| @@ -97,21 +97,21 @@ typedef struct { | |||
| #ifndef BETA_OPERATION | |||
| #ifndef COMPLEX | |||
| #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \ | |||
| GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \ | |||
| BETA[0], NULL, 0, NULL, 0, \ | |||
| (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC) | |||
| #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \ | |||
| GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \ | |||
| BETA[0], NULL, 0, NULL, 0, \ | |||
| (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC) | |||
| #else | |||
| #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \ | |||
| GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \ | |||
| BETA[0], BETA[1], NULL, 0, NULL, 0, \ | |||
| (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC) | |||
| #define BETA_OPERATION(M_FROM, M_TO, N_FROM, N_TO, BETA, C, LDC) \ | |||
| GEMM_BETA((M_TO) - (M_FROM), (N_TO - N_FROM), 0, \ | |||
| BETA[0], BETA[1], NULL, 0, NULL, 0, \ | |||
| (FLOAT *)(C) + ((M_FROM) + (N_FROM) * (LDC)) * COMPSIZE, LDC) | |||
| #endif | |||
| #endif | |||
| #ifndef ICOPY_OPERATION | |||
| #if defined(NN) || defined(NT) || defined(NC) || defined(NR) || \ | |||
| defined(RN) || defined(RT) || defined(RC) || defined(RR) | |||
| defined(RN) || defined(RT) || defined(RC) || defined(RR) | |||
| #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER); | |||
| #else | |||
| #define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER); | |||
| @@ -120,7 +120,7 @@ typedef struct { | |||
| #ifndef OCOPY_OPERATION | |||
| #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \ | |||
| defined(NR) || defined(TR) || defined(CR) || defined(RR) | |||
| defined(NR) || defined(TR) || defined(CR) || defined(RR) | |||
| #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER); | |||
| #else | |||
| #define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER); | |||
| @@ -144,36 +144,36 @@ typedef struct { | |||
| #ifndef KERNEL_OPERATION | |||
| #ifndef COMPLEX | |||
| #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \ | |||
| KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC) | |||
| #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \ | |||
| KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC) | |||
| #else | |||
| #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \ | |||
| KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC) | |||
| #define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \ | |||
| KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC) | |||
| #endif | |||
| #endif | |||
| #ifndef FUSED_KERNEL_OPERATION | |||
| #if defined(NN) || defined(TN) || defined(CN) || defined(RN) || \ | |||
| defined(NR) || defined(TR) || defined(CR) || defined(RR) | |||
| defined(NR) || defined(TR) || defined(CR) || defined(RR) | |||
| #ifndef COMPLEX | |||
| #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \ | |||
| FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], SA, SB, \ | |||
| (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC) | |||
| FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], SA, SB, \ | |||
| (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC) | |||
| #else | |||
| #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \ | |||
| FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \ | |||
| (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC) | |||
| FUSED_GEMM_KERNEL_N(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \ | |||
| (FLOAT *)(B) + ((L) + (J) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC) | |||
| #endif | |||
| #else | |||
| #ifndef COMPLEX | |||
| #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \ | |||
| FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], SA, SB, \ | |||
| (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC) | |||
| FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], SA, SB, \ | |||
| (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC) | |||
| #else | |||
| #define FUSED_KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, B, LDB, C, LDC, I, J, L) \ | |||
| FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \ | |||
| (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC) | |||
| FUSED_GEMM_KERNEL_T(M, N, K, ALPHA[0], ALPHA[1], SA, SB, \ | |||
| (FLOAT *)(B) + ((J) + (L) * LDB) * COMPSIZE, LDB, (FLOAT *)(C) + ((I) + (J) * LDC) * COMPSIZE, LDC) | |||
| #endif | |||
| #endif | |||
| #endif | |||
| @@ -224,12 +224,12 @@ static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, | |||
| FLOAT *alpha, *beta; | |||
| FLOAT *a, *b, *c; | |||
| job_t *job = (job_t *)args -> common; | |||
| BLASLONG nthreads_m; | |||
| BLASLONG xxx, bufferside; | |||
| BLASLONG mypos_m, mypos_n; | |||
| BLASLONG ls, min_l, jjs, min_jj; | |||
| BLASLONG is, min_i, div_n; | |||
| BLASLONG is, js, ls, bufferside, jjs; | |||
| BLASLONG min_i, min_l, div_n, min_jj; | |||
| BLASLONG i, current; | |||
| BLASLONG l1stride; | |||
| @@ -261,30 +261,29 @@ static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, | |||
| alpha = (FLOAT *)args -> alpha; | |||
| beta = (FLOAT *)args -> beta; | |||
| /* Initialize 2D CPU distribution */ | |||
| nthreads_m = args -> nthreads; | |||
| if (range_m) { | |||
| nthreads_m = range_m[-1]; | |||
| } | |||
| mypos_n = blas_quickdivide(mypos, nthreads_m); /* mypos_n = mypos / nthreads_m */ | |||
| mypos_m = mypos - mypos_n * nthreads_m; /* mypos_m = mypos % nthreads_m */ | |||
| mypos_m = mypos % nthreads_m; | |||
| mypos_n = mypos / nthreads_m; | |||
| /* Initialize m and n */ | |||
| m_from = 0; | |||
| m_to = M; | |||
| if (range_m) { | |||
| m_from = range_m[mypos_m + 0]; | |||
| m_to = range_m[mypos_m + 1]; | |||
| } | |||
| n_from = 0; | |||
| n_to = N; | |||
| if (range_n) { | |||
| n_from = range_n[mypos + 0]; | |||
| n_to = range_n[mypos + 1]; | |||
| } | |||
| /* Multiply C by beta if needed */ | |||
| if (beta) { | |||
| #ifndef COMPLEX | |||
| if (beta[0] != ONE) | |||
| @@ -294,43 +293,37 @@ static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, | |||
| BETA_OPERATION(m_from, m_to, range_n[mypos_n * nthreads_m], range_n[(mypos_n + 1) * nthreads_m], beta, c, ldc); | |||
| } | |||
| /* Return early if no more computation is needed */ | |||
| if ((k == 0) || (alpha == NULL)) return 0; | |||
| if ((alpha[0] == ZERO) | |||
| #ifdef COMPLEX | |||
| && (alpha[1] == ZERO) | |||
| #endif | |||
| ) return 0; | |||
| #if 0 | |||
| fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld n_from : %ld n_to : %ld\n", | |||
| mypos, m_from, m_to, n_from, n_to); | |||
| fprintf(stderr, "GEMM: P = %4ld Q = %4ld R = %4ld\n", (BLASLONG)GEMM_P, (BLASLONG)GEMM_Q, (BLASLONG)GEMM_R); | |||
| #endif | |||
| /* Initialize workspace for local region of B */ | |||
| div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE; | |||
| buffer[0] = sb; | |||
| for (i = 1; i < DIVIDE_RATE; i++) { | |||
| buffer[i] = buffer[i - 1] + GEMM_Q * ((div_n + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N * COMPSIZE; | |||
| } | |||
| /* Iterate through steps of k */ | |||
| for(ls = 0; ls < k; ls += min_l){ | |||
| /* Determine step size in k */ | |||
| min_l = k - ls; | |||
| if (min_l >= GEMM_Q * 2) { | |||
| min_l = GEMM_Q; | |||
| } else { | |||
| if (min_l > GEMM_Q) min_l = (min_l + 1) / 2; | |||
| } | |||
| /* Determine step size in m | |||
| * Note: We are currently on the first step in m | |||
| */ | |||
| l1stride = 1; | |||
| min_i = m_to - m_from; | |||
| if (min_i >= GEMM_P * 2) { | |||
| min_i = GEMM_P; | |||
| } else { | |||
| @@ -341,109 +334,106 @@ static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, | |||
| } | |||
| } | |||
| /* Copy local region of A into workspace */ | |||
| START_RPCC(); | |||
| ICOPY_OPERATION(min_l, min_i, a, lda, ls, m_from, sa); | |||
| STOP_RPCC(copy_A); | |||
| /* Copy local region of B into workspace and apply kernel */ | |||
| div_n = (n_to - n_from + DIVIDE_RATE - 1) / DIVIDE_RATE; | |||
| for (js = n_from, bufferside = 0; js < n_to; js += div_n, bufferside ++) { | |||
| for (xxx = n_from, bufferside = 0; xxx < n_to; xxx += div_n, bufferside ++) { | |||
| /* Make sure if no one is using workspace */ | |||
| START_RPCC(); | |||
| /* Make sure if no one is using buffer */ | |||
| for (i = 0; i < args -> nthreads; i++) | |||
| while (job[mypos].working[i][CACHE_LINE_SIZE * bufferside]) {YIELDING;}; | |||
| STOP_RPCC(waiting1); | |||
| #if defined(FUSED_GEMM) && !defined(TIMING) | |||
| FUSED_KERNEL_OPERATION(min_i, MIN(n_to, xxx + div_n) - xxx, min_l, alpha, | |||
| sa, buffer[bufferside], b, ldb, c, ldc, m_from, xxx, ls); | |||
| /* Fused operation to copy region of B into workspace and apply kernel */ | |||
| FUSED_KERNEL_OPERATION(min_i, MIN(n_to, js + div_n) - js, min_l, alpha, | |||
| sa, buffer[bufferside], b, ldb, c, ldc, m_from, js, ls); | |||
| #else | |||
| for(jjs = xxx; jjs < MIN(n_to, xxx + div_n); jjs += min_jj){ | |||
| min_jj = MIN(n_to, xxx + div_n) - jjs; | |||
| /* Split local region of B into parts */ | |||
| for(jjs = js; jjs < MIN(n_to, js + div_n); jjs += min_jj){ | |||
| min_jj = MIN(n_to, js + div_n) - jjs; | |||
| if (min_jj >= 3*GEMM_UNROLL_N) min_jj = 3*GEMM_UNROLL_N; | |||
| else | |||
| if (min_jj >= 2*GEMM_UNROLL_N) min_jj = 2*GEMM_UNROLL_N; | |||
| else | |||
| if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N; | |||
| if (min_jj >= 2*GEMM_UNROLL_N) min_jj = 2*GEMM_UNROLL_N; | |||
| else | |||
| if (min_jj > GEMM_UNROLL_N) min_jj = GEMM_UNROLL_N; | |||
| /* Copy part of local region of B into workspace */ | |||
| START_RPCC(); | |||
| OCOPY_OPERATION(min_l, min_jj, b, ldb, ls, jjs, | |||
| buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride); | |||
| buffer[bufferside] + min_l * (jjs - js) * COMPSIZE * l1stride); | |||
| STOP_RPCC(copy_B); | |||
| /* Apply kernel with local region of A and part of local region of B */ | |||
| START_RPCC(); | |||
| KERNEL_OPERATION(min_i, min_jj, min_l, alpha, | |||
| sa, buffer[bufferside] + min_l * (jjs - xxx) * COMPSIZE * l1stride, | |||
| sa, buffer[bufferside] + min_l * (jjs - js) * COMPSIZE * l1stride, | |||
| c, ldc, m_from, jjs); | |||
| STOP_RPCC(kernel); | |||
| #ifdef TIMING | |||
| ops += 2 * min_i * min_jj * min_l; | |||
| ops += 2 * min_i * min_jj * min_l; | |||
| #endif | |||
| } | |||
| #endif | |||
| /* Set flag so other threads can access local region of B */ | |||
| for (i = mypos_n * nthreads_m; i < (mypos_n + 1) * nthreads_m; i++) | |||
| job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside]; | |||
| WMB; | |||
| } | |||
| /* Get regions of B from other threads and apply kernel */ | |||
| current = mypos; | |||
| do { | |||
| /* This thread accesses regions of B from threads in the range | |||
| * [ mypos_n * nthreads_m, (mypos_n+1) * nthreads_m ) */ | |||
| current ++; | |||
| if (current >= (mypos_n + 1) * nthreads_m) current = mypos_n * nthreads_m; | |||
| /* Split other region of B into parts */ | |||
| div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE; | |||
| for (js = range_n[current], bufferside = 0; js < range_n[current + 1]; js += div_n, bufferside ++) { | |||
| if (current != mypos) { | |||
| for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { | |||
| if (current != mypos) { | |||
| /* Wait until other region of B is initialized */ | |||
| START_RPCC(); | |||
| /* thread has to wait */ | |||
| while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;}; | |||
| STOP_RPCC(waiting2); | |||
| /* Apply kernel with local region of A and part of other region of B */ | |||
| START_RPCC(); | |||
| KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha, | |||
| KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - js, div_n), min_l, alpha, | |||
| sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], | |||
| c, ldc, m_from, xxx); | |||
| c, ldc, m_from, js); | |||
| STOP_RPCC(kernel); | |||
| STOP_RPCC(kernel); | |||
| #ifdef TIMING | |||
| ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l; | |||
| ops += 2 * min_i * MIN(range_n[current + 1] - js, div_n) * min_l; | |||
| #endif | |||
| } | |||
| /* Clear synchronization flag if this thread is done with other region of B */ | |||
| if (m_to - m_from == min_i) { | |||
| job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; | |||
| } | |||
| } | |||
| } while (current != mypos); | |||
| /* Iterate through steps of m | |||
| * Note: First step has already been finished */ | |||
| for(is = m_from + min_i; is < m_to; is += min_i){ | |||
| min_i = m_to - is; | |||
| if (min_i >= GEMM_P * 2) { | |||
| min_i = GEMM_P; | |||
| } else | |||
| @@ -451,38 +441,39 @@ static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, | |||
| min_i = (((min_i + 1) / 2 + GEMM_UNROLL_M - 1)/GEMM_UNROLL_M) * GEMM_UNROLL_M; | |||
| } | |||
| /* Copy local region of A into workspace */ | |||
| START_RPCC(); | |||
| ICOPY_OPERATION(min_l, min_i, a, lda, ls, is, sa); | |||
| STOP_RPCC(copy_A); | |||
| /* Get regions of B and apply kernel */ | |||
| current = mypos; | |||
| do { | |||
| /* Split region of B into parts and apply kernel */ | |||
| div_n = (range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE; | |||
| for (js = range_n[current], bufferside = 0; js < range_n[current + 1]; js += div_n, bufferside ++) { | |||
| for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { | |||
| /* Apply kernel with local region of A and part of region of B */ | |||
| START_RPCC(); | |||
| KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), min_l, alpha, | |||
| KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - js, div_n), min_l, alpha, | |||
| sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], | |||
| c, ldc, is, xxx); | |||
| STOP_RPCC(kernel); | |||
| c, ldc, is, js); | |||
| STOP_RPCC(kernel); | |||
| #ifdef TIMING | |||
| ops += 2 * min_i * MIN(range_n[current + 1] - xxx, div_n) * min_l; | |||
| #endif | |||
| if (is + min_i >= m_to) { | |||
| /* Thread doesn't need this buffer any more */ | |||
| job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; | |||
| WMB; | |||
| } | |||
| ops += 2 * min_i * MIN(range_n[current + 1] - js, div_n) * min_l; | |||
| #endif | |||
| /* Clear synchronization flag if this thread is done with region of B */ | |||
| if (is + min_i >= m_to) { | |||
| job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; | |||
| WMB; | |||
| } | |||
| } | |||
| /* This thread accesses regions of B from threads in the range | |||
| * [ mypos_n * nthreads_m, (mypos_n+1) * nthreads_m ) */ | |||
| current ++; | |||
| if (current >= (mypos_n + 1) * nthreads_m) current = mypos_n * nthreads_m; | |||
| @@ -492,14 +483,13 @@ static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, | |||
| } | |||
| /* Wait until all other threads are done with local region of B */ | |||
| START_RPCC(); | |||
| for (i = 0; i < args -> nthreads; i++) { | |||
| for (xxx = 0; xxx < DIVIDE_RATE; xxx++) { | |||
| while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;}; | |||
| for (js = 0; js < DIVIDE_RATE; js++) { | |||
| while (job[mypos].working[i][CACHE_LINE_SIZE * js] ) {YIELDING;}; | |||
| } | |||
| } | |||
| STOP_RPCC(waiting3); | |||
| #ifdef TIMING | |||
| @@ -512,17 +502,6 @@ static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, | |||
| (double)waiting2 /(double)total * 100., | |||
| (double)waiting3 /(double)total * 100., | |||
| (double)ops/(double)kernel / 4. * 100.); | |||
| #if 0 | |||
| fprintf(stderr, "GEMM [%2ld] Copy_A : %6.2ld Copy_B : %6.2ld Wait : %6.2ld\n", | |||
| mypos, copy_A, copy_B, waiting); | |||
| fprintf(stderr, "Waiting[%2ld] %6.2f %6.2f %6.2f\n", | |||
| mypos, | |||
| (double)waiting1/(double)waiting * 100., | |||
| (double)waiting2/(double)waiting * 100., | |||
| (double)waiting3/(double)waiting * 100.); | |||
| #endif | |||
| fprintf(stderr, "\n"); | |||
| #endif | |||
| @@ -545,17 +524,16 @@ static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG | |||
| BLASLONG range_M_buffer[MAX_CPU_NUMBER + 2]; | |||
| BLASLONG range_N_buffer[MAX_CPU_NUMBER + 2]; | |||
| BLASLONG *range_M = range_M_buffer + 1; | |||
| BLASLONG *range_N = range_N_buffer + 1; | |||
| BLASLONG *range_M, *range_N; | |||
| BLASLONG num_cpu_m, num_cpu_n; | |||
| BLASLONG nthreads = args -> nthreads; | |||
| BLASLONG width, i, j, k, js; | |||
| BLASLONG m, n, n_from, n_to; | |||
| int mode; | |||
| int mode; | |||
| /* Get execution mode */ | |||
| #ifndef COMPLEX | |||
| #ifdef XDOUBLE | |||
| mode = BLAS_XDOUBLE | BLAS_REAL | BLAS_NODE; | |||
| @@ -574,6 +552,16 @@ static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG | |||
| #endif | |||
| #endif | |||
| #ifdef USE_ALLOC_HEAP | |||
| /* Dynamically allocate workspace */ | |||
| job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t)); | |||
| if(job==NULL){ | |||
| fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__); | |||
| exit(1); | |||
| } | |||
| #endif | |||
| /* Initialize struct for arguments */ | |||
| newarg.m = args -> m; | |||
| newarg.n = args -> n; | |||
| newarg.k = args -> k; | |||
| @@ -586,26 +574,19 @@ static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG | |||
| newarg.alpha = args -> alpha; | |||
| newarg.beta = args -> beta; | |||
| newarg.nthreads = args -> nthreads; | |||
| #ifdef USE_ALLOC_HEAP | |||
| job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t)); | |||
| if(job==NULL){ | |||
| fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__); | |||
| exit(1); | |||
| } | |||
| #endif | |||
| newarg.common = (void *)job; | |||
| #ifdef PARAMTEST | |||
| newarg.gemm_p = args -> gemm_p; | |||
| newarg.gemm_q = args -> gemm_q; | |||
| newarg.gemm_r = args -> gemm_r; | |||
| newarg.gemm_p = args -> gemm_p; | |||
| newarg.gemm_q = args -> gemm_q; | |||
| newarg.gemm_r = args -> gemm_r; | |||
| #endif | |||
| /* Initialize partitions in m and n | |||
| * Note: The number of CPU partitions is stored in the -1 entry */ | |||
| range_M = &range_M_buffer[1]; | |||
| range_N = &range_N_buffer[1]; | |||
| range_M[-1] = nthreads_m; | |||
| range_N[-1] = nthreads_n; | |||
| if (!range_m) { | |||
| range_M[0] = 0; | |||
| m = args -> m; | |||
| @@ -614,24 +595,20 @@ static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG | |||
| m = range_m[1] - range_m[0]; | |||
| } | |||
| /* Partition m into nthreads_m regions */ | |||
| num_cpu_m = 0; | |||
| while (m > 0){ | |||
| width = blas_quickdivide(m + nthreads_m - num_cpu_m - 1, nthreads_m - num_cpu_m); | |||
| width = blas_quickdivide(m + nthreads_m - num_cpu_m - 1, nthreads_m - num_cpu_m); | |||
| m -= width; | |||
| if (m < 0) width = width + m; | |||
| range_M[num_cpu_m + 1] = range_M[num_cpu_m] + width; | |||
| num_cpu_m ++; | |||
| } | |||
| for (i = num_cpu_m; i < MAX_CPU_NUMBER; i++) { | |||
| range_M[i + 1] = range_M[num_cpu_m]; | |||
| } | |||
| /* Initialize parameters for parallel execution */ | |||
| for (i = 0; i < nthreads; i++) { | |||
| queue[i].mode = mode; | |||
| queue[i].routine = inner_thread; | |||
| @@ -642,10 +619,11 @@ static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG | |||
| queue[i].sb = NULL; | |||
| queue[i].next = &queue[i + 1]; | |||
| } | |||
| queue[0].sa = sa; | |||
| queue[0].sb = sb; | |||
| queue[nthreads - 1].next = NULL; | |||
| /* Iterate through steps of n */ | |||
| if (!range_n) { | |||
| n_from = 0; | |||
| n_to = args -> n; | |||
| @@ -653,41 +631,34 @@ static int gemm_driver(blas_arg_t *args, BLASLONG *range_m, BLASLONG | |||
| n_from = range_n[0]; | |||
| n_to = range_n[1]; | |||
| } | |||
| for(js = n_from; js < n_to; js += GEMM_R * nthreads){ | |||
| n = n_to - js; | |||
| if (n > GEMM_R * nthreads) n = GEMM_R * nthreads; | |||
| /* Partition (a step of) n into nthreads regions */ | |||
| range_N[0] = js; | |||
| num_cpu_n = 0; | |||
| while (n > 0){ | |||
| width = blas_quickdivide(n + nthreads - num_cpu_n - 1, nthreads - num_cpu_n); | |||
| width = blas_quickdivide(n + nthreads - num_cpu_n - 1, nthreads - num_cpu_n); | |||
| n -= width; | |||
| if (n < 0) width = width + n; | |||
| range_N[num_cpu_n + 1] = range_N[num_cpu_n] + width; | |||
| num_cpu_n ++; | |||
| } | |||
| for (j = num_cpu_n; j < MAX_CPU_NUMBER; j++) { | |||
| range_N[j + 1] = range_N[num_cpu_n]; | |||
| } | |||
| for (j = 0; j < MAX_CPU_NUMBER; j++) { | |||
| for (i = 0; i < MAX_CPU_NUMBER; i++) { | |||
| /* Clear synchronization flags */ | |||
| for (i = 0; i < MAX_CPU_NUMBER; i++) { | |||
| for (j = 0; j < MAX_CPU_NUMBER; j++) { | |||
| for (k = 0; k < DIVIDE_RATE; k++) { | |||
| job[j].working[i][CACHE_LINE_SIZE * k] = 0; | |||
| job[i].working[j][CACHE_LINE_SIZE * k] = 0; | |||
| } | |||
| } | |||
| } | |||
| queue[nthreads - 1].next = NULL; | |||
| /* Execute parallel computation */ | |||
| exec_blas(nthreads, queue); | |||
| } | |||
| @@ -702,53 +673,43 @@ int CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLO | |||
| BLASLONG m = args -> m; | |||
| BLASLONG n = args -> n; | |||
| BLASLONG nthreads = args -> nthreads; | |||
| BLASLONG nthreads_m, nthreads_n; | |||
| if (nthreads == 1) { | |||
| GEMM_LOCAL(args, range_m, range_n, sa, sb, 0); | |||
| return 0; | |||
| } | |||
| /* Get dimensions from index ranges if available */ | |||
| if (range_m) { | |||
| BLASLONG m_from = *(((BLASLONG *)range_m) + 0); | |||
| BLASLONG m_to = *(((BLASLONG *)range_m) + 1); | |||
| m = m_to - m_from; | |||
| m = range_m[1] - range_m[0]; | |||
| } | |||
| if (range_n) { | |||
| BLASLONG n_from = *(((BLASLONG *)range_n) + 0); | |||
| BLASLONG n_to = *(((BLASLONG *)range_n) + 1); | |||
| n = n_to - n_from; | |||
| n = range_n[1] - range_n[0]; | |||
| } | |||
| nthreads_m = nthreads; | |||
| while (m < nthreads_m * SWITCH_RATIO) { | |||
| nthreads_m = nthreads_m / 2; | |||
| } | |||
| if (nthreads_m < 1) { | |||
| GEMM_LOCAL(args, range_m, range_n, sa, sb, 0); | |||
| return 0; | |||
| /* CPU partitions in m should have at least SWITCH_RATIO rows */ | |||
| if (m < 2 * SWITCH_RATIO) { | |||
| nthreads_m = 1; | |||
| } else { | |||
| nthreads_m = args -> nthreads; | |||
| while (m < nthreads_m * SWITCH_RATIO) { | |||
| nthreads_m = nthreads_m / 2; | |||
| } | |||
| } | |||
| nthreads_n = nthreads / nthreads_m; | |||
| if (n < nthreads_m * (nthreads_n - 1)) { | |||
| nthreads_n = (n + nthreads_m - 1) / nthreads_m; | |||
| /* At most one CPU partition in n should have less than nthreads_m columns */ | |||
| if (n < nthreads_m) { | |||
| nthreads_n = 1; | |||
| } else { | |||
| nthreads_n = blas_quickdivide(n + nthreads_m - 1, nthreads_m); | |||
| if (nthreads_m * nthreads_n > args -> nthreads) { | |||
| nthreads_n = blas_quickdivide(args -> nthreads, nthreads_m); | |||
| } | |||
| } | |||
| nthreads = nthreads_m * nthreads_n; | |||
| if (nthreads <= 1) { | |||
| /* Execute serial or parallel computation */ | |||
| if (nthreads_m * nthreads_n <= 1) { | |||
| GEMM_LOCAL(args, range_m, range_n, sa, sb, 0); | |||
| return 0; | |||
| } else { | |||
| args -> nthreads = nthreads_m * nthreads_n; | |||
| gemm_driver(args, range_m, range_n, sa, sb, nthreads_m, nthreads_n); | |||
| } | |||
| args -> nthreads = nthreads; | |||
| gemm_driver(args, range_m, range_n, sa, sb, nthreads_m, nthreads_n); | |||
| return 0; | |||
| } | |||