONTINUE |
|
|
|
IF( RCMIN.LE.ZERO ) THEN |
|
|
|
INFO = -12 |
|
|
|
ELSE IF( N.GT.0 ) THEN |
|
|
|
COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) |
|
|
|
ELSE |
|
|
|
COLCND = ONE |
|
|
|
END IF |
|
|
|
END IF |
|
|
|
IF( INFO.EQ.0 ) THEN |
|
|
|
IF( LDB.LT.MAX( 1, N ) ) THEN |
|
|
|
INFO = -14 |
|
|
|
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN |
|
|
|
INFO = -16 |
|
|
|
END IF |
|
|
|
END IF |
|
|
|
END IF |
|
|
|
* |
|
|
|
IF( INFO.NE.0 ) THEN |
|
|
|
CALL XERBLA( 'DGESVX', -INFO ) |
|
|
|
RETURN |
|
|
|
END IF |
|
|
|
* |
|
|
|
IF( EQUIL ) THEN |
|
|
|
* |
|
|
|
* Compute row and column scalings to equilibrate the matrix A. |
|
|
|
* |
|
|
|
CALL DGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU ) |
|
|
|
IF( INFEQU.EQ.0 ) THEN |
|
|
|
* |
|
|
|
* Equilibrate the matrix. |
|
|
|
* |
|
|
|
CALL DLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, |
|
|
|
$ EQUED ) |
|
|
|
ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) |
|
|
|
COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) |
|
|
|
END IF |
|
|
|
END IF |
|
|
|
* |
|
|
|
* Scale the right hand side. |
|
|
|
* |
|
|
|
IF( NOTRAN ) THEN |
|
|
|
IF( ROWEQU ) THEN |
|
|
|
DO 40 J = 1, NRHS |
|
|
|
DO 30 I = 1, N |
|
|
|
B( I, J ) = R( I )*B( I, J ) |
|
|
|
30 CONTINUE |
|
|
|
40 CONTINUE |
|
|
|
END IF |
|
|
|
ELSE IF( COLEQU ) THEN |
|
|
|
DO 60 J = 1, NRHS |
|
|
|
DO 50 I = 1, N |
|
|
|
B( I, J ) = C( I )*B( I, J ) |
|
|
|
50 CONTINUE |
|
|
|
60 CONTINUE |
|
|
|
END IF |
|
|
|
* |
|
|
|
IF( NOFACT .OR. EQUIL ) THEN |
|
|
|
* |
|
|
|
* Compute the LU factorization of A. |
|
|
|
* |
|
|
|
CALL DLACPY( 'Full', N, N, A, LDA, AF, LDAF ) |
|
|
|
CALL DGETRF( N, N, AF, LDAF, IPIV, INFO ) |
|
|
|
* |
|
|
|
* Return if INFO is non-zero. |
|
|
|
* |
|
|
|
IF( INFO.GT.0 ) THEN |
|
|
|
* |
|
|
|
* Compute the reciprocal pivot growth factor of the |
|
|
|
* leading rank-deficient INFO columns of A. |
|
|
|
* |
|
|
|
RPVGRW = DLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF, |
|
|
|
$ WORK ) |
|
|
|
IF( RPVGRW.EQ.ZERO ) THEN |
|
|
|
RPVGRW = ONE |
|
|
|
ELSE |
|
|
|
RPVGRW = DLANGE( 'M', N, INFO, A, LDA, WORK ) / RPVGRW |
|
|
|
END IF |
|
|
|
WORK( 1 ) = RPVGRW |
|
|
|
RCOND = ZERO |
|
|
|
RETURN |
|
|
|
END IF |
|
|
|
END IF |
|
|
|
* |
|
|
|
* Compute the norm of the matrix A and the |
|
|
|
* reciprocal pivot growth factor RPVGRW. |
|
|
|
* |
|
|
|
IF( NOTRAN ) THEN |
|
|
|
NORM = '1' |
|
|
|
ELSE |
|
|
|
NORM = 'I' |
|
|
|
END IF |
|
|
|
ANORM = DLANGE( NORM, N, N, A, LDA, WORK ) |
|
|
|
RPVGRW = DLANTR( 'M', 'U', 'N', N, N, AF, LDAF, WORK ) |
|
|
|
IF( RPVGRW.EQ.ZERO ) THEN |
|
|
|
RPVGRW = ONE |
|
|
|
ELSE |
|
|
|
RPVGRW = DLANGE( 'M', N, N, A, LDA, WORK ) / RPVGRW |
|
|
|
END IF |
|
|
|
* |
|
|
|
* Compute the reciprocal of the condition number of A. |
|
|
|
* |
|
|
|
CALL DGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, IWORK, INFO ) |
|
|
|
* |
|
|
|
* Compute the solution matrix X. |
|
|
|
* |
|
|
|
CALL DLACPY( 'Full', N, NRHS, B, LDB, X, LDX ) |
|
|
|
CALL DGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO ) |
|
|
|
* |
|
|
|
* Use iterative refinement to improve the computed solution and |
|
|
|
* compute error bounds and backward error estimates for it. |
|
|
|
* |
|
|
|
CALL DGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, |
|
|
|
$ LDX, FERR, BERR, WORK, IWORK, INFO ) |
|
|
|
* |
|
|
|
* Transform the solution matrix X to a solution of the original |
|
|
|
* system. |
|
|
|
* |
|
|
|
IF( NOTRAN ) THEN |
|
|
|
IF( COLEQU ) THEN |
|
|
|
DO 80 J = 1, NRHS |
|
|
|
DO 70 I = 1, N |
|
|
|
X( I, J ) = C( I )*X( I, J ) |
|
|
|
70 CONTINUE |
|
|
|
80 CONTINUE |
|
|
|
DO 90 J = 1, NRHS |
|
|
|
FERR( J ) = FERR( J ) / COLCND |
|
|
|
90 CONTINUE |
|
|
|
END IF |
|
|
|
ELSE IF( ROWEQU ) THEN |
|
|
|
DO 110 J = 1, NRHS |
|
|
|
DO 100 I = 1, N |
|
|
|
X( I, J ) = R( I )*X( I, J ) |
|
|
|
100 CONTINUE |
|
|
|
110 CONTINUE |
|
|
|
DO 120 J = 1, NRHS |
|
|
|
FERR( J ) = FERR( J ) / ROWCND |
|
|
|
120 CONTINUE |
|
|
|
END IF |
|
|
|
* |
|
|
|
WORK( 1 ) = RPVGRW |
|
|
|
* |
|
|
|
* Set INFO = N+1 if the matrix is singular to working precision. |
|
|
|
* |
|
|
|
IF( RCOND.LT.DLAMCH( 'Epsilon' ) ) |
|
|
|
$ INFO = N + 1 |
|
|
|
RETURN |
|
|
|
* |
|
|
|
* End of DGESVX |
|
|
|
* |
|
|
|
END |