@@ -0,0 +1,995 @@ | |||
SUBROUTINE CGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, & | |||
M, N, X, LDX, Y, LDY, NRNK, TOL, & | |||
K, EIGS, Z, LDZ, RES, B, LDB, & | |||
W, LDW, S, LDS, ZWORK, LZWORK, & | |||
RWORK, LRWORK, IWORK, LIWORK, INFO ) | |||
! March 2023 | |||
!..... | |||
USE iso_fortran_env | |||
IMPLICIT NONE | |||
INTEGER, PARAMETER :: WP = real32 | |||
!..... | |||
! Scalar arguments | |||
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF | |||
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, & | |||
NRNK, LDZ, LDB, LDW, LDS, & | |||
LIWORK, LRWORK, LZWORK | |||
INTEGER, INTENT(OUT) :: K, INFO | |||
REAL(KIND=WP), INTENT(IN) :: TOL | |||
! Array arguments | |||
COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*) | |||
COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), & | |||
W(LDW,*), S(LDS,*) | |||
COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*) | |||
COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*) | |||
REAL(KIND=WP), INTENT(OUT) :: RES(*) | |||
REAL(KIND=WP), INTENT(OUT) :: RWORK(*) | |||
INTEGER, INTENT(OUT) :: IWORK(*) | |||
!............................................................ | |||
! Purpose | |||
! ======= | |||
! CGEDMD computes the Dynamic Mode Decomposition (DMD) for | |||
! a pair of data snapshot matrices. For the input matrices | |||
! X and Y such that Y = A*X with an unaccessible matrix | |||
! A, CGEDMD computes a certain number of Ritz pairs of A using | |||
! the standard Rayleigh-Ritz extraction from a subspace of | |||
! range(X) that is determined using the leading left singular | |||
! vectors of X. Optionally, CGEDMD returns the residuals | |||
! of the computed Ritz pairs, the information needed for | |||
! a refinement of the Ritz vectors, or the eigenvectors of | |||
! the Exact DMD. | |||
! For further details see the references listed | |||
! below. For more details of the implementation see [3]. | |||
! | |||
! References | |||
! ========== | |||
! [1] P. Schmid: Dynamic mode decomposition of numerical | |||
! and experimental data, | |||
! Journal of Fluid Mechanics 656, 5-28, 2010. | |||
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal | |||
! decompositions: analysis and enhancements, | |||
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. | |||
! [3] Z. Drmac: A LAPACK implementation of the Dynamic | |||
! Mode Decomposition I. Technical report. AIMDyn Inc. | |||
! and LAPACK Working Note 298. | |||
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. | |||
! Brunton, N. Kutz: On Dynamic Mode Decomposition: | |||
! Theory and Applications, Journal of Computational | |||
! Dynamics 1(2), 391 -421, 2014. | |||
! | |||
!...................................................................... | |||
! Developed and supported by: | |||
! =========================== | |||
! Developed and coded by Zlatko Drmac, Faculty of Science, | |||
! University of Zagreb; drmac@math.hr | |||
! In cooperation with | |||
! AIMdyn Inc., Santa Barbara, CA. | |||
! and supported by | |||
! - DARPA SBIR project "Koopman Operator-Based Forecasting | |||
! for Nonstationary Processes from Near-Term, Limited | |||
! Observational Data" Contract No: W31P4Q-21-C-0007 | |||
! - DARPA PAI project "Physics-Informed Machine Learning | |||
! Methodologies" Contract No: HR0011-18-9-0033 | |||
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic | |||
! Framework for Space-Time Analysis of Process Dynamics" | |||
! Contract No: HR0011-16-C-0116 | |||
! Any opinions, findings and conclusions or recommendations | |||
! expressed in this material are those of the author and | |||
! do not necessarily reflect the views of the DARPA SBIR | |||
! Program Office | |||
!============================================================ | |||
! Distribution Statement A: | |||
! Approved for Public Release, Distribution Unlimited. | |||
! Cleared by DARPA on September 29, 2022 | |||
!============================================================ | |||
!...................................................................... | |||
! Arguments | |||
! ========= | |||
! JOBS (input) CHARACTER*1 | |||
! Determines whether the initial data snapshots are scaled | |||
! by a diagonal matrix. | |||
! 'S' :: The data snapshots matrices X and Y are multiplied | |||
! with a diagonal matrix D so that X*D has unit | |||
! nonzero columns (in the Euclidean 2-norm) | |||
! 'C' :: The snapshots are scaled as with the 'S' option. | |||
! If it is found that an i-th column of X is zero | |||
! vector and the corresponding i-th column of Y is | |||
! non-zero, then the i-th column of Y is set to | |||
! zero and a warning flag is raised. | |||
! 'Y' :: The data snapshots matrices X and Y are multiplied | |||
! by a diagonal matrix D so that Y*D has unit | |||
! nonzero columns (in the Euclidean 2-norm) | |||
! 'N' :: No data scaling. | |||
!..... | |||
! JOBZ (input) CHARACTER*1 | |||
! Determines whether the eigenvectors (Koopman modes) will | |||
! be computed. | |||
! 'V' :: The eigenvectors (Koopman modes) will be computed | |||
! and returned in the matrix Z. | |||
! See the description of Z. | |||
! 'F' :: The eigenvectors (Koopman modes) will be returned | |||
! in factored form as the product X(:,1:K)*W, where X | |||
! contains a POD basis (leading left singular vectors | |||
! of the data matrix X) and W contains the eigenvectors | |||
! of the corresponding Rayleigh quotient. | |||
! See the descriptions of K, X, W, Z. | |||
! 'N' :: The eigenvectors are not computed. | |||
!..... | |||
! JOBR (input) CHARACTER*1 | |||
! Determines whether to compute the residuals. | |||
! 'R' :: The residuals for the computed eigenpairs will be | |||
! computed and stored in the array RES. | |||
! See the description of RES. | |||
! For this option to be legal, JOBZ must be 'V'. | |||
! 'N' :: The residuals are not computed. | |||
!..... | |||
! JOBF (input) CHARACTER*1 | |||
! Specifies whether to store information needed for post- | |||
! processing (e.g. computing refined Ritz vectors) | |||
! 'R' :: The matrix needed for the refinement of the Ritz | |||
! vectors is computed and stored in the array B. | |||
! See the description of B. | |||
! 'E' :: The unscaled eigenvectors of the Exact DMD are | |||
! computed and returned in the array B. See the | |||
! description of B. | |||
! 'N' :: No eigenvector refinement data is computed. | |||
!..... | |||
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } | |||
! Allows for a selection of the SVD algorithm from the | |||
! LAPACK library. | |||
! 1 :: CGESVD (the QR SVD algorithm) | |||
! 2 :: CGESDD (the Divide and Conquer algorithm; if enough | |||
! workspace available, this is the fastest option) | |||
! 3 :: CGESVDQ (the preconditioned QR SVD ; this and 4 | |||
! are the most accurate options) | |||
! 4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3 | |||
! are the most accurate options) | |||
! For the four methods above, a significant difference in | |||
! the accuracy of small singular values is possible if | |||
! the snapshots vary in norm so that X is severely | |||
! ill-conditioned. If small (smaller than EPS*||X||) | |||
! singular values are of interest and JOBS=='N', then | |||
! the options (3, 4) give the most accurate results, where | |||
! the option 4 is slightly better and with stronger | |||
! theoretical background. | |||
! If JOBS=='S', i.e. the columns of X will be normalized, | |||
! then all methods give nearly equally accurate results. | |||
!..... | |||
! M (input) INTEGER, M>= 0 | |||
! The state space dimension (the row dimension of X, Y). | |||
!..... | |||
! N (input) INTEGER, 0 <= N <= M | |||
! The number of data snapshot pairs | |||
! (the number of columns of X and Y). | |||
!..... | |||
! X (input/output) COMPLEX(KIND=WP) M-by-N array | |||
! > On entry, X contains the data snapshot matrix X. It is | |||
! assumed that the column norms of X are in the range of | |||
! the normalized floating point numbers. | |||
! < On exit, the leading K columns of X contain a POD basis, | |||
! i.e. the leading K left singular vectors of the input | |||
! data matrix X, U(:,1:K). All N columns of X contain all | |||
! left singular vectors of the input matrix X. | |||
! See the descriptions of K, Z and W. | |||
!..... | |||
! LDX (input) INTEGER, LDX >= M | |||
! The leading dimension of the array X. | |||
!..... | |||
! Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array | |||
! > On entry, Y contains the data snapshot matrix Y | |||
! < On exit, | |||
! If JOBR == 'R', the leading K columns of Y contain | |||
! the residual vectors for the computed Ritz pairs. | |||
! See the description of RES. | |||
! If JOBR == 'N', Y contains the original input data, | |||
! scaled according to the value of JOBS. | |||
!..... | |||
! LDY (input) INTEGER , LDY >= M | |||
! The leading dimension of the array Y. | |||
!..... | |||
! NRNK (input) INTEGER | |||
! Determines the mode how to compute the numerical rank, | |||
! i.e. how to truncate small singular values of the input | |||
! matrix X. On input, if | |||
! NRNK = -1 :: i-th singular value sigma(i) is truncated | |||
! if sigma(i) <= TOL*sigma(1) | |||
! This option is recommended. | |||
! NRNK = -2 :: i-th singular value sigma(i) is truncated | |||
! if sigma(i) <= TOL*sigma(i-1) | |||
! This option is included for R&D purposes. | |||
! It requires highly accurate SVD, which | |||
! may not be feasible. | |||
! The numerical rank can be enforced by using positive | |||
! value of NRNK as follows: | |||
! 0 < NRNK <= N :: at most NRNK largest singular values | |||
! will be used. If the number of the computed nonzero | |||
! singular values is less than NRNK, then only those | |||
! nonzero values will be used and the actually used | |||
! dimension is less than NRNK. The actual number of | |||
! the nonzero singular values is returned in the variable | |||
! K. See the descriptions of TOL and K. | |||
!..... | |||
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1 | |||
! The tolerance for truncating small singular values. | |||
! See the description of NRNK. | |||
!..... | |||
! K (output) INTEGER, 0 <= K <= N | |||
! The dimension of the POD basis for the data snapshot | |||
! matrix X and the number of the computed Ritz pairs. | |||
! The value of K is determined according to the rule set | |||
! by the parameters NRNK and TOL. | |||
! See the descriptions of NRNK and TOL. | |||
!..... | |||
! EIGS (output) COMPLEX(KIND=WP) N-by-1 array | |||
! The leading K (K<=N) entries of EIGS contain | |||
! the computed eigenvalues (Ritz values). | |||
! See the descriptions of K, and Z. | |||
!..... | |||
! Z (workspace/output) COMPLEX(KIND=WP) M-by-N array | |||
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i) | |||
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1. | |||
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as | |||
! the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i) | |||
! is an eigenvector corresponding to EIGS(i). The columns | |||
! of W(1:k,1:K) are the computed eigenvectors of the | |||
! K-by-K Rayleigh quotient. | |||
! See the descriptions of EIGS, X and W. | |||
!..... | |||
! LDZ (input) INTEGER , LDZ >= M | |||
! The leading dimension of the array Z. | |||
!..... | |||
! RES (output) REAL(KIND=WP) N-by-1 array | |||
! RES(1:K) contains the residuals for the K computed | |||
! Ritz pairs, | |||
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2. | |||
! See the description of EIGS and Z. | |||
!..... | |||
! B (output) COMPLEX(KIND=WP) M-by-N array. | |||
! IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can | |||
! be used for computing the refined vectors; see further | |||
! details in the provided references. | |||
! If JOBF == 'E', B(1:M,1:K) contains | |||
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the | |||
! Exact DMD, up to scaling by the inverse eigenvalues. | |||
! If JOBF =='N', then B is not referenced. | |||
! See the descriptions of X, W, K. | |||
!..... | |||
! LDB (input) INTEGER, LDB >= M | |||
! The leading dimension of the array B. | |||
!..... | |||
! W (workspace/output) COMPLEX(KIND=WP) N-by-N array | |||
! On exit, W(1:K,1:K) contains the K computed | |||
! eigenvectors of the matrix Rayleigh quotient. | |||
! The Ritz vectors (returned in Z) are the | |||
! product of X (containing a POD basis for the input | |||
! matrix X) and W. See the descriptions of K, S, X and Z. | |||
! W is also used as a workspace to temporarily store the | |||
! right singular vectors of X. | |||
!..... | |||
! LDW (input) INTEGER, LDW >= N | |||
! The leading dimension of the array W. | |||
!..... | |||
! S (workspace/output) COMPLEX(KIND=WP) N-by-N array | |||
! The array S(1:K,1:K) is used for the matrix Rayleigh | |||
! quotient. This content is overwritten during | |||
! the eigenvalue decomposition by CGEEV. | |||
! See the description of K. | |||
!..... | |||
! LDS (input) INTEGER, LDS >= N | |||
! The leading dimension of the array S. | |||
!..... | |||
! ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array | |||
! ZWORK is used as complex workspace in the complex SVD, as | |||
! specified by WHTSVD (1,2, 3 or 4) and for CGEEV for computing | |||
! the eigenvalues of a Rayleigh quotient. | |||
! If the call to CGEDMD is only workspace query, then | |||
! ZWORK(1) contains the minimal complex workspace length and | |||
! ZWORK(2) is the optimal complex workspace length. | |||
! Hence, the length of work is at least 2. | |||
! See the description of LZWORK. | |||
!..... | |||
! LZWORK (input) INTEGER | |||
! The minimal length of the workspace vector ZWORK. | |||
! LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_CGEEV), | |||
! where LZWORK_CGEEV = MAX( 1, 2*N ) and the minimal | |||
! LZWORK_SVD is calculated as follows | |||
! If WHTSVD == 1 :: CGESVD :: | |||
! LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N)) | |||
! If WHTSVD == 2 :: CGESDD :: | |||
! LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N) | |||
! If WHTSVD == 3 :: CGESVDQ :: | |||
! LZWORK_SVD = obtainable by a query | |||
! If WHTSVD == 4 :: CGEJSV :: | |||
! LZWORK_SVD = obtainable by a query | |||
! If on entry LZWORK = -1, then a workspace query is | |||
! assumed and the procedure only computes the minimal | |||
! and the optimal workspace lengths and returns them in | |||
! LZWORK(1) and LZWORK(2), respectively. | |||
!..... | |||
! RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array | |||
! On exit, RWORK(1:N) contains the singular values of | |||
! X (for JOBS=='N') or column scaled X (JOBS=='S', 'C'). | |||
! If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain | |||
! scaling factor RWORK(N+2)/RWORK(N+1) used to scale X | |||
! and Y to avoid overflow in the SVD of X. | |||
! This may be of interest if the scaling option is off | |||
! and as many as possible smallest eigenvalues are | |||
! desired to the highest feasible accuracy. | |||
! If the call to CGEDMD is only workspace query, then | |||
! RWORK(1) contains the minimal workspace length. | |||
! See the description of LRWORK. | |||
!..... | |||
! LRWORK (input) INTEGER | |||
! The minimal length of the workspace vector RWORK. | |||
! LRWORK is calculated as follows: | |||
! LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_CGEEV), where | |||
! LRWORK_CGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace | |||
! for the SVD subroutine determined by the input parameter | |||
! WHTSVD. | |||
! If WHTSVD == 1 :: CGESVD :: | |||
! LRWORK_SVD = 5*MIN(M,N) | |||
! If WHTSVD == 2 :: CGESDD :: | |||
! LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), | |||
! 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) ) | |||
! If WHTSVD == 3 :: CGESVDQ :: | |||
! LRWORK_SVD = obtainable by a query | |||
! If WHTSVD == 4 :: CGEJSV :: | |||
! LRWORK_SVD = obtainable by a query | |||
! If on entry LRWORK = -1, then a workspace query is | |||
! assumed and the procedure only computes the minimal | |||
! real workspace length and returns it in RWORK(1). | |||
!..... | |||
! IWORK (workspace/output) INTEGER LIWORK-by-1 array | |||
! Workspace that is required only if WHTSVD equals | |||
! 2 , 3 or 4. (See the description of WHTSVD). | |||
! If on entry LWORK =-1 or LIWORK=-1, then the | |||
! minimal length of IWORK is computed and returned in | |||
! IWORK(1). See the description of LIWORK. | |||
!..... | |||
! LIWORK (input) INTEGER | |||
! The minimal length of the workspace vector IWORK. | |||
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 | |||
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N)) | |||
! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1) | |||
! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N) | |||
! If on entry LIWORK = -1, then a workspace query is | |||
! assumed and the procedure only computes the minimal | |||
! and the optimal workspace lengths for ZWORK, RWORK and | |||
! IWORK. See the descriptions of ZWORK, RWORK and IWORK. | |||
!..... | |||
! INFO (output) INTEGER | |||
! -i < 0 :: On entry, the i-th argument had an | |||
! illegal value | |||
! = 0 :: Successful return. | |||
! = 1 :: Void input. Quick exit (M=0 or N=0). | |||
! = 2 :: The SVD computation of X did not converge. | |||
! Suggestion: Check the input data and/or | |||
! repeat with different WHTSVD. | |||
! = 3 :: The computation of the eigenvalues did not | |||
! converge. | |||
! = 4 :: If data scaling was requested on input and | |||
! the procedure found inconsistency in the data | |||
! such that for some column index i, | |||
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set | |||
! to zero if JOBS=='C'. The computation proceeds | |||
! with original or modified data and warning | |||
! flag is set with INFO=4. | |||
!............................................................. | |||
!............................................................. | |||
! Parameters | |||
! ~~~~~~~~~~ | |||
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP | |||
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP | |||
COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP ) | |||
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP ) | |||
! Local scalars | |||
! ~~~~~~~~~~~~~ | |||
REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, & | |||
SSUM, XSCL1, XSCL2 | |||
INTEGER :: i, j, IMINWR, INFO1, INFO2, & | |||
LWRKEV, LWRSDD, LWRSVD, LWRSVJ, & | |||
LWRSVQ, MLWORK, MWRKEV, MWRSDD, & | |||
MWRSVD, MWRSVJ, MWRSVQ, NUMRNK, & | |||
OLWORK, MLRWRK | |||
LOGICAL :: BADXY, LQUERY, SCCOLX, SCCOLY, & | |||
WNTEX, WNTREF, WNTRES, WNTVEC | |||
CHARACTER :: JOBZL, T_OR_N | |||
CHARACTER :: JSVOPT | |||
! | |||
! Local arrays | |||
! ~~~~~~~~~~~~ | |||
REAL(KIND=WP) :: RDUMMY(2) | |||
! External functions (BLAS and LAPACK) | |||
! ~~~~~~~~~~~~~~~~~ | |||
REAL(KIND=WP) CLANGE, SLAMCH, SCNRM2 | |||
EXTERNAL CLANGE, SLAMCH, SCNRM2, ICAMAX | |||
INTEGER ICAMAX | |||
LOGICAL SISNAN, LSAME | |||
EXTERNAL SISNAN, LSAME | |||
! External subroutines (BLAS and LAPACK) | |||
! ~~~~~~~~~~~~~~~~~~~~ | |||
EXTERNAL CAXPY, CGEMM, CSSCAL | |||
EXTERNAL CGEEV, CGEJSV, CGESDD, CGESVD, CGESVDQ, & | |||
CLACPY, CLASCL, CLASSQ, XERBLA | |||
! Intrinsic functions | |||
! ~~~~~~~~~~~~~~~~~~~ | |||
INTRINSIC FLOAT, INT, MAX, SQRT | |||
!............................................................ | |||
! | |||
! Test the input arguments | |||
! | |||
WNTRES = LSAME(JOBR,'R') | |||
SCCOLX = LSAME(JOBS,'S') .OR. LSAME(JOBS,'C') | |||
SCCOLY = LSAME(JOBS,'Y') | |||
WNTVEC = LSAME(JOBZ,'V') | |||
WNTREF = LSAME(JOBF,'R') | |||
WNTEX = LSAME(JOBF,'E') | |||
INFO = 0 | |||
LQUERY = ( ( LZWORK == -1 ) .OR. ( LIWORK == -1 ) & | |||
.OR. ( LRWORK == -1 ) ) | |||
! | |||
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. & | |||
LSAME(JOBS,'N')) ) THEN | |||
INFO = -1 | |||
ELSE IF ( .NOT. (WNTVEC .OR. LSAME(JOBZ,'N') & | |||
.OR. LSAME(JOBZ,'F')) ) THEN | |||
INFO = -2 | |||
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. & | |||
( WNTRES .AND. (.NOT.WNTVEC) ) ) THEN | |||
INFO = -3 | |||
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. & | |||
LSAME(JOBF,'N') ) ) THEN | |||
INFO = -4 | |||
ELSE IF ( .NOT.((WHTSVD == 1) .OR. (WHTSVD == 2) .OR. & | |||
(WHTSVD == 3) .OR. (WHTSVD == 4) )) THEN | |||
INFO = -5 | |||
ELSE IF ( M < 0 ) THEN | |||
INFO = -6 | |||
ELSE IF ( ( N < 0 ) .OR. ( N > M ) ) THEN | |||
INFO = -7 | |||
ELSE IF ( LDX < M ) THEN | |||
INFO = -9 | |||
ELSE IF ( LDY < M ) THEN | |||
INFO = -11 | |||
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. & | |||
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN | |||
INFO = -12 | |||
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN | |||
INFO = -13 | |||
ELSE IF ( LDZ < M ) THEN | |||
INFO = -17 | |||
ELSE IF ( (WNTREF .OR. WNTEX ) .AND. ( LDB < M ) ) THEN | |||
INFO = -20 | |||
ELSE IF ( LDW < N ) THEN | |||
INFO = -22 | |||
ELSE IF ( LDS < N ) THEN | |||
INFO = -24 | |||
END IF | |||
! | |||
IF ( INFO == 0 ) THEN | |||
! Compute the minimal and the optimal workspace | |||
! requirements. Simulate running the code and | |||
! determine minimal and optimal sizes of the | |||
! workspace at any moment of the run. | |||
IF ( N == 0 ) THEN | |||
! Quick return. All output except K is void. | |||
! INFO=1 signals the void input. | |||
! In case of a workspace query, the default | |||
! minimal workspace lengths are returned. | |||
IF ( LQUERY ) THEN | |||
IWORK(1) = 1 | |||
RWORK(1) = 1 | |||
ZWORK(1) = 2 | |||
ZWORK(2) = 2 | |||
ELSE | |||
K = 0 | |||
END IF | |||
INFO = 1 | |||
RETURN | |||
END IF | |||
IMINWR = 1 | |||
MLRWRK = MAX(1,N) | |||
MLWORK = 2 | |||
OLWORK = 2 | |||
SELECT CASE ( WHTSVD ) | |||
CASE (1) | |||
! The following is specified as the minimal | |||
! length of WORK in the definition of CGESVD: | |||
! MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N)) | |||
MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N)) | |||
MLWORK = MAX(MLWORK,MWRSVD) | |||
MLRWRK = MAX(MLRWRK,N + 5*MIN(M,N)) | |||
IF ( LQUERY ) THEN | |||
CALL CGESVD( 'O', 'S', M, N, X, LDX, RWORK, & | |||
B, LDB, W, LDW, ZWORK, -1, RDUMMY, INFO1 ) | |||
LWRSVD = INT( ZWORK(1) ) | |||
OLWORK = MAX(OLWORK,LWRSVD) | |||
END IF | |||
CASE (2) | |||
! The following is specified as the minimal | |||
! length of WORK in the definition of CGESDD: | |||
! MWRSDD = 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N). | |||
! RWORK length: 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N) | |||
! In LAPACK 3.10.1 RWORK is defined differently. | |||
! Below we take max over the two versions. | |||
! IMINWR = 8*MIN(M,N) | |||
MWRSDD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N) | |||
MLWORK = MAX(MLWORK,MWRSDD) | |||
IMINWR = 8*MIN(M,N) | |||
MLRWRK = MAX( MLRWRK, N + & | |||
MAX( 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), & | |||
5*MIN(M,N)*MIN(M,N)+5*MIN(M,N), & | |||
2*MAX(M,N)*MIN(M,N)+ & | |||
2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) ) | |||
IF ( LQUERY ) THEN | |||
CALL CGESDD( 'O', M, N, X, LDX, RWORK, B, & | |||
LDB, W, LDW, ZWORK, -1, RDUMMY, IWORK, INFO1 ) | |||
LWRSDD = MAX(MWRSDD,INT( ZWORK(1) )) | |||
OLWORK = MAX(OLWORK,LWRSDD) | |||
END IF | |||
CASE (3) | |||
CALL CGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, & | |||
X, LDX, RWORK, Z, LDZ, W, LDW, NUMRNK, & | |||
IWORK, -1, ZWORK, -1, RDUMMY, -1, INFO1 ) | |||
IMINWR = IWORK(1) | |||
MWRSVQ = INT(ZWORK(2)) | |||
MLWORK = MAX(MLWORK,MWRSVQ) | |||
MLRWRK = MAX(MLRWRK,N + INT(RDUMMY(1))) | |||
IF ( LQUERY ) THEN | |||
LWRSVQ = INT(ZWORK(1)) | |||
OLWORK = MAX(OLWORK,LWRSVQ) | |||
END IF | |||
CASE (4) | |||
JSVOPT = 'J' | |||
CALL CGEJSV( 'F', 'U', JSVOPT, 'N', 'N', 'P', M, & | |||
N, X, LDX, RWORK, Z, LDZ, W, LDW, & | |||
ZWORK, -1, RDUMMY, -1, IWORK, INFO1 ) | |||
IMINWR = IWORK(1) | |||
MWRSVJ = INT(ZWORK(2)) | |||
MLWORK = MAX(MLWORK,MWRSVJ) | |||
MLRWRK = MAX(MLRWRK,N + MAX(7,INT(RDUMMY(1)))) | |||
IF ( LQUERY ) THEN | |||
LWRSVJ = INT(ZWORK(1)) | |||
OLWORK = MAX(OLWORK,LWRSVJ) | |||
END IF | |||
END SELECT | |||
IF ( WNTVEC .OR. WNTEX .OR. LSAME(JOBZ,'F') ) THEN | |||
JOBZL = 'V' | |||
ELSE | |||
JOBZL = 'N' | |||
END IF | |||
! Workspace calculation to the CGEEV call | |||
MWRKEV = MAX( 1, 2*N ) | |||
MLWORK = MAX(MLWORK,MWRKEV) | |||
MLRWRK = MAX(MLRWRK,N+2*N) | |||
IF ( LQUERY ) THEN | |||
CALL CGEEV( 'N', JOBZL, N, S, LDS, EIGS, & | |||
W, LDW, W, LDW, ZWORK, -1, RWORK, INFO1 ) ! LAPACK CALL | |||
LWRKEV = INT(ZWORK(1)) | |||
OLWORK = MAX( OLWORK, LWRKEV ) | |||
OLWORK = MAX( 2, OLWORK ) | |||
END IF | |||
! | |||
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -30 | |||
IF ( LRWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -28 | |||
IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -26 | |||
END IF | |||
! | |||
IF( INFO /= 0 ) THEN | |||
CALL XERBLA( 'CGEDMD', -INFO ) | |||
RETURN | |||
ELSE IF ( LQUERY ) THEN | |||
! Return minimal and optimal workspace sizes | |||
IWORK(1) = IMINWR | |||
RWORK(1) = MLRWRK | |||
ZWORK(1) = MLWORK | |||
ZWORK(2) = OLWORK | |||
RETURN | |||
END IF | |||
!............................................................ | |||
! | |||
OFL = SLAMCH('O')*SLAMCH('P') | |||
SMALL = SLAMCH('S') | |||
BADXY = .FALSE. | |||
! | |||
! <1> Optional scaling of the snapshots (columns of X, Y) | |||
! ========================================================== | |||
IF ( SCCOLX ) THEN | |||
! The columns of X will be normalized. | |||
! To prevent overflows, the column norms of X are | |||
! carefully computed using CLASSQ. | |||
K = 0 | |||
DO i = 1, N | |||
!WORK(i) = SCNRM2( M, X(1,i), 1 ) | |||
SCALE = ZERO | |||
CALL CLASSQ( M, X(1,i), 1, SCALE, SSUM ) | |||
IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN | |||
K = 0 | |||
INFO = -8 | |||
CALL XERBLA('CGEDMD',-INFO) | |||
END IF | |||
IF ( (SCALE /= ZERO) .AND. (SSUM /= ZERO) ) THEN | |||
ROOTSC = SQRT(SSUM) | |||
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN | |||
! Norm of X(:,i) overflows. First, X(:,i) | |||
! is scaled by | |||
! ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2. | |||
! Next, the norm of X(:,i) is stored without | |||
! overflow as WORK(i) = - SCALE * (ROOTSC/M), | |||
! the minus sign indicating the 1/M factor. | |||
! Scaling is performed without overflow, and | |||
! underflow may occur in the smallest entries | |||
! of X(:,i). The relative backward and forward | |||
! errors are small in the ell_2 norm. | |||
CALL CLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, & | |||
M, 1, X(1,i), LDX, INFO2 ) | |||
RWORK(i) = - SCALE * ( ROOTSC / FLOAT(M) ) | |||
ELSE | |||
! X(:,i) will be scaled to unit 2-norm | |||
RWORK(i) = SCALE * ROOTSC | |||
CALL CLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, & | |||
X(1,i), LDX, INFO2 ) ! LAPACK CALL | |||
! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC | |||
END IF | |||
ELSE | |||
RWORK(i) = ZERO | |||
K = K + 1 | |||
END IF | |||
END DO | |||
IF ( K == N ) THEN | |||
! All columns of X are zero. Return error code -8. | |||
! (the 8th input variable had an illegal value) | |||
K = 0 | |||
INFO = -8 | |||
CALL XERBLA('CGEDMD',-INFO) | |||
RETURN | |||
END IF | |||
DO i = 1, N | |||
! Now, apply the same scaling to the columns of Y. | |||
IF ( RWORK(i) > ZERO ) THEN | |||
CALL CSSCAL( M, ONE/RWORK(i), Y(1,i), 1 ) ! BLAS CALL | |||
! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC | |||
ELSE IF ( RWORK(i) < ZERO ) THEN | |||
CALL CLASCL( 'G', 0, 0, -RWORK(i), & | |||
ONE/FLOAT(M), M, 1, Y(1,i), LDY, INFO2 ) ! LAPACK CALL | |||
ELSE IF ( ABS(Y(ICAMAX(M, Y(1,i),1),i )) & | |||
/= ZERO ) THEN | |||
! X(:,i) is zero vector. For consistency, | |||
! Y(:,i) should also be zero. If Y(:,i) is not | |||
! zero, then the data might be inconsistent or | |||
! corrupted. If JOBS == 'C', Y(:,i) is set to | |||
! zero and a warning flag is raised. | |||
! The computation continues but the | |||
! situation will be reported in the output. | |||
BADXY = .TRUE. | |||
IF ( LSAME(JOBS,'C')) & | |||
CALL CSSCAL( M, ZERO, Y(1,i), 1 ) ! BLAS CALL | |||
END IF | |||
END DO | |||
END IF | |||
! | |||
IF ( SCCOLY ) THEN | |||
! The columns of Y will be normalized. | |||
! To prevent overflows, the column norms of Y are | |||
! carefully computed using CLASSQ. | |||
DO i = 1, N | |||
!RWORK(i) = SCNRM2( M, Y(1,i), 1 ) | |||
SCALE = ZERO | |||
CALL CLASSQ( M, Y(1,i), 1, SCALE, SSUM ) | |||
IF ( SISNAN(SCALE) .OR. SISNAN(SSUM) ) THEN | |||
K = 0 | |||
INFO = -10 | |||
CALL XERBLA('CGEDMD',-INFO) | |||
END IF | |||
IF ( SCALE /= ZERO .AND. (SSUM /= ZERO) ) THEN | |||
ROOTSC = SQRT(SSUM) | |||
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN | |||
! Norm of Y(:,i) overflows. First, Y(:,i) | |||
! is scaled by | |||
! ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2. | |||
! Next, the norm of Y(:,i) is stored without | |||
! overflow as RWORK(i) = - SCALE * (ROOTSC/M), | |||
! the minus sign indicating the 1/M factor. | |||
! Scaling is performed without overflow, and | |||
! underflow may occur in the smallest entries | |||
! of Y(:,i). The relative backward and forward | |||
! errors are small in the ell_2 norm. | |||
CALL CLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, & | |||
M, 1, Y(1,i), LDY, INFO2 ) | |||
RWORK(i) = - SCALE * ( ROOTSC / FLOAT(M) ) | |||
ELSE | |||
! Y(:,i) will be scaled to unit 2-norm | |||
RWORK(i) = SCALE * ROOTSC | |||
CALL CLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, & | |||
Y(1,i), LDY, INFO2 ) ! LAPACK CALL | |||
! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC | |||
END IF | |||
ELSE | |||
RWORK(i) = ZERO | |||
END IF | |||
END DO | |||
DO i = 1, N | |||
! Now, apply the same scaling to the columns of X. | |||
IF ( RWORK(i) > ZERO ) THEN | |||
CALL CSSCAL( M, ONE/RWORK(i), X(1,i), 1 ) ! BLAS CALL | |||
! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC | |||
ELSE IF ( RWORK(i) < ZERO ) THEN | |||
CALL CLASCL( 'G', 0, 0, -RWORK(i), & | |||
ONE/FLOAT(M), M, 1, X(1,i), LDX, INFO2 ) ! LAPACK CALL | |||
ELSE IF ( ABS(X(ICAMAX(M, X(1,i),1),i )) & | |||
/= ZERO ) THEN | |||
! Y(:,i) is zero vector. If X(:,i) is not | |||
! zero, then a warning flag is raised. | |||
! The computation continues but the | |||
! situation will be reported in the output. | |||
BADXY = .TRUE. | |||
END IF | |||
END DO | |||
END IF | |||
! | |||
! <2> SVD of the data snapshot matrix X. | |||
! ===================================== | |||
! The left singular vectors are stored in the array X. | |||
! The right singular vectors are in the array W. | |||
! The array W will later on contain the eigenvectors | |||
! of a Rayleigh quotient. | |||
NUMRNK = N | |||
SELECT CASE ( WHTSVD ) | |||
CASE (1) | |||
CALL CGESVD( 'O', 'S', M, N, X, LDX, RWORK, B, & | |||
LDB, W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL | |||
T_OR_N = 'C' | |||
CASE (2) | |||
CALL CGESDD( 'O', M, N, X, LDX, RWORK, B, LDB, W, & | |||
LDW, ZWORK, LZWORK, RWORK(N+1), IWORK, INFO1 ) ! LAPACK CALL | |||
T_OR_N = 'C' | |||
CASE (3) | |||
CALL CGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, & | |||
X, LDX, RWORK, Z, LDZ, W, LDW, & | |||
NUMRNK, IWORK, LIWORK, ZWORK, & | |||
LZWORK, RWORK(N+1), LRWORK-N, INFO1) ! LAPACK CALL | |||
CALL CLACPY( 'A', M, NUMRNK, Z, LDZ, X, LDX ) ! LAPACK CALL | |||
T_OR_N = 'C' | |||
CASE (4) | |||
CALL CGEJSV( 'F', 'U', JSVOPT, 'N', 'N', 'P', M, & | |||
N, X, LDX, RWORK, Z, LDZ, W, LDW, & | |||
ZWORK, LZWORK, RWORK(N+1), LRWORK-N, IWORK, INFO1 ) ! LAPACK CALL | |||
CALL CLACPY( 'A', M, N, Z, LDZ, X, LDX ) ! LAPACK CALL | |||
T_OR_N = 'N' | |||
XSCL1 = RWORK(N+1) | |||
XSCL2 = RWORK(N+2) | |||
IF ( XSCL1 /= XSCL2 ) THEN | |||
! This is an exceptional situation. If the | |||
! data matrices are not scaled and the | |||
! largest singular value of X overflows. | |||
! In that case CGEJSV can return the SVD | |||
! in scaled form. The scaling factor can be used | |||
! to rescale the data (X and Y). | |||
CALL CLASCL( 'G', 0, 0, XSCL1, XSCL2, M, N, Y, LDY, INFO2 ) | |||
END IF | |||
END SELECT | |||
! | |||
IF ( INFO1 > 0 ) THEN | |||
! The SVD selected subroutine did not converge. | |||
! Return with an error code. | |||
INFO = 2 | |||
RETURN | |||
END IF | |||
! | |||
IF ( RWORK(1) == ZERO ) THEN | |||
! The largest computed singular value of (scaled) | |||
! X is zero. Return error code -8 | |||
! (the 8th input variable had an illegal value). | |||
K = 0 | |||
INFO = -8 | |||
CALL XERBLA('CGEDMD',-INFO) | |||
RETURN | |||
END IF | |||
! | |||
!<3> Determine the numerical rank of the data | |||
! snapshots matrix X. This depends on the | |||
! parameters NRNK and TOL. | |||
SELECT CASE ( NRNK ) | |||
CASE ( -1 ) | |||
K = 1 | |||
DO i = 2, NUMRNK | |||
IF ( ( RWORK(i) <= RWORK(1)*TOL ) .OR. & | |||
( RWORK(i) <= SMALL ) ) EXIT | |||
K = K + 1 | |||
END DO | |||
CASE ( -2 ) | |||
K = 1 | |||
DO i = 1, NUMRNK-1 | |||
IF ( ( RWORK(i+1) <= RWORK(i)*TOL ) .OR. & | |||
( RWORK(i) <= SMALL ) ) EXIT | |||
K = K + 1 | |||
END DO | |||
CASE DEFAULT | |||
K = 1 | |||
DO i = 2, NRNK | |||
IF ( RWORK(i) <= SMALL ) EXIT | |||
K = K + 1 | |||
END DO | |||
END SELECT | |||
! Now, U = X(1:M,1:K) is the SVD/POD basis for the | |||
! snapshot data in the input matrix X. | |||
!<4> Compute the Rayleigh quotient S = U^H * A * U. | |||
! Depending on the requested outputs, the computation | |||
! is organized to compute additional auxiliary | |||
! matrices (for the residuals and refinements). | |||
! | |||
! In all formulas below, we need V_k*Sigma_k^(-1) | |||
! where either V_k is in W(1:N,1:K), or V_k^H is in | |||
! W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)). | |||
IF ( LSAME(T_OR_N, 'N') ) THEN | |||
DO i = 1, K | |||
CALL CSSCAL( N, ONE/RWORK(i), W(1,i), 1 ) ! BLAS CALL | |||
! W(1:N,i) = (ONE/RWORK(i)) * W(1:N,i) ! INTRINSIC | |||
END DO | |||
ELSE | |||
! This non-unit stride access is due to the fact | |||
! that CGESVD, CGESVDQ and CGESDD return the | |||
! adjoint matrix of the right singular vectors. | |||
!DO i = 1, K | |||
! CALL DSCAL( N, ONE/RWORK(i), W(i,1), LDW ) ! BLAS CALL | |||
! ! W(i,1:N) = (ONE/RWORK(i)) * W(i,1:N) ! INTRINSIC | |||
!END DO | |||
DO i = 1, K | |||
RWORK(N+i) = ONE/RWORK(i) | |||
END DO | |||
DO j = 1, N | |||
DO i = 1, K | |||
W(i,j) = CMPLX(RWORK(N+i),ZERO,KIND=WP)*W(i,j) | |||
END DO | |||
END DO | |||
END IF | |||
! | |||
IF ( WNTREF ) THEN | |||
! | |||
! Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K))) | |||
! for computing the refined Ritz vectors | |||
! (optionally, outside CGEDMD). | |||
CALL CGEMM( 'N', T_OR_N, M, K, N, ZONE, Y, LDY, W, & | |||
LDW, ZZERO, Z, LDZ ) ! BLAS CALL | |||
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T' | |||
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K)) ! INTRINSIC, for T_OR_N=='N' | |||
! | |||
! At this point Z contains | |||
! A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and | |||
! this is needed for computing the residuals. | |||
! This matrix is returned in the array B and | |||
! it can be used to compute refined Ritz vectors. | |||
CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB ) ! BLAS CALL | |||
! B(1:M,1:K) = Z(1:M,1:K) ! INTRINSIC | |||
CALL CGEMM( 'C', 'N', K, K, M, ZONE, X, LDX, Z, & | |||
LDZ, ZZERO, S, LDS ) ! BLAS CALL | |||
! S(1:K,1:K) = MATMUL(TANSPOSE(X(1:M,1:K)),Z(1:M,1:K)) ! INTRINSIC | |||
! At this point S = U^H * A * U is the Rayleigh quotient. | |||
ELSE | |||
! A * U(:,1:K) is not explicitly needed and the | |||
! computation is organized differently. The Rayleigh | |||
! quotient is computed more efficiently. | |||
CALL CGEMM( 'C', 'N', K, N, M, ZONE, X, LDX, Y, LDY, & | |||
ZZERO, Z, LDZ ) ! BLAS CALL | |||
! Z(1:K,1:N) = MATMUL( TRANSPOSE(X(1:M,1:K)), Y(1:M,1:N) ) ! INTRINSIC | |||
! | |||
CALL CGEMM( 'N', T_OR_N, K, K, N, ZONE, Z, LDZ, W, & | |||
LDW, ZZERO, S, LDS ) ! BLAS CALL | |||
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T' | |||
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K))) ! INTRINSIC, for T_OR_N=='N' | |||
! At this point S = U^H * A * U is the Rayleigh quotient. | |||
! If the residuals are requested, save scaled V_k into Z. | |||
! Recall that V_k or V_k^H is stored in W. | |||
IF ( WNTRES .OR. WNTEX ) THEN | |||
IF ( LSAME(T_OR_N, 'N') ) THEN | |||
CALL CLACPY( 'A', N, K, W, LDW, Z, LDZ ) | |||
ELSE | |||
CALL CLACPY( 'A', K, N, W, LDW, Z, LDZ ) | |||
END IF | |||
END IF | |||
END IF | |||
! | |||
!<5> Compute the Ritz values and (if requested) the | |||
! right eigenvectors of the Rayleigh quotient. | |||
! | |||
CALL CGEEV( 'N', JOBZL, K, S, LDS, EIGS, W, & | |||
LDW, W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL | |||
! | |||
! W(1:K,1:K) contains the eigenvectors of the Rayleigh | |||
! quotient. See the description of Z. | |||
! Also, see the description of CGEEV. | |||
IF ( INFO1 > 0 ) THEN | |||
! CGEEV failed to compute the eigenvalues and | |||
! eigenvectors of the Rayleigh quotient. | |||
INFO = 3 | |||
RETURN | |||
END IF | |||
! | |||
! <6> Compute the eigenvectors (if requested) and, | |||
! the residuals (if requested). | |||
! | |||
IF ( WNTVEC .OR. WNTEX ) THEN | |||
IF ( WNTRES ) THEN | |||
IF ( WNTREF ) THEN | |||
! Here, if the refinement is requested, we have | |||
! A*U(:,1:K) already computed and stored in Z. | |||
! For the residuals, need Y = A * U(:,1;K) * W. | |||
CALL CGEMM( 'N', 'N', M, K, K, ZONE, Z, LDZ, W, & | |||
LDW, ZZERO, Y, LDY ) ! BLAS CALL | |||
! Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K) ! INTRINSIC | |||
! This frees Z; Y contains A * U(:,1:K) * W. | |||
ELSE | |||
! Compute S = V_k * Sigma_k^(-1) * W, where | |||
! V_k * Sigma_k^(-1) (or its adjoint) is stored in Z | |||
CALL CGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, & | |||
W, LDW, ZZERO, S, LDS) | |||
! Then, compute Z = Y * S = | |||
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) = | |||
! = A * U(:,1:K) * W(1:K,1:K) | |||
CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, & | |||
LDS, ZZERO, Z, LDZ) | |||
! Save a copy of Z into Y and free Z for holding | |||
! the Ritz vectors. | |||
CALL CLACPY( 'A', M, K, Z, LDZ, Y, LDY ) | |||
IF ( WNTEX ) CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB ) | |||
END IF | |||
ELSE IF ( WNTEX ) THEN | |||
! Compute S = V_k * Sigma_k^(-1) * W, where | |||
! V_k * Sigma_k^(-1) is stored in Z | |||
CALL CGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, & | |||
W, LDW, ZZERO, S, LDS) | |||
! Then, compute Z = Y * S = | |||
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) = | |||
! = A * U(:,1:K) * W(1:K,1:K) | |||
CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, & | |||
LDS, ZZERO, B, LDB) | |||
! The above call replaces the following two calls | |||
! that were used in the developing-testing phase. | |||
! CALL CGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, & | |||
! LDS, ZZERO, Z, LDZ) | |||
! Save a copy of Z into Y and free Z for holding | |||
! the Ritz vectors. | |||
! CALL CLACPY( 'A', M, K, Z, LDZ, B, LDB ) | |||
END IF | |||
! | |||
! Compute the Ritz vectors | |||
IF ( WNTVEC ) CALL CGEMM( 'N', 'N', M, K, K, ZONE, X, LDX, W, LDW, & | |||
ZZERO, Z, LDZ ) ! BLAS CALL | |||
! Z(1:M,1:K) = MATMUL(X(1:M,1:K), W(1:K,1:K)) ! INTRINSIC | |||
! | |||
IF ( WNTRES ) THEN | |||
DO i = 1, K | |||
CALL CAXPY( M, -EIGS(i), Z(1,i), 1, Y(1,i), 1 ) ! BLAS CALL | |||
! Y(1:M,i) = Y(1:M,i) - EIGS(i) * Z(1:M,i) ! INTRINSIC | |||
RES(i) = SCNRM2( M, Y(1,i), 1) ! BLAS CALL | |||
END DO | |||
END IF | |||
END IF | |||
! | |||
IF ( WHTSVD == 4 ) THEN | |||
RWORK(N+1) = XSCL1 | |||
RWORK(N+2) = XSCL2 | |||
END IF | |||
! | |||
! Successful exit. | |||
IF ( .NOT. BADXY ) THEN | |||
INFO = 0 | |||
ELSE | |||
! A warning on possible data inconsistency. | |||
! This should be a rare event. | |||
INFO = 4 | |||
END IF | |||
!............................................................ | |||
RETURN | |||
! ...... | |||
END SUBROUTINE CGEDMD | |||
@@ -0,0 +1,689 @@ | |||
SUBROUTINE CGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, & | |||
WHTSVD, M, N, F, LDF, X, LDX, Y, & | |||
LDY, NRNK, TOL, K, EIGS, & | |||
Z, LDZ, RES, B, LDB, V, LDV, & | |||
S, LDS, ZWORK, LZWORK, WORK, LWORK, & | |||
IWORK, LIWORK, INFO ) | |||
! March 2023 | |||
!..... | |||
USE iso_fortran_env | |||
IMPLICIT NONE | |||
INTEGER, PARAMETER :: WP = real32 | |||
!..... | |||
! Scalar arguments | |||
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, & | |||
JOBT, JOBF | |||
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, & | |||
LDY, NRNK, LDZ, LDB, LDV, & | |||
LDS, LZWORK, LWORK, LIWORK | |||
INTEGER, INTENT(OUT) :: INFO, K | |||
REAL(KIND=WP), INTENT(IN) :: TOL | |||
! Array arguments | |||
COMPLEX(KIND=WP), INTENT(INOUT) :: F(LDF,*) | |||
COMPLEX(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), & | |||
Z(LDZ,*), B(LDB,*), & | |||
V(LDV,*), S(LDS,*) | |||
COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*) | |||
COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*) | |||
REAL(KIND=WP), INTENT(OUT) :: RES(*) | |||
REAL(KIND=WP), INTENT(OUT) :: WORK(*) | |||
INTEGER, INTENT(OUT) :: IWORK(*) | |||
!..... | |||
! Purpose | |||
! ======= | |||
! CGEDMDQ computes the Dynamic Mode Decomposition (DMD) for | |||
! a pair of data snapshot matrices, using a QR factorization | |||
! based compression of the data. For the input matrices | |||
! X and Y such that Y = A*X with an unaccessible matrix | |||
! A, CGEDMDQ computes a certain number of Ritz pairs of A using | |||
! the standard Rayleigh-Ritz extraction from a subspace of | |||
! range(X) that is determined using the leading left singular | |||
! vectors of X. Optionally, CGEDMDQ returns the residuals | |||
! of the computed Ritz pairs, the information needed for | |||
! a refinement of the Ritz vectors, or the eigenvectors of | |||
! the Exact DMD. | |||
! For further details see the references listed | |||
! below. For more details of the implementation see [3]. | |||
! | |||
! References | |||
! ========== | |||
! [1] P. Schmid: Dynamic mode decomposition of numerical | |||
! and experimental data, | |||
! Journal of Fluid Mechanics 656, 5-28, 2010. | |||
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal | |||
! decompositions: analysis and enhancements, | |||
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. | |||
! [3] Z. Drmac: A LAPACK implementation of the Dynamic | |||
! Mode Decomposition I. Technical report. AIMDyn Inc. | |||
! and LAPACK Working Note 298. | |||
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. | |||
! Brunton, N. Kutz: On Dynamic Mode Decomposition: | |||
! Theory and Applications, Journal of Computational | |||
! Dynamics 1(2), 391 -421, 2014. | |||
! | |||
! Developed and supported by: | |||
! =========================== | |||
! Developed and coded by Zlatko Drmac, Faculty of Science, | |||
! University of Zagreb; drmac@math.hr | |||
! In cooperation with | |||
! AIMdyn Inc., Santa Barbara, CA. | |||
! and supported by | |||
! - DARPA SBIR project "Koopman Operator-Based Forecasting | |||
! for Nonstationary Processes from Near-Term, Limited | |||
! Observational Data" Contract No: W31P4Q-21-C-0007 | |||
! - DARPA PAI project "Physics-Informed Machine Learning | |||
! Methodologies" Contract No: HR0011-18-9-0033 | |||
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic | |||
! Framework for Space-Time Analysis of Process Dynamics" | |||
! Contract No: HR0011-16-C-0116 | |||
! Any opinions, findings and conclusions or recommendations | |||
! expressed in this material are those of the author and | |||
! do not necessarily reflect the views of the DARPA SBIR | |||
! Program Office. | |||
!============================================================ | |||
! Distribution Statement A: | |||
! Approved for Public Release, Distribution Unlimited. | |||
! Cleared by DARPA on September 29, 2022 | |||
!============================================================ | |||
!...................................................................... | |||
! Arguments | |||
! ========= | |||
! JOBS (input) CHARACTER*1 | |||
! Determines whether the initial data snapshots are scaled | |||
! by a diagonal matrix. The data snapshots are the columns | |||
! of F. The leading N-1 columns of F are denoted X and the | |||
! trailing N-1 columns are denoted Y. | |||
! 'S' :: The data snapshots matrices X and Y are multiplied | |||
! with a diagonal matrix D so that X*D has unit | |||
! nonzero columns (in the Euclidean 2-norm) | |||
! 'C' :: The snapshots are scaled as with the 'S' option. | |||
! If it is found that an i-th column of X is zero | |||
! vector and the corresponding i-th column of Y is | |||
! non-zero, then the i-th column of Y is set to | |||
! zero and a warning flag is raised. | |||
! 'Y' :: The data snapshots matrices X and Y are multiplied | |||
! by a diagonal matrix D so that Y*D has unit | |||
! nonzero columns (in the Euclidean 2-norm) | |||
! 'N' :: No data scaling. | |||
!..... | |||
! JOBZ (input) CHARACTER*1 | |||
! Determines whether the eigenvectors (Koopman modes) will | |||
! be computed. | |||
! 'V' :: The eigenvectors (Koopman modes) will be computed | |||
! and returned in the matrix Z. | |||
! See the description of Z. | |||
! 'F' :: The eigenvectors (Koopman modes) will be returned | |||
! in factored form as the product Z*V, where Z | |||
! is orthonormal and V contains the eigenvectors | |||
! of the corresponding Rayleigh quotient. | |||
! See the descriptions of F, V, Z. | |||
! 'Q' :: The eigenvectors (Koopman modes) will be returned | |||
! in factored form as the product Q*Z, where Z | |||
! contains the eigenvectors of the compression of the | |||
! underlying discretised operator onto the span of | |||
! the data snapshots. See the descriptions of F, V, Z. | |||
! Q is from the inital QR facorization. | |||
! 'N' :: The eigenvectors are not computed. | |||
!..... | |||
! JOBR (input) CHARACTER*1 | |||
! Determines whether to compute the residuals. | |||
! 'R' :: The residuals for the computed eigenpairs will | |||
! be computed and stored in the array RES. | |||
! See the description of RES. | |||
! For this option to be legal, JOBZ must be 'V'. | |||
! 'N' :: The residuals are not computed. | |||
!..... | |||
! JOBQ (input) CHARACTER*1 | |||
! Specifies whether to explicitly compute and return the | |||
! unitary matrix from the QR factorization. | |||
! 'Q' :: The matrix Q of the QR factorization of the data | |||
! snapshot matrix is computed and stored in the | |||
! array F. See the description of F. | |||
! 'N' :: The matrix Q is not explicitly computed. | |||
!..... | |||
! JOBT (input) CHARACTER*1 | |||
! Specifies whether to return the upper triangular factor | |||
! from the QR factorization. | |||
! 'R' :: The matrix R of the QR factorization of the data | |||
! snapshot matrix F is returned in the array Y. | |||
! See the description of Y and Further details. | |||
! 'N' :: The matrix R is not returned. | |||
!..... | |||
! JOBF (input) CHARACTER*1 | |||
! Specifies whether to store information needed for post- | |||
! processing (e.g. computing refined Ritz vectors) | |||
! 'R' :: The matrix needed for the refinement of the Ritz | |||
! vectors is computed and stored in the array B. | |||
! See the description of B. | |||
! 'E' :: The unscaled eigenvectors of the Exact DMD are | |||
! computed and returned in the array B. See the | |||
! description of B. | |||
! 'N' :: No eigenvector refinement data is computed. | |||
! To be useful on exit, this option needs JOBQ='Q'. | |||
!..... | |||
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } | |||
! Allows for a selection of the SVD algorithm from the | |||
! LAPACK library. | |||
! 1 :: CGESVD (the QR SVD algorithm) | |||
! 2 :: CGESDD (the Divide and Conquer algorithm; if enough | |||
! workspace available, this is the fastest option) | |||
! 3 :: CGESVDQ (the preconditioned QR SVD ; this and 4 | |||
! are the most accurate options) | |||
! 4 :: CGEJSV (the preconditioned Jacobi SVD; this and 3 | |||
! are the most accurate options) | |||
! For the four methods above, a significant difference in | |||
! the accuracy of small singular values is possible if | |||
! the snapshots vary in norm so that X is severely | |||
! ill-conditioned. If small (smaller than EPS*||X||) | |||
! singular values are of interest and JOBS=='N', then | |||
! the options (3, 4) give the most accurate results, where | |||
! the option 4 is slightly better and with stronger | |||
! theoretical background. | |||
! If JOBS=='S', i.e. the columns of X will be normalized, | |||
! then all methods give nearly equally accurate results. | |||
!..... | |||
! M (input) INTEGER, M >= 0 | |||
! The state space dimension (the number of rows of F). | |||
!..... | |||
! N (input) INTEGER, 0 <= N <= M | |||
! The number of data snapshots from a single trajectory, | |||
! taken at equidistant discrete times. This is the | |||
! number of columns of F. | |||
!..... | |||
! F (input/output) COMPLEX(KIND=WP) M-by-N array | |||
! > On entry, | |||
! the columns of F are the sequence of data snapshots | |||
! from a single trajectory, taken at equidistant discrete | |||
! times. It is assumed that the column norms of F are | |||
! in the range of the normalized floating point numbers. | |||
! < On exit, | |||
! If JOBQ == 'Q', the array F contains the orthogonal | |||
! matrix/factor of the QR factorization of the initial | |||
! data snapshots matrix F. See the description of JOBQ. | |||
! If JOBQ == 'N', the entries in F strictly below the main | |||
! diagonal contain, column-wise, the information on the | |||
! Householder vectors, as returned by CGEQRF. The | |||
! remaining information to restore the orthogonal matrix | |||
! of the initial QR factorization is stored in ZWORK(1:MIN(M,N)). | |||
! See the description of ZWORK. | |||
!..... | |||
! LDF (input) INTEGER, LDF >= M | |||
! The leading dimension of the array F. | |||
!..... | |||
! X (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array | |||
! X is used as workspace to hold representations of the | |||
! leading N-1 snapshots in the orthonormal basis computed | |||
! in the QR factorization of F. | |||
! On exit, the leading K columns of X contain the leading | |||
! K left singular vectors of the above described content | |||
! of X. To lift them to the space of the left singular | |||
! vectors U(:,1:K) of the input data, pre-multiply with the | |||
! Q factor from the initial QR factorization. | |||
! See the descriptions of F, K, V and Z. | |||
!..... | |||
! LDX (input) INTEGER, LDX >= N | |||
! The leading dimension of the array X. | |||
!..... | |||
! Y (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N) array | |||
! Y is used as workspace to hold representations of the | |||
! trailing N-1 snapshots in the orthonormal basis computed | |||
! in the QR factorization of F. | |||
! On exit, | |||
! If JOBT == 'R', Y contains the MIN(M,N)-by-N upper | |||
! triangular factor from the QR factorization of the data | |||
! snapshot matrix F. | |||
!..... | |||
! LDY (input) INTEGER , LDY >= N | |||
! The leading dimension of the array Y. | |||
!..... | |||
! NRNK (input) INTEGER | |||
! Determines the mode how to compute the numerical rank, | |||
! i.e. how to truncate small singular values of the input | |||
! matrix X. On input, if | |||
! NRNK = -1 :: i-th singular value sigma(i) is truncated | |||
! if sigma(i) <= TOL*sigma(1) | |||
! This option is recommended. | |||
! NRNK = -2 :: i-th singular value sigma(i) is truncated | |||
! if sigma(i) <= TOL*sigma(i-1) | |||
! This option is included for R&D purposes. | |||
! It requires highly accurate SVD, which | |||
! may not be feasible. | |||
! The numerical rank can be enforced by using positive | |||
! value of NRNK as follows: | |||
! 0 < NRNK <= N-1 :: at most NRNK largest singular values | |||
! will be used. If the number of the computed nonzero | |||
! singular values is less than NRNK, then only those | |||
! nonzero values will be used and the actually used | |||
! dimension is less than NRNK. The actual number of | |||
! the nonzero singular values is returned in the variable | |||
! K. See the description of K. | |||
!..... | |||
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1 | |||
! The tolerance for truncating small singular values. | |||
! See the description of NRNK. | |||
!..... | |||
! K (output) INTEGER, 0 <= K <= N | |||
! The dimension of the SVD/POD basis for the leading N-1 | |||
! data snapshots (columns of F) and the number of the | |||
! computed Ritz pairs. The value of K is determined | |||
! according to the rule set by the parameters NRNK and | |||
! TOL. See the descriptions of NRNK and TOL. | |||
!..... | |||
! EIGS (output) COMPLEX(KIND=WP) (N-1)-by-1 array | |||
! The leading K (K<=N-1) entries of EIGS contain | |||
! the computed eigenvalues (Ritz values). | |||
! See the descriptions of K, and Z. | |||
!..... | |||
! Z (workspace/output) COMPLEX(KIND=WP) M-by-(N-1) array | |||
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i) | |||
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1. | |||
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as | |||
! Z*V, where Z contains orthonormal matrix (the product of | |||
! Q from the initial QR factorization and the SVD/POD_basis | |||
! returned by CGEDMD in X) and the second factor (the | |||
! eigenvectors of the Rayleigh quotient) is in the array V, | |||
! as returned by CGEDMD. That is, X(:,1:K)*V(:,i) | |||
! is an eigenvector corresponding to EIGS(i). The columns | |||
! of V(1:K,1:K) are the computed eigenvectors of the | |||
! K-by-K Rayleigh quotient. | |||
! See the descriptions of EIGS, X and V. | |||
!..... | |||
! LDZ (input) INTEGER , LDZ >= M | |||
! The leading dimension of the array Z. | |||
!..... | |||
! RES (output) REAL(KIND=WP) (N-1)-by-1 array | |||
! RES(1:K) contains the residuals for the K computed | |||
! Ritz pairs, | |||
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2. | |||
! See the description of EIGS and Z. | |||
!..... | |||
! B (output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array. | |||
! IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can | |||
! be used for computing the refined vectors; see further | |||
! details in the provided references. | |||
! If JOBF == 'E', B(1:N,1;K) contains | |||
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the | |||
! Exact DMD, up to scaling by the inverse eigenvalues. | |||
! In both cases, the content of B can be lifted to the | |||
! original dimension of the input data by pre-multiplying | |||
! with the Q factor from the initial QR factorization. | |||
! Here A denotes a compression of the underlying operator. | |||
! See the descriptions of F and X. | |||
! If JOBF =='N', then B is not referenced. | |||
!..... | |||
! LDB (input) INTEGER, LDB >= MIN(M,N) | |||
! The leading dimension of the array B. | |||
!..... | |||
! V (workspace/output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array | |||
! On exit, V(1:K,1:K) V contains the K eigenvectors of | |||
! the Rayleigh quotient. The Ritz vectors | |||
! (returned in Z) are the product of Q from the initial QR | |||
! factorization (see the description of F) X (see the | |||
! description of X) and V. | |||
!..... | |||
! LDV (input) INTEGER, LDV >= N-1 | |||
! The leading dimension of the array V. | |||
!..... | |||
! S (output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array | |||
! The array S(1:K,1:K) is used for the matrix Rayleigh | |||
! quotient. This content is overwritten during | |||
! the eigenvalue decomposition by CGEEV. | |||
! See the description of K. | |||
!..... | |||
! LDS (input) INTEGER, LDS >= N-1 | |||
! The leading dimension of the array S. | |||
!..... | |||
! ZWORK (workspace/output) COMPLEX(KIND=WP) LWORK-by-1 array | |||
! On exit, | |||
! ZWORK(1:MIN(M,N)) contains the scalar factors of the | |||
! elementary reflectors as returned by CGEQRF of the | |||
! M-by-N input matrix F. | |||
! If the call to CGEDMDQ is only workspace query, then | |||
! ZWORK(1) contains the minimal complex workspace length and | |||
! ZWORK(2) is the optimal complex workspace length. | |||
! Hence, the length of work is at least 2. | |||
! See the description of LZWORK. | |||
!..... | |||
! LZWORK (input) INTEGER | |||
! The minimal length of the workspace vector ZWORK. | |||
! LZWORK is calculated as follows: | |||
! Let MLWQR = N (minimal workspace for CGEQRF[M,N]) | |||
! MLWDMD = minimal workspace for CGEDMD (see the | |||
! description of LWORK in CGEDMD) | |||
! MLWMQR = N (minimal workspace for | |||
! ZUNMQR['L','N',M,N,N]) | |||
! MLWGQR = N (minimal workspace for ZUNGQR[M,N,N]) | |||
! MINMN = MIN(M,N) | |||
! Then | |||
! LZWORK = MAX(2, MIN(M,N)+MLWQR, MINMN+MLWDMD) | |||
! is further updated as follows: | |||
! if JOBZ == 'V' or JOBZ == 'F' THEN | |||
! LZWORK = MAX( LZWORK, MINMN+MLWMQR ) | |||
! if JOBQ == 'Q' THEN | |||
! LZWORK = MAX( ZLWORK, MINMN+MLWGQR) | |||
! | |||
!..... | |||
! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array | |||
! On exit, | |||
! WORK(1:N-1) contains the singular values of | |||
! the input submatrix F(1:M,1:N-1). | |||
! If the call to CGEDMDQ is only workspace query, then | |||
! WORK(1) contains the minimal workspace length and | |||
! WORK(2) is the optimal workspace length. hence, the | |||
! length of work is at least 2. | |||
! See the description of LWORK. | |||
!..... | |||
! LWORK (input) INTEGER | |||
! The minimal length of the workspace vector WORK. | |||
! LWORK is the same as in CGEDMD, because in CGEDMDQ | |||
! only CGEDMD requires real workspace for snapshots | |||
! of dimensions MIN(M,N)-by-(N-1). | |||
! If on entry LWORK = -1, then a workspace query is | |||
! assumed and the procedure only computes the minimal | |||
! and the optimal workspace lengths for both WORK and | |||
! IWORK. See the descriptions of WORK and IWORK. | |||
!..... | |||
! IWORK (workspace/output) INTEGER LIWORK-by-1 array | |||
! Workspace that is required only if WHTSVD equals | |||
! 2 , 3 or 4. (See the description of WHTSVD). | |||
! If on entry LWORK =-1 or LIWORK=-1, then the | |||
! minimal length of IWORK is computed and returned in | |||
! IWORK(1). See the description of LIWORK. | |||
!..... | |||
! LIWORK (input) INTEGER | |||
! The minimal length of the workspace vector IWORK. | |||
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 | |||
! Let M1=MIN(M,N), N1=N-1. Then | |||
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N)) | |||
! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1) | |||
! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N) | |||
! If on entry LIWORK = -1, then a workspace query is | |||
! assumed and the procedure only computes the minimal | |||
! and the optimal workspace lengths for both WORK and | |||
! IWORK. See the descriptions of WORK and IWORK. | |||
!..... | |||
! INFO (output) INTEGER | |||
! -i < 0 :: On entry, the i-th argument had an | |||
! illegal value | |||
! = 0 :: Successful return. | |||
! = 1 :: Void input. Quick exit (M=0 or N=0). | |||
! = 2 :: The SVD computation of X did not converge. | |||
! Suggestion: Check the input data and/or | |||
! repeat with different WHTSVD. | |||
! = 3 :: The computation of the eigenvalues did not | |||
! converge. | |||
! = 4 :: If data scaling was requested on input and | |||
! the procedure found inconsistency in the data | |||
! such that for some column index i, | |||
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set | |||
! to zero if JOBS=='C'. The computation proceeds | |||
! with original or modified data and warning | |||
! flag is set with INFO=4. | |||
!............................................................. | |||
!............................................................. | |||
! Parameters | |||
! ~~~~~~~~~~ | |||
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP | |||
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP | |||
! COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP ) | |||
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP ) | |||
! | |||
! Local scalars | |||
! ~~~~~~~~~~~~~ | |||
INTEGER :: IMINWR, INFO1, MINMN, MLRWRK, & | |||
MLWDMD, MLWGQR, MLWMQR, MLWORK, & | |||
MLWQR, OLWDMD, OLWGQR, OLWMQR, & | |||
OLWORK, OLWQR | |||
LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, & | |||
WNTTRF, WNTRES, WNTVEC, WNTVCF, & | |||
WNTVCQ, WNTREF, WNTEX | |||
CHARACTER(LEN=1) :: JOBVL | |||
! | |||
! External functions (BLAS and LAPACK) | |||
! ~~~~~~~~~~~~~~~~~ | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
! | |||
! External subroutines (BLAS and LAPACK) | |||
! ~~~~~~~~~~~~~~~~~~~~ | |||
EXTERNAL CGEQRF, CLACPY, CLASET, CUNGQR, & | |||
CUNMQR, XERBLA | |||
! External subroutines | |||
! ~~~~~~~~~~~~~~~~~~~~ | |||
EXTERNAL CGEDMD | |||
! Intrinsic functions | |||
! ~~~~~~~~~~~~~~~~~~~ | |||
INTRINSIC MAX, MIN, INT | |||
!.......................................................... | |||
! | |||
! Test the input arguments | |||
WNTRES = LSAME(JOBR,'R') | |||
SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' ) | |||
SCCOLY = LSAME(JOBS,'Y') | |||
WNTVEC = LSAME(JOBZ,'V') | |||
WNTVCF = LSAME(JOBZ,'F') | |||
WNTVCQ = LSAME(JOBZ,'Q') | |||
WNTREF = LSAME(JOBF,'R') | |||
WNTEX = LSAME(JOBF,'E') | |||
WANTQ = LSAME(JOBQ,'Q') | |||
WNTTRF = LSAME(JOBT,'R') | |||
MINMN = MIN(M,N) | |||
INFO = 0 | |||
LQUERY = ( ( LWORK == -1 ) .OR. ( LIWORK == -1 ) ) | |||
! | |||
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. & | |||
LSAME(JOBS,'N')) ) THEN | |||
INFO = -1 | |||
ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ & | |||
.OR. LSAME(JOBZ,'N')) ) THEN | |||
INFO = -2 | |||
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. & | |||
( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN | |||
INFO = -3 | |||
ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN | |||
INFO = -4 | |||
ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN | |||
INFO = -5 | |||
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. & | |||
LSAME(JOBF,'N') ) ) THEN | |||
INFO = -6 | |||
ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. & | |||
(WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN | |||
INFO = -7 | |||
ELSE IF ( M < 0 ) THEN | |||
INFO = -8 | |||
ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN | |||
INFO = -9 | |||
ELSE IF ( LDF < M ) THEN | |||
INFO = -11 | |||
ELSE IF ( LDX < MINMN ) THEN | |||
INFO = -13 | |||
ELSE IF ( LDY < MINMN ) THEN | |||
INFO = -15 | |||
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. & | |||
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN | |||
INFO = -16 | |||
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN | |||
INFO = -17 | |||
ELSE IF ( LDZ < M ) THEN | |||
INFO = -21 | |||
ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN | |||
INFO = -24 | |||
ELSE IF ( LDV < N-1 ) THEN | |||
INFO = -26 | |||
ELSE IF ( LDS < N-1 ) THEN | |||
INFO = -28 | |||
END IF | |||
! | |||
IF ( WNTVEC .OR. WNTVCF .OR. WNTVCQ ) THEN | |||
JOBVL = 'V' | |||
ELSE | |||
JOBVL = 'N' | |||
END IF | |||
IF ( INFO == 0 ) THEN | |||
! Compute the minimal and the optimal workspace | |||
! requirements. Simulate running the code and | |||
! determine minimal and optimal sizes of the | |||
! workspace at any moment of the run. | |||
IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN | |||
! All output except K is void. INFO=1 signals | |||
! the void input. In case of a workspace query, | |||
! the minimal workspace lengths are returned. | |||
IF ( LQUERY ) THEN | |||
IWORK(1) = 1 | |||
WORK(1) = 2 | |||
WORK(2) = 2 | |||
ELSE | |||
K = 0 | |||
END IF | |||
INFO = 1 | |||
RETURN | |||
END IF | |||
MLRWRK = 2 | |||
MLWORK = 2 | |||
OLWORK = 2 | |||
IMINWR = 1 | |||
MLWQR = MAX(1,N) ! Minimal workspace length for CGEQRF. | |||
MLWORK = MAX(MLWORK,MINMN + MLWQR) | |||
IF ( LQUERY ) THEN | |||
CALL CGEQRF( M, N, F, LDF, ZWORK, ZWORK, -1, & | |||
INFO1 ) | |||
OLWQR = INT(ZWORK(1)) | |||
OLWORK = MAX(OLWORK,MINMN + OLWQR) | |||
END IF | |||
CALL CGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,& | |||
N-1, X, LDX, Y, LDY, NRNK, TOL, K, & | |||
EIGS, Z, LDZ, RES, B, LDB, V, LDV, & | |||
S, LDS, ZWORK, LZWORK, WORK, -1, IWORK,& | |||
LIWORK, INFO1 ) | |||
MLWDMD = INT(ZWORK(1)) | |||
MLWORK = MAX(MLWORK, MINMN + MLWDMD) | |||
MLRWRK = MAX(MLRWRK, INT(WORK(1))) | |||
IMINWR = MAX(IMINWR, IWORK(1)) | |||
IF ( LQUERY ) THEN | |||
OLWDMD = INT(ZWORK(2)) | |||
OLWORK = MAX(OLWORK, MINMN+OLWDMD) | |||
END IF | |||
IF ( WNTVEC .OR. WNTVCF ) THEN | |||
MLWMQR = MAX(1,N) | |||
MLWORK = MAX(MLWORK, MINMN+MLWMQR) | |||
IF ( LQUERY ) THEN | |||
CALL CUNMQR( 'L','N', M, N, MINMN, F, LDF, & | |||
ZWORK, Z, LDZ, ZWORK, -1, INFO1 ) | |||
OLWMQR = INT(ZWORK(1)) | |||
OLWORK = MAX(OLWORK, MINMN+OLWMQR) | |||
END IF | |||
END IF | |||
IF ( WANTQ ) THEN | |||
MLWGQR = MAX(1,N) | |||
MLWORK = MAX(MLWORK, MINMN+MLWGQR) | |||
IF ( LQUERY ) THEN | |||
CALL CUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, & | |||
ZWORK, -1, INFO1 ) | |||
OLWGQR = INT(ZWORK(1)) | |||
OLWORK = MAX(OLWORK, MINMN+OLWGQR) | |||
END IF | |||
END IF | |||
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -34 | |||
IF ( LWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -32 | |||
IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -30 | |||
END IF | |||
IF( INFO /= 0 ) THEN | |||
CALL XERBLA( 'CGEDMDQ', -INFO ) | |||
RETURN | |||
ELSE IF ( LQUERY ) THEN | |||
! Return minimal and optimal workspace sizes | |||
IWORK(1) = IMINWR | |||
ZWORK(1) = MLWORK | |||
ZWORK(2) = OLWORK | |||
WORK(1) = MLRWRK | |||
WORK(2) = MLRWRK | |||
RETURN | |||
END IF | |||
!..... | |||
! Initial QR factorization that is used to represent the | |||
! snapshots as elements of lower dimensional subspace. | |||
! For large scale computation with M >>N , at this place | |||
! one can use an out of core QRF. | |||
! | |||
CALL CGEQRF( M, N, F, LDF, ZWORK, & | |||
ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) | |||
! | |||
! Define X and Y as the snapshots representations in the | |||
! orthogonal basis computed in the QR factorization. | |||
! X corresponds to the leading N-1 and Y to the trailing | |||
! N-1 snapshots. | |||
CALL CLASET( 'L', MINMN, N-1, ZZERO, ZZERO, X, LDX ) | |||
CALL CLACPY( 'U', MINMN, N-1, F, LDF, X, LDX ) | |||
CALL CLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY ) | |||
IF ( M >= 3 ) THEN | |||
CALL CLASET( 'L', MINMN-2, N-2, ZZERO, ZZERO, & | |||
Y(3,1), LDY ) | |||
END IF | |||
! | |||
! Compute the DMD of the projected snapshot pairs (X,Y) | |||
CALL CGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, & | |||
N-1, X, LDX, Y, LDY, NRNK, TOL, K, & | |||
EIGS, Z, LDZ, RES, B, LDB, V, LDV, & | |||
S, LDS, ZWORK(MINMN+1), LZWORK-MINMN, & | |||
WORK, LWORK, IWORK, LIWORK, INFO1 ) | |||
IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN | |||
! Return with error code. See CGEDMD for details. | |||
INFO = INFO1 | |||
RETURN | |||
ELSE | |||
INFO = INFO1 | |||
END IF | |||
! | |||
! The Ritz vectors (Koopman modes) can be explicitly | |||
! formed or returned in factored form. | |||
IF ( WNTVEC ) THEN | |||
! Compute the eigenvectors explicitly. | |||
IF ( M > MINMN ) CALL CLASET( 'A', M-MINMN, K, ZZERO, & | |||
ZZERO, Z(MINMN+1,1), LDZ ) | |||
CALL CUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, & | |||
LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) | |||
ELSE IF ( WNTVCF ) THEN | |||
! Return the Ritz vectors (eigenvectors) in factored | |||
! form Z*V, where Z contains orthonormal matrix (the | |||
! product of Q from the initial QR factorization and | |||
! the SVD/POD_basis returned by CGEDMD in X) and the | |||
! second factor (the eigenvectors of the Rayleigh | |||
! quotient) is in the array V, as returned by CGEDMD. | |||
CALL CLACPY( 'A', N, K, X, LDX, Z, LDZ ) | |||
IF ( M > N ) CALL CLASET( 'A', M-N, K, ZZERO, ZZERO, & | |||
Z(N+1,1), LDZ ) | |||
CALL CUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, & | |||
LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) | |||
END IF | |||
! | |||
! Some optional output variables: | |||
! | |||
! The upper triangular factor R in the initial QR | |||
! factorization is optionally returned in the array Y. | |||
! This is useful if this call to CGEDMDQ is to be | |||
! followed by a streaming DMD that is implemented in a | |||
! QR compressed form. | |||
IF ( WNTTRF ) THEN ! Return the upper triangular R in Y | |||
CALL CLASET( 'A', MINMN, N, ZZERO, ZZERO, Y, LDY ) | |||
CALL CLACPY( 'U', MINMN, N, F, LDF, Y, LDY ) | |||
END IF | |||
! | |||
! The orthonormal/unitary factor Q in the initial QR | |||
! factorization is optionally returned in the array F. | |||
! Same as with the triangular factor above, this is | |||
! useful in a streaming DMD. | |||
IF ( WANTQ ) THEN ! Q overwrites F | |||
CALL CUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, & | |||
ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) | |||
END IF | |||
! | |||
RETURN | |||
! | |||
END SUBROUTINE CGEDMDQ | |||
@@ -0,0 +1,704 @@ | |||
SUBROUTINE DGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, & | |||
WHTSVD, M, N, F, LDF, X, LDX, Y, & | |||
LDY, NRNK, TOL, K, REIG, IMEIG, & | |||
Z, LDZ, RES, B, LDB, V, LDV, & | |||
S, LDS, WORK, LWORK, IWORK, LIWORK, INFO ) | |||
! March 2023 | |||
!..... | |||
USE iso_fortran_env | |||
IMPLICIT NONE | |||
INTEGER, PARAMETER :: WP = real64 | |||
!..... | |||
! Scalar arguments | |||
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, & | |||
JOBT, JOBF | |||
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, & | |||
LDY, NRNK, LDZ, LDB, LDV, & | |||
LDS, LWORK, LIWORK | |||
INTEGER, INTENT(OUT) :: INFO, K | |||
REAL(KIND=WP), INTENT(IN) :: TOL | |||
! Array arguments | |||
REAL(KIND=WP), INTENT(INOUT) :: F(LDF,*) | |||
REAL(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), & | |||
Z(LDZ,*), B(LDB,*), & | |||
V(LDV,*), S(LDS,*) | |||
REAL(KIND=WP), INTENT(OUT) :: REIG(*), IMEIG(*), & | |||
RES(*) | |||
REAL(KIND=WP), INTENT(OUT) :: WORK(*) | |||
INTEGER, INTENT(OUT) :: IWORK(*) | |||
!..... | |||
! Purpose | |||
! ======= | |||
! DGEDMDQ computes the Dynamic Mode Decomposition (DMD) for | |||
! a pair of data snapshot matrices, using a QR factorization | |||
! based compression of the data. For the input matrices | |||
! X and Y such that Y = A*X with an unaccessible matrix | |||
! A, DGEDMDQ computes a certain number of Ritz pairs of A using | |||
! the standard Rayleigh-Ritz extraction from a subspace of | |||
! range(X) that is determined using the leading left singular | |||
! vectors of X. Optionally, DGEDMDQ returns the residuals | |||
! of the computed Ritz pairs, the information needed for | |||
! a refinement of the Ritz vectors, or the eigenvectors of | |||
! the Exact DMD. | |||
! For further details see the references listed | |||
! below. For more details of the implementation see [3]. | |||
! | |||
! References | |||
! ========== | |||
! [1] P. Schmid: Dynamic mode decomposition of numerical | |||
! and experimental data, | |||
! Journal of Fluid Mechanics 656, 5-28, 2010. | |||
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal | |||
! decompositions: analysis and enhancements, | |||
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. | |||
! [3] Z. Drmac: A LAPACK implementation of the Dynamic | |||
! Mode Decomposition I. Technical report. AIMDyn Inc. | |||
! and LAPACK Working Note 298. | |||
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. | |||
! Brunton, N. Kutz: On Dynamic Mode Decomposition: | |||
! Theory and Applications, Journal of Computational | |||
! Dynamics 1(2), 391 -421, 2014. | |||
! | |||
! Developed and supported by: | |||
! =========================== | |||
! Developed and coded by Zlatko Drmac, Faculty of Science, | |||
! University of Zagreb; drmac@math.hr | |||
! In cooperation with | |||
! AIMdyn Inc., Santa Barbara, CA. | |||
! and supported by | |||
! - DARPA SBIR project "Koopman Operator-Based Forecasting | |||
! for Nonstationary Processes from Near-Term, Limited | |||
! Observational Data" Contract No: W31P4Q-21-C-0007 | |||
! - DARPA PAI project "Physics-Informed Machine Learning | |||
! Methodologies" Contract No: HR0011-18-9-0033 | |||
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic | |||
! Framework for Space-Time Analysis of Process Dynamics" | |||
! Contract No: HR0011-16-C-0116 | |||
! Any opinions, findings and conclusions or recommendations | |||
! expressed in this material are those of the author and | |||
! do not necessarily reflect the views of the DARPA SBIR | |||
! Program Office. | |||
!============================================================ | |||
! Distribution Statement A: | |||
! Approved for Public Release, Distribution Unlimited. | |||
! Cleared by DARPA on September 29, 2022 | |||
!============================================================ | |||
!...................................................................... | |||
! Arguments | |||
! ========= | |||
! JOBS (input) CHARACTER*1 | |||
! Determines whether the initial data snapshots are scaled | |||
! by a diagonal matrix. The data snapshots are the columns | |||
! of F. The leading N-1 columns of F are denoted X and the | |||
! trailing N-1 columns are denoted Y. | |||
! 'S' :: The data snapshots matrices X and Y are multiplied | |||
! with a diagonal matrix D so that X*D has unit | |||
! nonzero columns (in the Euclidean 2-norm) | |||
! 'C' :: The snapshots are scaled as with the 'S' option. | |||
! If it is found that an i-th column of X is zero | |||
! vector and the corresponding i-th column of Y is | |||
! non-zero, then the i-th column of Y is set to | |||
! zero and a warning flag is raised. | |||
! 'Y' :: The data snapshots matrices X and Y are multiplied | |||
! by a diagonal matrix D so that Y*D has unit | |||
! nonzero columns (in the Euclidean 2-norm) | |||
! 'N' :: No data scaling. | |||
!..... | |||
! JOBZ (input) CHARACTER*1 | |||
! Determines whether the eigenvectors (Koopman modes) will | |||
! be computed. | |||
! 'V' :: The eigenvectors (Koopman modes) will be computed | |||
! and returned in the matrix Z. | |||
! See the description of Z. | |||
! 'F' :: The eigenvectors (Koopman modes) will be returned | |||
! in factored form as the product Z*V, where Z | |||
! is orthonormal and V contains the eigenvectors | |||
! of the corresponding Rayleigh quotient. | |||
! See the descriptions of F, V, Z. | |||
! 'Q' :: The eigenvectors (Koopman modes) will be returned | |||
! in factored form as the product Q*Z, where Z | |||
! contains the eigenvectors of the compression of the | |||
! underlying discretized operator onto the span of | |||
! the data snapshots. See the descriptions of F, V, Z. | |||
! Q is from the initial QR factorization. | |||
! 'N' :: The eigenvectors are not computed. | |||
!..... | |||
! JOBR (input) CHARACTER*1 | |||
! Determines whether to compute the residuals. | |||
! 'R' :: The residuals for the computed eigenpairs will | |||
! be computed and stored in the array RES. | |||
! See the description of RES. | |||
! For this option to be legal, JOBZ must be 'V'. | |||
! 'N' :: The residuals are not computed. | |||
!..... | |||
! JOBQ (input) CHARACTER*1 | |||
! Specifies whether to explicitly compute and return the | |||
! orthogonal matrix from the QR factorization. | |||
! 'Q' :: The matrix Q of the QR factorization of the data | |||
! snapshot matrix is computed and stored in the | |||
! array F. See the description of F. | |||
! 'N' :: The matrix Q is not explicitly computed. | |||
!..... | |||
! JOBT (input) CHARACTER*1 | |||
! Specifies whether to return the upper triangular factor | |||
! from the QR factorization. | |||
! 'R' :: The matrix R of the QR factorization of the data | |||
! snapshot matrix F is returned in the array Y. | |||
! See the description of Y and Further details. | |||
! 'N' :: The matrix R is not returned. | |||
!..... | |||
! JOBF (input) CHARACTER*1 | |||
! Specifies whether to store information needed for post- | |||
! processing (e.g. computing refined Ritz vectors) | |||
! 'R' :: The matrix needed for the refinement of the Ritz | |||
! vectors is computed and stored in the array B. | |||
! See the description of B. | |||
! 'E' :: The unscaled eigenvectors of the Exact DMD are | |||
! computed and returned in the array B. See the | |||
! description of B. | |||
! 'N' :: No eigenvector refinement data is computed. | |||
! To be useful on exit, this option needs JOBQ='Q'. | |||
!..... | |||
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } | |||
! Allows for a selection of the SVD algorithm from the | |||
! LAPACK library. | |||
! 1 :: DGESVD (the QR SVD algorithm) | |||
! 2 :: DGESDD (the Divide and Conquer algorithm; if enough | |||
! workspace available, this is the fastest option) | |||
! 3 :: DGESVDQ (the preconditioned QR SVD ; this and 4 | |||
! are the most accurate options) | |||
! 4 :: DGEJSV (the preconditioned Jacobi SVD; this and 3 | |||
! are the most accurate options) | |||
! For the four methods above, a significant difference in | |||
! the accuracy of small singular values is possible if | |||
! the snapshots vary in norm so that X is severely | |||
! ill-conditioned. If small (smaller than EPS*||X||) | |||
! singular values are of interest and JOBS=='N', then | |||
! the options (3, 4) give the most accurate results, where | |||
! the option 4 is slightly better and with stronger | |||
! theoretical background. | |||
! If JOBS=='S', i.e. the columns of X will be normalized, | |||
! then all methods give nearly equally accurate results. | |||
!..... | |||
! M (input) INTEGER, M >= 0 | |||
! The state space dimension (the number of rows of F). | |||
!..... | |||
! N (input) INTEGER, 0 <= N <= M | |||
! The number of data snapshots from a single trajectory, | |||
! taken at equidistant discrete times. This is the | |||
! number of columns of F. | |||
!..... | |||
! F (input/output) REAL(KIND=WP) M-by-N array | |||
! > On entry, | |||
! the columns of F are the sequence of data snapshots | |||
! from a single trajectory, taken at equidistant discrete | |||
! times. It is assumed that the column norms of F are | |||
! in the range of the normalized floating point numbers. | |||
! < On exit, | |||
! If JOBQ == 'Q', the array F contains the orthogonal | |||
! matrix/factor of the QR factorization of the initial | |||
! data snapshots matrix F. See the description of JOBQ. | |||
! If JOBQ == 'N', the entries in F strictly below the main | |||
! diagonal contain, column-wise, the information on the | |||
! Householder vectors, as returned by DGEQRF. The | |||
! remaining information to restore the orthogonal matrix | |||
! of the initial QR factorization is stored in WORK(1:N). | |||
! See the description of WORK. | |||
!..... | |||
! LDF (input) INTEGER, LDF >= M | |||
! The leading dimension of the array F. | |||
!..... | |||
! X (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array | |||
! X is used as workspace to hold representations of the | |||
! leading N-1 snapshots in the orthonormal basis computed | |||
! in the QR factorization of F. | |||
! On exit, the leading K columns of X contain the leading | |||
! K left singular vectors of the above described content | |||
! of X. To lift them to the space of the left singular | |||
! vectors U(:,1:K)of the input data, pre-multiply with the | |||
! Q factor from the initial QR factorization. | |||
! See the descriptions of F, K, V and Z. | |||
!..... | |||
! LDX (input) INTEGER, LDX >= N | |||
! The leading dimension of the array X. | |||
!..... | |||
! Y (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array | |||
! Y is used as workspace to hold representations of the | |||
! trailing N-1 snapshots in the orthonormal basis computed | |||
! in the QR factorization of F. | |||
! On exit, | |||
! If JOBT == 'R', Y contains the MIN(M,N)-by-N upper | |||
! triangular factor from the QR factorization of the data | |||
! snapshot matrix F. | |||
!..... | |||
! LDY (input) INTEGER , LDY >= N | |||
! The leading dimension of the array Y. | |||
!..... | |||
! NRNK (input) INTEGER | |||
! Determines the mode how to compute the numerical rank, | |||
! i.e. how to truncate small singular values of the input | |||
! matrix X. On input, if | |||
! NRNK = -1 :: i-th singular value sigma(i) is truncated | |||
! if sigma(i) <= TOL*sigma(1) | |||
! This option is recommended. | |||
! NRNK = -2 :: i-th singular value sigma(i) is truncated | |||
! if sigma(i) <= TOL*sigma(i-1) | |||
! This option is included for R&D purposes. | |||
! It requires highly accurate SVD, which | |||
! may not be feasible. | |||
! The numerical rank can be enforced by using positive | |||
! value of NRNK as follows: | |||
! 0 < NRNK <= N-1 :: at most NRNK largest singular values | |||
! will be used. If the number of the computed nonzero | |||
! singular values is less than NRNK, then only those | |||
! nonzero values will be used and the actually used | |||
! dimension is less than NRNK. The actual number of | |||
! the nonzero singular values is returned in the variable | |||
! K. See the description of K. | |||
!..... | |||
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1 | |||
! The tolerance for truncating small singular values. | |||
! See the description of NRNK. | |||
!..... | |||
! K (output) INTEGER, 0 <= K <= N | |||
! The dimension of the SVD/POD basis for the leading N-1 | |||
! data snapshots (columns of F) and the number of the | |||
! computed Ritz pairs. The value of K is determined | |||
! according to the rule set by the parameters NRNK and | |||
! TOL. See the descriptions of NRNK and TOL. | |||
!..... | |||
! REIG (output) REAL(KIND=WP) (N-1)-by-1 array | |||
! The leading K (K<=N) entries of REIG contain | |||
! the real parts of the computed eigenvalues | |||
! REIG(1:K) + sqrt(-1)*IMEIG(1:K). | |||
! See the descriptions of K, IMEIG, Z. | |||
!..... | |||
! IMEIG (output) REAL(KIND=WP) (N-1)-by-1 array | |||
! The leading K (K<N) entries of REIG contain | |||
! the imaginary parts of the computed eigenvalues | |||
! REIG(1:K) + sqrt(-1)*IMEIG(1:K). | |||
! The eigenvalues are determined as follows: | |||
! If IMEIG(i) == 0, then the corresponding eigenvalue is | |||
! real, LAMBDA(i) = REIG(i). | |||
! If IMEIG(i)>0, then the corresponding complex | |||
! conjugate pair of eigenvalues reads | |||
! LAMBDA(i) = REIG(i) + sqrt(-1)*IMAG(i) | |||
! LAMBDA(i+1) = REIG(i) - sqrt(-1)*IMAG(i) | |||
! That is, complex conjugate pairs have consequtive | |||
! indices (i,i+1), with the positive imaginary part | |||
! listed first. | |||
! See the descriptions of K, REIG, Z. | |||
!..... | |||
! Z (workspace/output) REAL(KIND=WP) M-by-(N-1) array | |||
! If JOBZ =='V' then | |||
! Z contains real Ritz vectors as follows: | |||
! If IMEIG(i)=0, then Z(:,i) is an eigenvector of | |||
! the i-th Ritz value. | |||
! If IMEIG(i) > 0 (and IMEIG(i+1) < 0) then | |||
! [Z(:,i) Z(:,i+1)] span an invariant subspace and | |||
! the Ritz values extracted from this subspace are | |||
! REIG(i) + sqrt(-1)*IMEIG(i) and | |||
! REIG(i) - sqrt(-1)*IMEIG(i). | |||
! The corresponding eigenvectors are | |||
! Z(:,i) + sqrt(-1)*Z(:,i+1) and | |||
! Z(:,i) - sqrt(-1)*Z(:,i+1), respectively. | |||
! If JOBZ == 'F', then the above descriptions hold for | |||
! the columns of Z*V, where the columns of V are the | |||
! eigenvectors of the K-by-K Rayleigh quotient, and Z is | |||
! orthonormal. The columns of V are similarly structured: | |||
! If IMEIG(i) == 0 then Z*V(:,i) is an eigenvector, and if | |||
! IMEIG(i) > 0 then Z*V(:,i)+sqrt(-1)*Z*V(:,i+1) and | |||
! Z*V(:,i)-sqrt(-1)*Z*V(:,i+1) | |||
! are the eigenvectors of LAMBDA(i), LAMBDA(i+1). | |||
! See the descriptions of REIG, IMEIG, X and V. | |||
!..... | |||
! LDZ (input) INTEGER , LDZ >= M | |||
! The leading dimension of the array Z. | |||
!..... | |||
! RES (output) REAL(KIND=WP) (N-1)-by-1 array | |||
! RES(1:K) contains the residuals for the K computed | |||
! Ritz pairs. | |||
! If LAMBDA(i) is real, then | |||
! RES(i) = || A * Z(:,i) - LAMBDA(i)*Z(:,i))||_2. | |||
! If [LAMBDA(i), LAMBDA(i+1)] is a complex conjugate pair | |||
! then | |||
! RES(i)=RES(i+1) = || A * Z(:,i:i+1) - Z(:,i:i+1) *B||_F | |||
! where B = [ real(LAMBDA(i)) imag(LAMBDA(i)) ] | |||
! [-imag(LAMBDA(i)) real(LAMBDA(i)) ]. | |||
! It holds that | |||
! RES(i) = || A*ZC(:,i) - LAMBDA(i) *ZC(:,i) ||_2 | |||
! RES(i+1) = || A*ZC(:,i+1) - LAMBDA(i+1)*ZC(:,i+1) ||_2 | |||
! where ZC(:,i) = Z(:,i) + sqrt(-1)*Z(:,i+1) | |||
! ZC(:,i+1) = Z(:,i) - sqrt(-1)*Z(:,i+1) | |||
! See the description of Z. | |||
!..... | |||
! B (output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array. | |||
! IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can | |||
! be used for computing the refined vectors; see further | |||
! details in the provided references. | |||
! If JOBF == 'E', B(1:N,1;K) contains | |||
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the | |||
! Exact DMD, up to scaling by the inverse eigenvalues. | |||
! In both cases, the content of B can be lifted to the | |||
! original dimension of the input data by pre-multiplying | |||
! with the Q factor from the initial QR factorization. | |||
! Here A denotes a compression of the underlying operator. | |||
! See the descriptions of F and X. | |||
! If JOBF =='N', then B is not referenced. | |||
!..... | |||
! LDB (input) INTEGER, LDB >= MIN(M,N) | |||
! The leading dimension of the array B. | |||
!..... | |||
! V (workspace/output) REAL(KIND=WP) (N-1)-by-(N-1) array | |||
! On exit, V(1:K,1:K) contains the K eigenvectors of | |||
! the Rayleigh quotient. The eigenvectors of a complex | |||
! conjugate pair of eigenvalues are returned in real form | |||
! as explained in the description of Z. The Ritz vectors | |||
! (returned in Z) are the product of X and V; see | |||
! the descriptions of X and Z. | |||
!..... | |||
! LDV (input) INTEGER, LDV >= N-1 | |||
! The leading dimension of the array V. | |||
!..... | |||
! S (output) REAL(KIND=WP) (N-1)-by-(N-1) array | |||
! The array S(1:K,1:K) is used for the matrix Rayleigh | |||
! quotient. This content is overwritten during | |||
! the eigenvalue decomposition by DGEEV. | |||
! See the description of K. | |||
!..... | |||
! LDS (input) INTEGER, LDS >= N-1 | |||
! The leading dimension of the array S. | |||
!..... | |||
! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array | |||
! On exit, | |||
! WORK(1:MIN(M,N)) contains the scalar factors of the | |||
! elementary reflectors as returned by DGEQRF of the | |||
! M-by-N input matrix F. | |||
! WORK(MIN(M,N)+1:MIN(M,N)+N-1) contains the singular values of | |||
! the input submatrix F(1:M,1:N-1). | |||
! If the call to DGEDMDQ is only workspace query, then | |||
! WORK(1) contains the minimal workspace length and | |||
! WORK(2) is the optimal workspace length. Hence, the | |||
! length of work is at least 2. | |||
! See the description of LWORK. | |||
!..... | |||
! LWORK (input) INTEGER | |||
! The minimal length of the workspace vector WORK. | |||
! LWORK is calculated as follows: | |||
! Let MLWQR = N (minimal workspace for DGEQRF[M,N]) | |||
! MLWDMD = minimal workspace for DGEDMD (see the | |||
! description of LWORK in DGEDMD) for | |||
! snapshots of dimensions MIN(M,N)-by-(N-1) | |||
! MLWMQR = N (minimal workspace for | |||
! DORMQR['L','N',M,N,N]) | |||
! MLWGQR = N (minimal workspace for DORGQR[M,N,N]) | |||
! Then | |||
! LWORK = MAX(N+MLWQR, N+MLWDMD) | |||
! is updated as follows: | |||
! if JOBZ == 'V' or JOBZ == 'F' THEN | |||
! LWORK = MAX( LWORK, MIN(M,N)+N-1+MLWMQR ) | |||
! if JOBQ == 'Q' THEN | |||
! LWORK = MAX( LWORK, MIN(M,N)+N-1+MLWGQR) | |||
! If on entry LWORK = -1, then a workspace query is | |||
! assumed and the procedure only computes the minimal | |||
! and the optimal workspace lengths for both WORK and | |||
! IWORK. See the descriptions of WORK and IWORK. | |||
!..... | |||
! IWORK (workspace/output) INTEGER LIWORK-by-1 array | |||
! Workspace that is required only if WHTSVD equals | |||
! 2 , 3 or 4. (See the description of WHTSVD). | |||
! If on entry LWORK =-1 or LIWORK=-1, then the | |||
! minimal length of IWORK is computed and returned in | |||
! IWORK(1). See the description of LIWORK. | |||
!..... | |||
! LIWORK (input) INTEGER | |||
! The minimal length of the workspace vector IWORK. | |||
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 | |||
! Let M1=MIN(M,N), N1=N-1. Then | |||
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M1,N1)) | |||
! If WHTSVD == 3, then LIWORK >= MAX(1,M1+N1-1) | |||
! If WHTSVD == 4, then LIWORK >= MAX(3,M1+3*N1) | |||
! If on entry LIWORK = -1, then a workspace query is | |||
! assumed and the procedure only computes the minimal | |||
! and the optimal workspace lengths for both WORK and | |||
! IWORK. See the descriptions of WORK and IWORK. | |||
!..... | |||
! INFO (output) INTEGER | |||
! -i < 0 :: On entry, the i-th argument had an | |||
! illegal value | |||
! = 0 :: Successful return. | |||
! = 1 :: Void input. Quick exit (M=0 or N=0). | |||
! = 2 :: The SVD computation of X did not converge. | |||
! Suggestion: Check the input data and/or | |||
! repeat with different WHTSVD. | |||
! = 3 :: The computation of the eigenvalues did not | |||
! converge. | |||
! = 4 :: If data scaling was requested on input and | |||
! the procedure found inconsistency in the data | |||
! such that for some column index i, | |||
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set | |||
! to zero if JOBS=='C'. The computation proceeds | |||
! with original or modified data and warning | |||
! flag is set with INFO=4. | |||
!............................................................. | |||
!............................................................. | |||
! Parameters | |||
! ~~~~~~~~~~ | |||
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP | |||
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP | |||
! | |||
! Local scalars | |||
! ~~~~~~~~~~~~~ | |||
INTEGER :: IMINWR, INFO1, MLWDMD, MLWGQR, & | |||
MLWMQR, MLWORK, MLWQR, MINMN, & | |||
OLWDMD, OLWGQR, OLWMQR, OLWORK, & | |||
OLWQR | |||
LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, & | |||
WNTTRF, WNTRES, WNTVEC, WNTVCF, & | |||
WNTVCQ, WNTREF, WNTEX | |||
CHARACTER(LEN=1) :: JOBVL | |||
! | |||
! Local array | |||
! ~~~~~~~~~~~ | |||
REAL(KIND=WP) :: RDUMMY(2) | |||
! | |||
! External functions (BLAS and LAPACK) | |||
! ~~~~~~~~~~~~~~~~~ | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
! | |||
! External subroutines (BLAS and LAPACK) | |||
! ~~~~~~~~~~~~~~~~~~~~ | |||
EXTERNAL DGEMM | |||
EXTERNAL DGEQRF, DLACPY, DLASET, DORGQR, & | |||
DORMQR, XERBLA | |||
! External subroutines | |||
! ~~~~~~~~~~~~~~~~~~~~ | |||
EXTERNAL DGEDMD | |||
! Intrinsic functions | |||
! ~~~~~~~~~~~~~~~~~~~ | |||
INTRINSIC MAX, MIN, INT | |||
!.......................................................... | |||
! | |||
! Test the input arguments | |||
WNTRES = LSAME(JOBR,'R') | |||
SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' ) | |||
SCCOLY = LSAME(JOBS,'Y') | |||
WNTVEC = LSAME(JOBZ,'V') | |||
WNTVCF = LSAME(JOBZ,'F') | |||
WNTVCQ = LSAME(JOBZ,'Q') | |||
WNTREF = LSAME(JOBF,'R') | |||
WNTEX = LSAME(JOBF,'E') | |||
WANTQ = LSAME(JOBQ,'Q') | |||
WNTTRF = LSAME(JOBT,'R') | |||
MINMN = MIN(M,N) | |||
INFO = 0 | |||
LQUERY = ( ( LWORK == -1 ) .OR. ( LIWORK == -1 ) ) | |||
! | |||
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. & | |||
LSAME(JOBS,'N')) ) THEN | |||
INFO = -1 | |||
ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ & | |||
.OR. LSAME(JOBZ,'N')) ) THEN | |||
INFO = -2 | |||
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. & | |||
( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN | |||
INFO = -3 | |||
ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN | |||
INFO = -4 | |||
ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN | |||
INFO = -5 | |||
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. & | |||
LSAME(JOBF,'N') ) ) THEN | |||
INFO = -6 | |||
ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. & | |||
(WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN | |||
INFO = -7 | |||
ELSE IF ( M < 0 ) THEN | |||
INFO = -8 | |||
ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN | |||
INFO = -9 | |||
ELSE IF ( LDF < M ) THEN | |||
INFO = -11 | |||
ELSE IF ( LDX < MINMN ) THEN | |||
INFO = -13 | |||
ELSE IF ( LDY < MINMN ) THEN | |||
INFO = -15 | |||
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. & | |||
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN | |||
INFO = -16 | |||
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN | |||
INFO = -17 | |||
ELSE IF ( LDZ < M ) THEN | |||
INFO = -22 | |||
ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN | |||
INFO = -25 | |||
ELSE IF ( LDV < N-1 ) THEN | |||
INFO = -27 | |||
ELSE IF ( LDS < N-1 ) THEN | |||
INFO = -29 | |||
END IF | |||
! | |||
IF ( WNTVEC .OR. WNTVCF .OR. WNTVCQ ) THEN | |||
JOBVL = 'V' | |||
ELSE | |||
JOBVL = 'N' | |||
END IF | |||
IF ( INFO == 0 ) THEN | |||
! Compute the minimal and the optimal workspace | |||
! requirements. Simulate running the code and | |||
! determine minimal and optimal sizes of the | |||
! workspace at any moment of the run. | |||
IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN | |||
! All output except K is void. INFO=1 signals | |||
! the void input. In case of a workspace query, | |||
! the minimal workspace lengths are returned. | |||
IF ( LQUERY ) THEN | |||
IWORK(1) = 1 | |||
WORK(1) = 2 | |||
WORK(2) = 2 | |||
ELSE | |||
K = 0 | |||
END IF | |||
INFO = 1 | |||
RETURN | |||
END IF | |||
MLWQR = MAX(1,N) ! Minimal workspace length for DGEQRF. | |||
MLWORK = MINMN + MLWQR | |||
IF ( LQUERY ) THEN | |||
CALL DGEQRF( M, N, F, LDF, WORK, RDUMMY, -1, & | |||
INFO1 ) | |||
OLWQR = INT(RDUMMY(1)) | |||
OLWORK = MIN(M,N) + OLWQR | |||
END IF | |||
CALL DGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,& | |||
N-1, X, LDX, Y, LDY, NRNK, TOL, K, & | |||
REIG, IMEIG, Z, LDZ, RES, B, LDB, & | |||
V, LDV, S, LDS, WORK, -1, IWORK, & | |||
LIWORK, INFO1 ) | |||
MLWDMD = INT(WORK(1)) | |||
MLWORK = MAX(MLWORK, MINMN + MLWDMD) | |||
IMINWR = IWORK(1) | |||
IF ( LQUERY ) THEN | |||
OLWDMD = INT(WORK(2)) | |||
OLWORK = MAX(OLWORK, MINMN+OLWDMD) | |||
END IF | |||
IF ( WNTVEC .OR. WNTVCF ) THEN | |||
MLWMQR = MAX(1,N) | |||
MLWORK = MAX(MLWORK,MINMN+N-1+MLWMQR) | |||
IF ( LQUERY ) THEN | |||
CALL DORMQR( 'L','N', M, N, MINMN, F, LDF, & | |||
WORK, Z, LDZ, WORK, -1, INFO1 ) | |||
OLWMQR = INT(WORK(1)) | |||
OLWORK = MAX(OLWORK,MINMN+N-1+OLWMQR) | |||
END IF | |||
END IF | |||
IF ( WANTQ ) THEN | |||
MLWGQR = N | |||
MLWORK = MAX(MLWORK,MINMN+N-1+MLWGQR) | |||
IF ( LQUERY ) THEN | |||
CALL DORGQR( M, MINMN, MINMN, F, LDF, WORK, & | |||
WORK, -1, INFO1 ) | |||
OLWGQR = INT(WORK(1)) | |||
OLWORK = MAX(OLWORK,MINMN+N-1+OLWGQR) | |||
END IF | |||
END IF | |||
IMINWR = MAX( 1, IMINWR ) | |||
MLWORK = MAX( 2, MLWORK ) | |||
IF ( LWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -31 | |||
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -33 | |||
END IF | |||
IF( INFO /= 0 ) THEN | |||
CALL XERBLA( 'DGEDMDQ', -INFO ) | |||
RETURN | |||
ELSE IF ( LQUERY ) THEN | |||
! Return minimal and optimal workspace sizes | |||
IWORK(1) = IMINWR | |||
WORK(1) = MLWORK | |||
WORK(2) = OLWORK | |||
RETURN | |||
END IF | |||
!..... | |||
! Initial QR factorization that is used to represent the | |||
! snapshots as elements of lower dimensional subspace. | |||
! For large scale computation with M >>N , at this place | |||
! one can use an out of core QRF. | |||
! | |||
CALL DGEQRF( M, N, F, LDF, WORK, & | |||
WORK(MINMN+1), LWORK-MINMN, INFO1 ) | |||
! | |||
! Define X and Y as the snapshots representations in the | |||
! orthogonal basis computed in the QR factorization. | |||
! X corresponds to the leading N-1 and Y to the trailing | |||
! N-1 snapshots. | |||
CALL DLASET( 'L', MINMN, N-1, ZERO, ZERO, X, LDX ) | |||
CALL DLACPY( 'U', MINMN, N-1, F, LDF, X, LDX ) | |||
CALL DLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY ) | |||
IF ( M >= 3 ) THEN | |||
CALL DLASET( 'L', MINMN-2, N-2, ZERO, ZERO, & | |||
Y(3,1), LDY ) | |||
END IF | |||
! | |||
! Compute the DMD of the projected snapshot pairs (X,Y) | |||
CALL DGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, & | |||
N-1, X, LDX, Y, LDY, NRNK, TOL, K, & | |||
REIG, IMEIG, Z, LDZ, RES, B, LDB, V, & | |||
LDV, S, LDS, WORK(MINMN+1), LWORK-MINMN, & | |||
IWORK, LIWORK, INFO1 ) | |||
IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN | |||
! Return with error code. See DGEDMD for details. | |||
INFO = INFO1 | |||
RETURN | |||
ELSE | |||
INFO = INFO1 | |||
END IF | |||
! | |||
! The Ritz vectors (Koopman modes) can be explicitly | |||
! formed or returned in factored form. | |||
IF ( WNTVEC ) THEN | |||
! Compute the eigenvectors explicitly. | |||
IF ( M > MINMN ) CALL DLASET( 'A', M-MINMN, K, ZERO, & | |||
ZERO, Z(MINMN+1,1), LDZ ) | |||
CALL DORMQR( 'L','N', M, K, MINMN, F, LDF, WORK, Z, & | |||
LDZ, WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 ) | |||
ELSE IF ( WNTVCF ) THEN | |||
! Return the Ritz vectors (eigenvectors) in factored | |||
! form Z*V, where Z contains orthonormal matrix (the | |||
! product of Q from the initial QR factorization and | |||
! the SVD/POD_basis returned by DGEDMD in X) and the | |||
! second factor (the eigenvectors of the Rayleigh | |||
! quotient) is in the array V, as returned by DGEDMD. | |||
CALL DLACPY( 'A', N, K, X, LDX, Z, LDZ ) | |||
IF ( M > N ) CALL DLASET( 'A', M-N, K, ZERO, ZERO, & | |||
Z(N+1,1), LDZ ) | |||
CALL DORMQR( 'L','N', M, K, MINMN, F, LDF, WORK, Z, & | |||
LDZ, WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 ) | |||
END IF | |||
! | |||
! Some optional output variables: | |||
! | |||
! The upper triangular factor R in the initial QR | |||
! factorization is optionally returned in the array Y. | |||
! This is useful if this call to DGEDMDQ is to be | |||
! followed by a streaming DMD that is implemented in a | |||
! QR compressed form. | |||
IF ( WNTTRF ) THEN ! Return the upper triangular R in Y | |||
CALL DLASET( 'A', MINMN, N, ZERO, ZERO, Y, LDY ) | |||
CALL DLACPY( 'U', MINMN, N, F, LDF, Y, LDY ) | |||
END IF | |||
! | |||
! The orthonormal/orthogonal factor Q in the initial QR | |||
! factorization is optionally returned in the array F. | |||
! Same as with the triangular factor above, this is | |||
! useful in a streaming DMD. | |||
IF ( WANTQ ) THEN ! Q overwrites F | |||
CALL DORGQR( M, MINMN, MINMN, F, LDF, WORK, & | |||
WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 ) | |||
END IF | |||
! | |||
RETURN | |||
! | |||
END SUBROUTINE DGEDMDQ | |||
@@ -0,0 +1,703 @@ | |||
SUBROUTINE SGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, & | |||
WHTSVD, M, N, F, LDF, X, LDX, Y, & | |||
LDY, NRNK, TOL, K, REIG, IMEIG, & | |||
Z, LDZ, RES, B, LDB, V, LDV, & | |||
S, LDS, WORK, LWORK, IWORK, LIWORK, INFO ) | |||
! March 2023 | |||
!..... | |||
USE iso_fortran_env | |||
IMPLICIT NONE | |||
INTEGER, PARAMETER :: WP = real32 | |||
!..... | |||
! Scalar arguments | |||
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, & | |||
JOBT, JOBF | |||
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, & | |||
LDY, NRNK, LDZ, LDB, LDV, & | |||
LDS, LWORK, LIWORK | |||
INTEGER, INTENT(OUT) :: INFO, K | |||
REAL(KIND=WP), INTENT(IN) :: TOL | |||
! Array arguments | |||
REAL(KIND=WP), INTENT(INOUT) :: F(LDF,*) | |||
REAL(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), & | |||
Z(LDZ,*), B(LDB,*), & | |||
V(LDV,*), S(LDS,*) | |||
REAL(KIND=WP), INTENT(OUT) :: REIG(*), IMEIG(*), & | |||
RES(*) | |||
REAL(KIND=WP), INTENT(OUT) :: WORK(*) | |||
INTEGER, INTENT(OUT) :: IWORK(*) | |||
!..... | |||
! Purpose | |||
! ======= | |||
! SGEDMDQ computes the Dynamic Mode Decomposition (DMD) for | |||
! a pair of data snapshot matrices, using a QR factorization | |||
! based compression of the data. For the input matrices | |||
! X and Y such that Y = A*X with an unaccessible matrix | |||
! A, SGEDMDQ computes a certain number of Ritz pairs of A using | |||
! the standard Rayleigh-Ritz extraction from a subspace of | |||
! range(X) that is determined using the leading left singular | |||
! vectors of X. Optionally, SGEDMDQ returns the residuals | |||
! of the computed Ritz pairs, the information needed for | |||
! a refinement of the Ritz vectors, or the eigenvectors of | |||
! the Exact DMD. | |||
! For further details see the references listed | |||
! below. For more details of the implementation see [3]. | |||
! | |||
! References | |||
! ========== | |||
! [1] P. Schmid: Dynamic mode decomposition of numerical | |||
! and experimental data, | |||
! Journal of Fluid Mechanics 656, 5-28, 2010. | |||
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal | |||
! decompositions: analysis and enhancements, | |||
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. | |||
! [3] Z. Drmac: A LAPACK implementation of the Dynamic | |||
! Mode Decomposition I. Technical report. AIMDyn Inc. | |||
! and LAPACK Working Note 298. | |||
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. | |||
! Brunton, N. Kutz: On Dynamic Mode Decomposition: | |||
! Theory and Applications, Journal of Computational | |||
! Dynamics 1(2), 391 -421, 2014. | |||
! | |||
! Developed and supported by: | |||
! =========================== | |||
! Developed and coded by Zlatko Drmac, Faculty of Science, | |||
! University of Zagreb; drmac@math.hr | |||
! In cooperation with | |||
! AIMdyn Inc., Santa Barbara, CA. | |||
! and supported by | |||
! - DARPA SBIR project "Koopman Operator-Based Forecasting | |||
! for Nonstationary Processes from Near-Term, Limited | |||
! Observational Data" Contract No: W31P4Q-21-C-0007 | |||
! - DARPA PAI project "Physics-Informed Machine Learning | |||
! Methodologies" Contract No: HR0011-18-9-0033 | |||
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic | |||
! Framework for Space-Time Analysis of Process Dynamics" | |||
! Contract No: HR0011-16-C-0116 | |||
! Any opinions, findings and conclusions or recommendations | |||
! expressed in this material are those of the author and | |||
! do not necessarily reflect the views of the DARPA SBIR | |||
! Program Office. | |||
!============================================================ | |||
! Distribution Statement A: | |||
! Approved for Public Release, Distribution Unlimited. | |||
! Cleared by DARPA on September 29, 2022 | |||
!============================================================ | |||
!...................................................................... | |||
! Arguments | |||
! ========= | |||
! JOBS (input) CHARACTER*1 | |||
! Determines whether the initial data snapshots are scaled | |||
! by a diagonal matrix. The data snapshots are the columns | |||
! of F. The leading N-1 columns of F are denoted X and the | |||
! trailing N-1 columns are denoted Y. | |||
! 'S' :: The data snapshots matrices X and Y are multiplied | |||
! with a diagonal matrix D so that X*D has unit | |||
! nonzero columns (in the Euclidean 2-norm) | |||
! 'C' :: The snapshots are scaled as with the 'S' option. | |||
! If it is found that an i-th column of X is zero | |||
! vector and the corresponding i-th column of Y is | |||
! non-zero, then the i-th column of Y is set to | |||
! zero and a warning flag is raised. | |||
! 'Y' :: The data snapshots matrices X and Y are multiplied | |||
! by a diagonal matrix D so that Y*D has unit | |||
! nonzero columns (in the Euclidean 2-norm) | |||
! 'N' :: No data scaling. | |||
!..... | |||
! JOBZ (input) CHARACTER*1 | |||
! Determines whether the eigenvectors (Koopman modes) will | |||
! be computed. | |||
! 'V' :: The eigenvectors (Koopman modes) will be computed | |||
! and returned in the matrix Z. | |||
! See the description of Z. | |||
! 'F' :: The eigenvectors (Koopman modes) will be returned | |||
! in factored form as the product Z*V, where Z | |||
! is orthonormal and V contains the eigenvectors | |||
! of the corresponding Rayleigh quotient. | |||
! See the descriptions of F, V, Z. | |||
! 'Q' :: The eigenvectors (Koopman modes) will be returned | |||
! in factored form as the product Q*Z, where Z | |||
! contains the eigenvectors of the compression of the | |||
! underlying discretized operator onto the span of | |||
! the data snapshots. See the descriptions of F, V, Z. | |||
! Q is from the initial QR factorization. | |||
! 'N' :: The eigenvectors are not computed. | |||
!..... | |||
! JOBR (input) CHARACTER*1 | |||
! Determines whether to compute the residuals. | |||
! 'R' :: The residuals for the computed eigenpairs will | |||
! be computed and stored in the array RES. | |||
! See the description of RES. | |||
! For this option to be legal, JOBZ must be 'V'. | |||
! 'N' :: The residuals are not computed. | |||
!..... | |||
! JOBQ (input) CHARACTER*1 | |||
! Specifies whether to explicitly compute and return the | |||
! orthogonal matrix from the QR factorization. | |||
! 'Q' :: The matrix Q of the QR factorization of the data | |||
! snapshot matrix is computed and stored in the | |||
! array F. See the description of F. | |||
! 'N' :: The matrix Q is not explicitly computed. | |||
!..... | |||
! JOBT (input) CHARACTER*1 | |||
! Specifies whether to return the upper triangular factor | |||
! from the QR factorization. | |||
! 'R' :: The matrix R of the QR factorization of the data | |||
! snapshot matrix F is returned in the array Y. | |||
! See the description of Y and Further details. | |||
! 'N' :: The matrix R is not returned. | |||
!..... | |||
! JOBF (input) CHARACTER*1 | |||
! Specifies whether to store information needed for post- | |||
! processing (e.g. computing refined Ritz vectors) | |||
! 'R' :: The matrix needed for the refinement of the Ritz | |||
! vectors is computed and stored in the array B. | |||
! See the description of B. | |||
! 'E' :: The unscaled eigenvectors of the Exact DMD are | |||
! computed and returned in the array B. See the | |||
! description of B. | |||
! 'N' :: No eigenvector refinement data is computed. | |||
! To be useful on exit, this option needs JOBQ='Q'. | |||
!..... | |||
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } | |||
! Allows for a selection of the SVD algorithm from the | |||
! LAPACK library. | |||
! 1 :: SGESVD (the QR SVD algorithm) | |||
! 2 :: SGESDD (the Divide and Conquer algorithm; if enough | |||
! workspace available, this is the fastest option) | |||
! 3 :: SGESVDQ (the preconditioned QR SVD ; this and 4 | |||
! are the most accurate options) | |||
! 4 :: SGEJSV (the preconditioned Jacobi SVD; this and 3 | |||
! are the most accurate options) | |||
! For the four methods above, a significant difference in | |||
! the accuracy of small singular values is possible if | |||
! the snapshots vary in norm so that X is severely | |||
! ill-conditioned. If small (smaller than EPS*||X||) | |||
! singular values are of interest and JOBS=='N', then | |||
! the options (3, 4) give the most accurate results, where | |||
! the option 4 is slightly better and with stronger | |||
! theoretical background. | |||
! If JOBS=='S', i.e. the columns of X will be normalized, | |||
! then all methods give nearly equally accurate results. | |||
!..... | |||
! M (input) INTEGER, M >= 0 | |||
! The state space dimension (the number of rows of F) | |||
!..... | |||
! N (input) INTEGER, 0 <= N <= M | |||
! The number of data snapshots from a single trajectory, | |||
! taken at equidistant discrete times. This is the | |||
! number of columns of F. | |||
!..... | |||
! F (input/output) REAL(KIND=WP) M-by-N array | |||
! > On entry, | |||
! the columns of F are the sequence of data snapshots | |||
! from a single trajectory, taken at equidistant discrete | |||
! times. It is assumed that the column norms of F are | |||
! in the range of the normalized floating point numbers. | |||
! < On exit, | |||
! If JOBQ == 'Q', the array F contains the orthogonal | |||
! matrix/factor of the QR factorization of the initial | |||
! data snapshots matrix F. See the description of JOBQ. | |||
! If JOBQ == 'N', the entries in F strictly below the main | |||
! diagonal contain, column-wise, the information on the | |||
! Householder vectors, as returned by SGEQRF. The | |||
! remaining information to restore the orthogonal matrix | |||
! of the initial QR factorization is stored in WORK(1:N). | |||
! See the description of WORK. | |||
!..... | |||
! LDF (input) INTEGER, LDF >= M | |||
! The leading dimension of the array F. | |||
!..... | |||
! X (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array | |||
! X is used as workspace to hold representations of the | |||
! leading N-1 snapshots in the orthonormal basis computed | |||
! in the QR factorization of F. | |||
! On exit, the leading K columns of X contain the leading | |||
! K left singular vectors of the above described content | |||
! of X. To lift them to the space of the left singular | |||
! vectors U(:,1:K)of the input data, pre-multiply with the | |||
! Q factor from the initial QR factorization. | |||
! See the descriptions of F, K, V and Z. | |||
!..... | |||
! LDX (input) INTEGER, LDX >= N | |||
! The leading dimension of the array X | |||
!..... | |||
! Y (workspace/output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array | |||
! Y is used as workspace to hold representations of the | |||
! trailing N-1 snapshots in the orthonormal basis computed | |||
! in the QR factorization of F. | |||
! On exit, | |||
! If JOBT == 'R', Y contains the MIN(M,N)-by-N upper | |||
! triangular factor from the QR factorization of the data | |||
! snapshot matrix F. | |||
!..... | |||
! LDY (input) INTEGER , LDY >= N | |||
! The leading dimension of the array Y | |||
!..... | |||
! NRNK (input) INTEGER | |||
! Determines the mode how to compute the numerical rank, | |||
! i.e. how to truncate small singular values of the input | |||
! matrix X. On input, if | |||
! NRNK = -1 :: i-th singular value sigma(i) is truncated | |||
! if sigma(i) <= TOL*sigma(1) | |||
! This option is recommended. | |||
! NRNK = -2 :: i-th singular value sigma(i) is truncated | |||
! if sigma(i) <= TOL*sigma(i-1) | |||
! This option is included for R&D purposes. | |||
! It requires highly accurate SVD, which | |||
! may not be feasible. | |||
! The numerical rank can be enforced by using positive | |||
! value of NRNK as follows: | |||
! 0 < NRNK <= N-1 :: at most NRNK largest singular values | |||
! will be used. If the number of the computed nonzero | |||
! singular values is less than NRNK, then only those | |||
! nonzero values will be used and the actually used | |||
! dimension is less than NRNK. The actual number of | |||
! the nonzero singular values is returned in the variable | |||
! K. See the description of K. | |||
!..... | |||
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1 | |||
! The tolerance for truncating small singular values. | |||
! See the description of NRNK. | |||
!..... | |||
! K (output) INTEGER, 0 <= K <= N | |||
! The dimension of the SVD/POD basis for the leading N-1 | |||
! data snapshots (columns of F) and the number of the | |||
! computed Ritz pairs. The value of K is determined | |||
! according to the rule set by the parameters NRNK and | |||
! TOL. See the descriptions of NRNK and TOL. | |||
!..... | |||
! REIG (output) REAL(KIND=WP) (N-1)-by-1 array | |||
! The leading K (K<=N) entries of REIG contain | |||
! the real parts of the computed eigenvalues | |||
! REIG(1:K) + sqrt(-1)*IMEIG(1:K). | |||
! See the descriptions of K, IMEIG, Z. | |||
!..... | |||
! IMEIG (output) REAL(KIND=WP) (N-1)-by-1 array | |||
! The leading K (K<N) entries of REIG contain | |||
! the imaginary parts of the computed eigenvalues | |||
! REIG(1:K) + sqrt(-1)*IMEIG(1:K). | |||
! The eigenvalues are determined as follows: | |||
! If IMEIG(i) == 0, then the corresponding eigenvalue is | |||
! real, LAMBDA(i) = REIG(i). | |||
! If IMEIG(i)>0, then the corresponding complex | |||
! conjugate pair of eigenvalues reads | |||
! LAMBDA(i) = REIG(i) + sqrt(-1)*IMAG(i) | |||
! LAMBDA(i+1) = REIG(i) - sqrt(-1)*IMAG(i) | |||
! That is, complex conjugate pairs have consecutive | |||
! indices (i,i+1), with the positive imaginary part | |||
! listed first. | |||
! See the descriptions of K, REIG, Z. | |||
!..... | |||
! Z (workspace/output) REAL(KIND=WP) M-by-(N-1) array | |||
! If JOBZ =='V' then | |||
! Z contains real Ritz vectors as follows: | |||
! If IMEIG(i)=0, then Z(:,i) is an eigenvector of | |||
! the i-th Ritz value. | |||
! If IMEIG(i) > 0 (and IMEIG(i+1) < 0) then | |||
! [Z(:,i) Z(:,i+1)] span an invariant subspace and | |||
! the Ritz values extracted from this subspace are | |||
! REIG(i) + sqrt(-1)*IMEIG(i) and | |||
! REIG(i) - sqrt(-1)*IMEIG(i). | |||
! The corresponding eigenvectors are | |||
! Z(:,i) + sqrt(-1)*Z(:,i+1) and | |||
! Z(:,i) - sqrt(-1)*Z(:,i+1), respectively. | |||
! If JOBZ == 'F', then the above descriptions hold for | |||
! the columns of Z*V, where the columns of V are the | |||
! eigenvectors of the K-by-K Rayleigh quotient, and Z is | |||
! orthonormal. The columns of V are similarly structured: | |||
! If IMEIG(i) == 0 then Z*V(:,i) is an eigenvector, and if | |||
! IMEIG(i) > 0 then Z*V(:,i)+sqrt(-1)*Z*V(:,i+1) and | |||
! Z*V(:,i)-sqrt(-1)*Z*V(:,i+1) | |||
! are the eigenvectors of LAMBDA(i), LAMBDA(i+1). | |||
! See the descriptions of REIG, IMEIG, X and V. | |||
!..... | |||
! LDZ (input) INTEGER , LDZ >= M | |||
! The leading dimension of the array Z. | |||
!..... | |||
! RES (output) REAL(KIND=WP) (N-1)-by-1 array | |||
! RES(1:K) contains the residuals for the K computed | |||
! Ritz pairs. | |||
! If LAMBDA(i) is real, then | |||
! RES(i) = || A * Z(:,i) - LAMBDA(i)*Z(:,i))||_2. | |||
! If [LAMBDA(i), LAMBDA(i+1)] is a complex conjugate pair | |||
! then | |||
! RES(i)=RES(i+1) = || A * Z(:,i:i+1) - Z(:,i:i+1) *B||_F | |||
! where B = [ real(LAMBDA(i)) imag(LAMBDA(i)) ] | |||
! [-imag(LAMBDA(i)) real(LAMBDA(i)) ]. | |||
! It holds that | |||
! RES(i) = || A*ZC(:,i) - LAMBDA(i) *ZC(:,i) ||_2 | |||
! RES(i+1) = || A*ZC(:,i+1) - LAMBDA(i+1)*ZC(:,i+1) ||_2 | |||
! where ZC(:,i) = Z(:,i) + sqrt(-1)*Z(:,i+1) | |||
! ZC(:,i+1) = Z(:,i) - sqrt(-1)*Z(:,i+1) | |||
! See the description of Z. | |||
!..... | |||
! B (output) REAL(KIND=WP) MIN(M,N)-by-(N-1) array. | |||
! IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can | |||
! be used for computing the refined vectors; see further | |||
! details in the provided references. | |||
! If JOBF == 'E', B(1:N,1;K) contains | |||
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the | |||
! Exact DMD, up to scaling by the inverse eigenvalues. | |||
! In both cases, the content of B can be lifted to the | |||
! original dimension of the input data by pre-multiplying | |||
! with the Q factor from the initial QR factorization. | |||
! Here A denotes a compression of the underlying operator. | |||
! See the descriptions of F and X. | |||
! If JOBF =='N', then B is not referenced. | |||
!..... | |||
! LDB (input) INTEGER, LDB >= MIN(M,N) | |||
! The leading dimension of the array B. | |||
!..... | |||
! V (workspace/output) REAL(KIND=WP) (N-1)-by-(N-1) array | |||
! On exit, V(1:K,1:K) contains the K eigenvectors of | |||
! the Rayleigh quotient. The eigenvectors of a complex | |||
! conjugate pair of eigenvalues are returned in real form | |||
! as explained in the description of Z. The Ritz vectors | |||
! (returned in Z) are the product of X and V; see | |||
! the descriptions of X and Z. | |||
!..... | |||
! LDV (input) INTEGER, LDV >= N-1 | |||
! The leading dimension of the array V. | |||
!..... | |||
! S (output) REAL(KIND=WP) (N-1)-by-(N-1) array | |||
! The array S(1:K,1:K) is used for the matrix Rayleigh | |||
! quotient. This content is overwritten during | |||
! the eigenvalue decomposition by SGEEV. | |||
! See the description of K. | |||
!..... | |||
! LDS (input) INTEGER, LDS >= N-1 | |||
! The leading dimension of the array S. | |||
!..... | |||
! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array | |||
! On exit, | |||
! WORK(1:MIN(M,N)) contains the scalar factors of the | |||
! elementary reflectors as returned by SGEQRF of the | |||
! M-by-N input matrix F. | |||
! WORK(MIN(M,N)+1:MIN(M,N)+N-1) contains the singular values of | |||
! the input submatrix F(1:M,1:N-1). | |||
! If the call to SGEDMDQ is only workspace query, then | |||
! WORK(1) contains the minimal workspace length and | |||
! WORK(2) is the optimal workspace length. Hence, the | |||
! length of work is at least 2. | |||
! See the description of LWORK. | |||
!..... | |||
! LWORK (input) INTEGER | |||
! The minimal length of the workspace vector WORK. | |||
! LWORK is calculated as follows: | |||
! Let MLWQR = N (minimal workspace for SGEQRF[M,N]) | |||
! MLWDMD = minimal workspace for SGEDMD (see the | |||
! description of LWORK in SGEDMD) for | |||
! snapshots of dimensions MIN(M,N)-by-(N-1) | |||
! MLWMQR = N (minimal workspace for | |||
! SORMQR['L','N',M,N,N]) | |||
! MLWGQR = N (minimal workspace for SORGQR[M,N,N]) | |||
! Then | |||
! LWORK = MAX(N+MLWQR, N+MLWDMD) | |||
! is updated as follows: | |||
! if JOBZ == 'V' or JOBZ == 'F' THEN | |||
! LWORK = MAX( LWORK,MIN(M,N)+N-1 +MLWMQR ) | |||
! if JOBQ == 'Q' THEN | |||
! LWORK = MAX( LWORK,MIN(M,N)+N-1+MLWGQR) | |||
! If on entry LWORK = -1, then a workspace query is | |||
! assumed and the procedure only computes the minimal | |||
! and the optimal workspace lengths for both WORK and | |||
! IWORK. See the descriptions of WORK and IWORK. | |||
!..... | |||
! IWORK (workspace/output) INTEGER LIWORK-by-1 array | |||
! Workspace that is required only if WHTSVD equals | |||
! 2 , 3 or 4. (See the description of WHTSVD). | |||
! If on entry LWORK =-1 or LIWORK=-1, then the | |||
! minimal length of IWORK is computed and returned in | |||
! IWORK(1). See the description of LIWORK. | |||
!..... | |||
! LIWORK (input) INTEGER | |||
! The minimal length of the workspace vector IWORK. | |||
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 | |||
! Let M1=MIN(M,N), N1=N-1. Then | |||
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M1,N1)) | |||
! If WHTSVD == 3, then LIWORK >= MAX(1,M1+N1-1) | |||
! If WHTSVD == 4, then LIWORK >= MAX(3,M1+3*N1) | |||
! If on entry LIWORK = -1, then a worskpace query is | |||
! assumed and the procedure only computes the minimal | |||
! and the optimal workspace lengths for both WORK and | |||
! IWORK. See the descriptions of WORK and IWORK. | |||
!..... | |||
! INFO (output) INTEGER | |||
! -i < 0 :: On entry, the i-th argument had an | |||
! illegal value | |||
! = 0 :: Successful return. | |||
! = 1 :: Void input. Quick exit (M=0 or N=0). | |||
! = 2 :: The SVD computation of X did not converge. | |||
! Suggestion: Check the input data and/or | |||
! repeat with different WHTSVD. | |||
! = 3 :: The computation of the eigenvalues did not | |||
! converge. | |||
! = 4 :: If data scaling was requested on input and | |||
! the procedure found inconsistency in the data | |||
! such that for some column index i, | |||
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set | |||
! to zero if JOBS=='C'. The computation proceeds | |||
! with original or modified data and warning | |||
! flag is set with INFO=4. | |||
!............................................................. | |||
!............................................................. | |||
! Parameters | |||
! ~~~~~~~~~~ | |||
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP | |||
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP | |||
! | |||
! Local scalars | |||
! ~~~~~~~~~~~~~ | |||
INTEGER :: IMINWR, INFO1, MLWDMD, MLWGQR, & | |||
MLWMQR, MLWORK, MLWQR, MINMN, & | |||
OLWDMD, OLWGQR, OLWMQR, OLWORK, & | |||
OLWQR | |||
LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, & | |||
WNTTRF, WNTRES, WNTVEC, WNTVCF, & | |||
WNTVCQ, WNTREF, WNTEX | |||
CHARACTER(LEN=1) :: JOBVL | |||
! | |||
! Local array | |||
! ~~~~~~~~~~~ | |||
REAL(KIND=WP) :: RDUMMY(2) | |||
! | |||
! External functions (BLAS and LAPACK) | |||
! ~~~~~~~~~~~~~~~~~ | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
! | |||
! External subroutines (BLAS and LAPACK) | |||
! ~~~~~~~~~~~~~~~~~~~~ | |||
EXTERNAL SGEMM | |||
EXTERNAL SGEQRF, SLACPY, SLASET, SORGQR, & | |||
SORMQR, XERBLA | |||
! External subroutines | |||
! ~~~~~~~~~~~~~~~~~~~~ | |||
EXTERNAL SGEDMD | |||
! Intrinsic functions | |||
! ~~~~~~~~~~~~~~~~~~~ | |||
INTRINSIC MAX, MIN, INT | |||
!.......................................................... | |||
! | |||
! Test the input arguments | |||
WNTRES = LSAME(JOBR,'R') | |||
SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' ) | |||
SCCOLY = LSAME(JOBS,'Y') | |||
WNTVEC = LSAME(JOBZ,'V') | |||
WNTVCF = LSAME(JOBZ,'F') | |||
WNTVCQ = LSAME(JOBZ,'Q') | |||
WNTREF = LSAME(JOBF,'R') | |||
WNTEX = LSAME(JOBF,'E') | |||
WANTQ = LSAME(JOBQ,'Q') | |||
WNTTRF = LSAME(JOBT,'R') | |||
MINMN = MIN(M,N) | |||
INFO = 0 | |||
LQUERY = ( ( LWORK == -1 ) .OR. ( LIWORK == -1 ) ) | |||
! | |||
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. LSAME(JOBS,'N')) ) THEN | |||
INFO = -1 | |||
ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ & | |||
.OR. LSAME(JOBZ,'N')) ) THEN | |||
INFO = -2 | |||
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. & | |||
( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN | |||
INFO = -3 | |||
ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN | |||
INFO = -4 | |||
ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN | |||
INFO = -5 | |||
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. & | |||
LSAME(JOBF,'N') ) ) THEN | |||
INFO = -6 | |||
ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. & | |||
(WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN | |||
INFO = -7 | |||
ELSE IF ( M < 0 ) THEN | |||
INFO = -8 | |||
ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN | |||
INFO = -9 | |||
ELSE IF ( LDF < M ) THEN | |||
INFO = -11 | |||
ELSE IF ( LDX < MINMN ) THEN | |||
INFO = -13 | |||
ELSE IF ( LDY < MINMN ) THEN | |||
INFO = -15 | |||
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. & | |||
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN | |||
INFO = -16 | |||
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN | |||
INFO = -17 | |||
ELSE IF ( LDZ < M ) THEN | |||
INFO = -22 | |||
ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN | |||
INFO = -25 | |||
ELSE IF ( LDV < N-1 ) THEN | |||
INFO = -27 | |||
ELSE IF ( LDS < N-1 ) THEN | |||
INFO = -29 | |||
END IF | |||
! | |||
IF ( WNTVEC .OR. WNTVCF ) THEN | |||
JOBVL = 'V' | |||
ELSE | |||
JOBVL = 'N' | |||
END IF | |||
IF ( INFO == 0 ) THEN | |||
! Compute the minimal and the optimal workspace | |||
! requirements. Simulate running the code and | |||
! determine minimal and optimal sizes of the | |||
! workspace at any moment of the run. | |||
IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN | |||
! All output except K is void. INFO=1 signals | |||
! the void input. In case of a workspace query, | |||
! the minimal workspace lengths are returned. | |||
IF ( LQUERY ) THEN | |||
IWORK(1) = 1 | |||
WORK(1) = 2 | |||
WORK(2) = 2 | |||
ELSE | |||
K = 0 | |||
END IF | |||
INFO = 1 | |||
RETURN | |||
END IF | |||
MLWQR = MAX(1,N) ! Minimal workspace length for SGEQRF. | |||
MLWORK = MIN(M,N) + MLWQR | |||
IF ( LQUERY ) THEN | |||
CALL SGEQRF( M, N, F, LDF, WORK, RDUMMY, -1, & | |||
INFO1 ) | |||
OLWQR = INT(RDUMMY(1)) | |||
OLWORK = MIN(M,N) + OLWQR | |||
END IF | |||
CALL SGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,& | |||
N-1, X, LDX, Y, LDY, NRNK, TOL, K, & | |||
REIG, IMEIG, Z, LDZ, RES, B, LDB, & | |||
V, LDV, S, LDS, WORK, -1, IWORK, & | |||
LIWORK, INFO1 ) | |||
MLWDMD = INT(WORK(1)) | |||
MLWORK = MAX(MLWORK, MINMN + MLWDMD) | |||
IMINWR = IWORK(1) | |||
IF ( LQUERY ) THEN | |||
OLWDMD = INT(WORK(2)) | |||
OLWORK = MAX(OLWORK, MINMN+OLWDMD) | |||
END IF | |||
IF ( WNTVEC .OR. WNTVCF ) THEN | |||
MLWMQR = MAX(1,N) | |||
MLWORK = MAX(MLWORK,MINMN+N-1+MLWMQR) | |||
IF ( LQUERY ) THEN | |||
CALL SORMQR( 'L','N', M, N, MINMN, F, LDF, & | |||
WORK, Z, LDZ, WORK, -1, INFO1 ) | |||
OLWMQR = INT(WORK(1)) | |||
OLWORK = MAX(OLWORK,MINMN+N-1+OLWMQR) | |||
END IF | |||
END IF | |||
IF ( WANTQ ) THEN | |||
MLWGQR = N | |||
MLWORK = MAX(MLWORK,MINMN+N-1+MLWGQR) | |||
IF ( LQUERY ) THEN | |||
CALL SORGQR( M, MINMN, MINMN, F, LDF, WORK, & | |||
WORK, -1, INFO1 ) | |||
OLWGQR = INT(WORK(1)) | |||
OLWORK = MAX(OLWORK,MINMN+N-1+OLWGQR) | |||
END IF | |||
END IF | |||
IMINWR = MAX( 1, IMINWR ) | |||
MLWORK = MAX( 2, MLWORK ) | |||
IF ( LWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -31 | |||
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -33 | |||
END IF | |||
IF( INFO /= 0 ) THEN | |||
CALL XERBLA( 'SGEDMDQ', -INFO ) | |||
RETURN | |||
ELSE IF ( LQUERY ) THEN | |||
! Return minimal and optimal workspace sizes | |||
IWORK(1) = IMINWR | |||
WORK(1) = MLWORK | |||
WORK(2) = OLWORK | |||
RETURN | |||
END IF | |||
!..... | |||
! Initial QR factorization that is used to represent the | |||
! snapshots as elements of lower dimensional subspace. | |||
! For large scale computation with M >>N , at this place | |||
! one can use an out of core QRF. | |||
! | |||
CALL SGEQRF( M, N, F, LDF, WORK, & | |||
WORK(MINMN+1), LWORK-MINMN, INFO1 ) | |||
! | |||
! Define X and Y as the snapshots representations in the | |||
! orthogonal basis computed in the QR factorization. | |||
! X corresponds to the leading N-1 and Y to the trailing | |||
! N-1 snapshots. | |||
CALL SLASET( 'L', MINMN, N-1, ZERO, ZERO, X, LDX ) | |||
CALL SLACPY( 'U', MINMN, N-1, F, LDF, X, LDX ) | |||
CALL SLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY ) | |||
IF ( M >= 3 ) THEN | |||
CALL SLASET( 'L', MINMN-2, N-2, ZERO, ZERO, & | |||
Y(3,1), LDY ) | |||
END IF | |||
! | |||
! Compute the DMD of the projected snapshot pairs (X,Y) | |||
CALL SGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, & | |||
N-1, X, LDX, Y, LDY, NRNK, TOL, K, & | |||
REIG, IMEIG, Z, LDZ, RES, B, LDB, V, & | |||
LDV, S, LDS, WORK(MINMN+1), LWORK-MINMN, IWORK, & | |||
LIWORK, INFO1 ) | |||
IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN | |||
! Return with error code. | |||
INFO = INFO1 | |||
RETURN | |||
ELSE | |||
INFO = INFO1 | |||
END IF | |||
! | |||
! The Ritz vectors (Koopman modes) can be explicitly | |||
! formed or returned in factored form. | |||
IF ( WNTVEC ) THEN | |||
! Compute the eigenvectors explicitly. | |||
IF ( M > MINMN ) CALL SLASET( 'A', M-MINMN, K, ZERO, & | |||
ZERO, Z(MINMN+1,1), LDZ ) | |||
CALL SORMQR( 'L','N', M, K, MINMN, F, LDF, WORK, Z, & | |||
LDZ, WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 ) | |||
ELSE IF ( WNTVCF ) THEN | |||
! Return the Ritz vectors (eigenvectors) in factored | |||
! form Z*V, where Z contains orthonormal matrix (the | |||
! product of Q from the initial QR factorization and | |||
! the SVD/POD_basis returned by SGEDMD in X) and the | |||
! second factor (the eigenvectors of the Rayleigh | |||
! quotient) is in the array V, as returned by SGEDMD. | |||
CALL SLACPY( 'A', N, K, X, LDX, Z, LDZ ) | |||
IF ( M > N ) CALL SLASET( 'A', M-N, K, ZERO, ZERO, & | |||
Z(N+1,1), LDZ ) | |||
CALL SORMQR( 'L','N', M, K, MINMN, F, LDF, WORK, Z, & | |||
LDZ, WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 ) | |||
END IF | |||
! | |||
! Some optional output variables: | |||
! | |||
! The upper triangular factor in the initial QR | |||
! factorization is optionally returned in the array Y. | |||
! This is useful if this call to SGEDMDQ is to be | |||
! followed by a streaming DMD that is implemented in a | |||
! QR compressed form. | |||
IF ( WNTTRF ) THEN ! Return the upper triangular R in Y | |||
CALL SLASET( 'A', MINMN, N, ZERO, ZERO, Y, LDY ) | |||
CALL SLACPY( 'U', MINMN, N, F, LDF, Y, LDY ) | |||
END IF | |||
! | |||
! The orthonormal/orthogonal factor in the initial QR | |||
! factorization is optionally returned in the array F. | |||
! Same as with the triangular factor above, this is | |||
! useful in a streaming DMD. | |||
IF ( WANTQ ) THEN ! Q overwrites F | |||
CALL SORGQR( M, MINMN, MINMN, F, LDF, WORK, & | |||
WORK(MINMN+N), LWORK-(MINMN+N-1), INFO1 ) | |||
END IF | |||
! | |||
RETURN | |||
! | |||
END SUBROUTINE SGEDMDQ | |||
@@ -0,0 +1,996 @@ | |||
SUBROUTINE ZGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, & | |||
M, N, X, LDX, Y, LDY, NRNK, TOL, & | |||
K, EIGS, Z, LDZ, RES, B, LDB, & | |||
W, LDW, S, LDS, ZWORK, LZWORK, & | |||
RWORK, LRWORK, IWORK, LIWORK, INFO ) | |||
! March 2023 | |||
!..... | |||
USE iso_fortran_env | |||
IMPLICIT NONE | |||
INTEGER, PARAMETER :: WP = real64 | |||
!..... | |||
! Scalar arguments | |||
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF | |||
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, & | |||
NRNK, LDZ, LDB, LDW, LDS, & | |||
LIWORK, LRWORK, LZWORK | |||
INTEGER, INTENT(OUT) :: K, INFO | |||
REAL(KIND=WP), INTENT(IN) :: TOL | |||
! Array arguments | |||
COMPLEX(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*) | |||
COMPLEX(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), & | |||
W(LDW,*), S(LDS,*) | |||
COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*) | |||
COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*) | |||
REAL(KIND=WP), INTENT(OUT) :: RES(*) | |||
REAL(KIND=WP), INTENT(OUT) :: RWORK(*) | |||
INTEGER, INTENT(OUT) :: IWORK(*) | |||
!............................................................ | |||
! Purpose | |||
! ======= | |||
! ZGEDMD computes the Dynamic Mode Decomposition (DMD) for | |||
! a pair of data snapshot matrices. For the input matrices | |||
! X and Y such that Y = A*X with an unaccessible matrix | |||
! A, ZGEDMD computes a certain number of Ritz pairs of A using | |||
! the standard Rayleigh-Ritz extraction from a subspace of | |||
! range(X) that is determined using the leading left singular | |||
! vectors of X. Optionally, ZGEDMD returns the residuals | |||
! of the computed Ritz pairs, the information needed for | |||
! a refinement of the Ritz vectors, or the eigenvectors of | |||
! the Exact DMD. | |||
! For further details see the references listed | |||
! below. For more details of the implementation see [3]. | |||
! | |||
! References | |||
! ========== | |||
! [1] P. Schmid: Dynamic mode decomposition of numerical | |||
! and experimental data, | |||
! Journal of Fluid Mechanics 656, 5-28, 2010. | |||
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal | |||
! decompositions: analysis and enhancements, | |||
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. | |||
! [3] Z. Drmac: A LAPACK implementation of the Dynamic | |||
! Mode Decomposition I. Technical report. AIMDyn Inc. | |||
! and LAPACK Working Note 298. | |||
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. | |||
! Brunton, N. Kutz: On Dynamic Mode Decomposition: | |||
! Theory and Applications, Journal of Computational | |||
! Dynamics 1(2), 391 -421, 2014. | |||
! | |||
!...................................................................... | |||
! Developed and supported by: | |||
! =========================== | |||
! Developed and coded by Zlatko Drmac, Faculty of Science, | |||
! University of Zagreb; drmac@math.hr | |||
! In cooperation with | |||
! AIMdyn Inc., Santa Barbara, CA. | |||
! and supported by | |||
! - DARPA SBIR project "Koopman Operator-Based Forecasting | |||
! for Nonstationary Processes from Near-Term, Limited | |||
! Observational Data" Contract No: W31P4Q-21-C-0007 | |||
! - DARPA PAI project "Physics-Informed Machine Learning | |||
! Methodologies" Contract No: HR0011-18-9-0033 | |||
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic | |||
! Framework for Space-Time Analysis of Process Dynamics" | |||
! Contract No: HR0011-16-C-0116 | |||
! Any opinions, findings and conclusions or recommendations | |||
! expressed in this material are those of the author and | |||
! do not necessarily reflect the views of the DARPA SBIR | |||
! Program Office | |||
!============================================================ | |||
! Distribution Statement A: | |||
! Approved for Public Release, Distribution Unlimited. | |||
! Cleared by DARPA on September 29, 2022 | |||
!============================================================ | |||
!............................................................ | |||
! Arguments | |||
! ========= | |||
! JOBS (input) CHARACTER*1 | |||
! Determines whether the initial data snapshots are scaled | |||
! by a diagonal matrix. | |||
! 'S' :: The data snapshots matrices X and Y are multiplied | |||
! with a diagonal matrix D so that X*D has unit | |||
! nonzero columns (in the Euclidean 2-norm) | |||
! 'C' :: The snapshots are scaled as with the 'S' option. | |||
! If it is found that an i-th column of X is zero | |||
! vector and the corresponding i-th column of Y is | |||
! non-zero, then the i-th column of Y is set to | |||
! zero and a warning flag is raised. | |||
! 'Y' :: The data snapshots matrices X and Y are multiplied | |||
! by a diagonal matrix D so that Y*D has unit | |||
! nonzero columns (in the Euclidean 2-norm) | |||
! 'N' :: No data scaling. | |||
!..... | |||
! JOBZ (input) CHARACTER*1 | |||
! Determines whether the eigenvectors (Koopman modes) will | |||
! be computed. | |||
! 'V' :: The eigenvectors (Koopman modes) will be computed | |||
! and returned in the matrix Z. | |||
! See the description of Z. | |||
! 'F' :: The eigenvectors (Koopman modes) will be returned | |||
! in factored form as the product X(:,1:K)*W, where X | |||
! contains a POD basis (leading left singular vectors | |||
! of the data matrix X) and W contains the eigenvectors | |||
! of the corresponding Rayleigh quotient. | |||
! See the descriptions of K, X, W, Z. | |||
! 'N' :: The eigenvectors are not computed. | |||
!..... | |||
! JOBR (input) CHARACTER*1 | |||
! Determines whether to compute the residuals. | |||
! 'R' :: The residuals for the computed eigenpairs will be | |||
! computed and stored in the array RES. | |||
! See the description of RES. | |||
! For this option to be legal, JOBZ must be 'V'. | |||
! 'N' :: The residuals are not computed. | |||
!..... | |||
! JOBF (input) CHARACTER*1 | |||
! Specifies whether to store information needed for post- | |||
! processing (e.g. computing refined Ritz vectors) | |||
! 'R' :: The matrix needed for the refinement of the Ritz | |||
! vectors is computed and stored in the array B. | |||
! See the description of B. | |||
! 'E' :: The unscaled eigenvectors of the Exact DMD are | |||
! computed and returned in the array B. See the | |||
! description of B. | |||
! 'N' :: No eigenvector refinement data is computed. | |||
!..... | |||
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } | |||
! Allows for a selection of the SVD algorithm from the | |||
! LAPACK library. | |||
! 1 :: ZGESVD (the QR SVD algorithm) | |||
! 2 :: ZGESDD (the Divide and Conquer algorithm; if enough | |||
! workspace available, this is the fastest option) | |||
! 3 :: ZGESVDQ (the preconditioned QR SVD ; this and 4 | |||
! are the most accurate options) | |||
! 4 :: ZGEJSV (the preconditioned Jacobi SVD; this and 3 | |||
! are the most accurate options) | |||
! For the four methods above, a significant difference in | |||
! the accuracy of small singular values is possible if | |||
! the snapshots vary in norm so that X is severely | |||
! ill-conditioned. If small (smaller than EPS*||X||) | |||
! singular values are of interest and JOBS=='N', then | |||
! the options (3, 4) give the most accurate results, where | |||
! the option 4 is slightly better and with stronger | |||
! theoretical background. | |||
! If JOBS=='S', i.e. the columns of X will be normalized, | |||
! then all methods give nearly equally accurate results. | |||
!..... | |||
! M (input) INTEGER, M>= 0 | |||
! The state space dimension (the row dimension of X, Y). | |||
!..... | |||
! N (input) INTEGER, 0 <= N <= M | |||
! The number of data snapshot pairs | |||
! (the number of columns of X and Y). | |||
!..... | |||
! X (input/output) COMPLEX(KIND=WP) M-by-N array | |||
! > On entry, X contains the data snapshot matrix X. It is | |||
! assumed that the column norms of X are in the range of | |||
! the normalized floating point numbers. | |||
! < On exit, the leading K columns of X contain a POD basis, | |||
! i.e. the leading K left singular vectors of the input | |||
! data matrix X, U(:,1:K). All N columns of X contain all | |||
! left singular vectors of the input matrix X. | |||
! See the descriptions of K, Z and W. | |||
!..... | |||
! LDX (input) INTEGER, LDX >= M | |||
! The leading dimension of the array X. | |||
!..... | |||
! Y (input/workspace/output) COMPLEX(KIND=WP) M-by-N array | |||
! > On entry, Y contains the data snapshot matrix Y | |||
! < On exit, | |||
! If JOBR == 'R', the leading K columns of Y contain | |||
! the residual vectors for the computed Ritz pairs. | |||
! See the description of RES. | |||
! If JOBR == 'N', Y contains the original input data, | |||
! scaled according to the value of JOBS. | |||
!..... | |||
! LDY (input) INTEGER , LDY >= M | |||
! The leading dimension of the array Y. | |||
!..... | |||
! NRNK (input) INTEGER | |||
! Determines the mode how to compute the numerical rank, | |||
! i.e. how to truncate small singular values of the input | |||
! matrix X. On input, if | |||
! NRNK = -1 :: i-th singular value sigma(i) is truncated | |||
! if sigma(i) <= TOL*sigma(1) | |||
! This option is recommended. | |||
! NRNK = -2 :: i-th singular value sigma(i) is truncated | |||
! if sigma(i) <= TOL*sigma(i-1) | |||
! This option is included for R&D purposes. | |||
! It requires highly accurate SVD, which | |||
! may not be feasible. | |||
! The numerical rank can be enforced by using positive | |||
! value of NRNK as follows: | |||
! 0 < NRNK <= N :: at most NRNK largest singular values | |||
! will be used. If the number of the computed nonzero | |||
! singular values is less than NRNK, then only those | |||
! nonzero values will be used and the actually used | |||
! dimension is less than NRNK. The actual number of | |||
! the nonzero singular values is returned in the variable | |||
! K. See the descriptions of TOL and K. | |||
!..... | |||
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1 | |||
! The tolerance for truncating small singular values. | |||
! See the description of NRNK. | |||
!..... | |||
! K (output) INTEGER, 0 <= K <= N | |||
! The dimension of the POD basis for the data snapshot | |||
! matrix X and the number of the computed Ritz pairs. | |||
! The value of K is determined according to the rule set | |||
! by the parameters NRNK and TOL. | |||
! See the descriptions of NRNK and TOL. | |||
!..... | |||
! EIGS (output) COMPLEX(KIND=WP) N-by-1 array | |||
! The leading K (K<=N) entries of EIGS contain | |||
! the computed eigenvalues (Ritz values). | |||
! See the descriptions of K, and Z. | |||
!..... | |||
! Z (workspace/output) COMPLEX(KIND=WP) M-by-N array | |||
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i) | |||
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1. | |||
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as | |||
! the columns of X(:,1:K)*W(1:K,1:K), i.e. X(:,1:K)*W(:,i) | |||
! is an eigenvector corresponding to EIGS(i). The columns | |||
! of W(1:k,1:K) are the computed eigenvectors of the | |||
! K-by-K Rayleigh quotient. | |||
! See the descriptions of EIGS, X and W. | |||
!..... | |||
! LDZ (input) INTEGER , LDZ >= M | |||
! The leading dimension of the array Z. | |||
!..... | |||
! RES (output) REAL(KIND=WP) N-by-1 array | |||
! RES(1:K) contains the residuals for the K computed | |||
! Ritz pairs, | |||
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2. | |||
! See the description of EIGS and Z. | |||
!..... | |||
! B (output) COMPLEX(KIND=WP) M-by-N array. | |||
! IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can | |||
! be used for computing the refined vectors; see further | |||
! details in the provided references. | |||
! If JOBF == 'E', B(1:M,1:K) contains | |||
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the | |||
! Exact DMD, up to scaling by the inverse eigenvalues. | |||
! If JOBF =='N', then B is not referenced. | |||
! See the descriptions of X, W, K. | |||
!..... | |||
! LDB (input) INTEGER, LDB >= M | |||
! The leading dimension of the array B. | |||
!..... | |||
! W (workspace/output) COMPLEX(KIND=WP) N-by-N array | |||
! On exit, W(1:K,1:K) contains the K computed | |||
! eigenvectors of the matrix Rayleigh quotient. | |||
! The Ritz vectors (returned in Z) are the | |||
! product of X (containing a POD basis for the input | |||
! matrix X) and W. See the descriptions of K, S, X and Z. | |||
! W is also used as a workspace to temporarily store the | |||
! right singular vectors of X. | |||
!..... | |||
! LDW (input) INTEGER, LDW >= N | |||
! The leading dimension of the array W. | |||
!..... | |||
! S (workspace/output) COMPLEX(KIND=WP) N-by-N array | |||
! The array S(1:K,1:K) is used for the matrix Rayleigh | |||
! quotient. This content is overwritten during | |||
! the eigenvalue decomposition by ZGEEV. | |||
! See the description of K. | |||
!..... | |||
! LDS (input) INTEGER, LDS >= N | |||
! The leading dimension of the array S. | |||
!..... | |||
! ZWORK (workspace/output) COMPLEX(KIND=WP) LZWORK-by-1 array | |||
! ZWORK is used as complex workspace in the complex SVD, as | |||
! specified by WHTSVD (1,2, 3 or 4) and for ZGEEV for computing | |||
! the eigenvalues of a Rayleigh quotient. | |||
! If the call to ZGEDMD is only workspace query, then | |||
! ZWORK(1) contains the minimal complex workspace length and | |||
! ZWORK(2) is the optimal complex workspace length. | |||
! Hence, the length of work is at least 2. | |||
! See the description of LZWORK. | |||
!..... | |||
! LZWORK (input) INTEGER | |||
! The minimal length of the workspace vector ZWORK. | |||
! LZWORK is calculated as MAX(LZWORK_SVD, LZWORK_ZGEEV), | |||
! where LZWORK_ZGEEV = MAX( 1, 2*N ) and the minimal | |||
! LZWORK_SVD is calculated as follows | |||
! If WHTSVD == 1 :: ZGESVD :: | |||
! LZWORK_SVD = MAX(1,2*MIN(M,N)+MAX(M,N)) | |||
! If WHTSVD == 2 :: ZGESDD :: | |||
! LZWORK_SVD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N) | |||
! If WHTSVD == 3 :: ZGESVDQ :: | |||
! LZWORK_SVD = obtainable by a query | |||
! If WHTSVD == 4 :: ZGEJSV :: | |||
! LZWORK_SVD = obtainable by a query | |||
! If on entry LZWORK = -1, then a workspace query is | |||
! assumed and the procedure only computes the minimal | |||
! and the optimal workspace lengths and returns them in | |||
! LZWORK(1) and LZWORK(2), respectively. | |||
!..... | |||
! RWORK (workspace/output) REAL(KIND=WP) LRWORK-by-1 array | |||
! On exit, RWORK(1:N) contains the singular values of | |||
! X (for JOBS=='N') or column scaled X (JOBS=='S', 'C'). | |||
! If WHTSVD==4, then RWORK(N+1) and RWORK(N+2) contain | |||
! scaling factor RWORK(N+2)/RWORK(N+1) used to scale X | |||
! and Y to avoid overflow in the SVD of X. | |||
! This may be of interest if the scaling option is off | |||
! and as many as possible smallest eigenvalues are | |||
! desired to the highest feasible accuracy. | |||
! If the call to ZGEDMD is only workspace query, then | |||
! RWORK(1) contains the minimal workspace length. | |||
! See the description of LRWORK. | |||
!..... | |||
! LRWORK (input) INTEGER | |||
! The minimal length of the workspace vector RWORK. | |||
! LRWORK is calculated as follows: | |||
! LRWORK = MAX(1, N+LRWORK_SVD,N+LRWORK_ZGEEV), where | |||
! LRWORK_ZGEEV = MAX(1,2*N) and RWORK_SVD is the real workspace | |||
! for the SVD subroutine determined by the input parameter | |||
! WHTSVD. | |||
! If WHTSVD == 1 :: ZGESVD :: | |||
! LRWORK_SVD = 5*MIN(M,N) | |||
! If WHTSVD == 2 :: ZGESDD :: | |||
! LRWORK_SVD = MAX(5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), | |||
! 2*MAX(M,N)*MIN(M,N)+2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) ) | |||
! If WHTSVD == 3 :: ZGESVDQ :: | |||
! LRWORK_SVD = obtainable by a query | |||
! If WHTSVD == 4 :: ZGEJSV :: | |||
! LRWORK_SVD = obtainable by a query | |||
! If on entry LRWORK = -1, then a workspace query is | |||
! assumed and the procedure only computes the minimal | |||
! real workspace length and returns it in RWORK(1). | |||
!..... | |||
! IWORK (workspace/output) INTEGER LIWORK-by-1 array | |||
! Workspace that is required only if WHTSVD equals | |||
! 2 , 3 or 4. (See the description of WHTSVD). | |||
! If on entry LWORK =-1 or LIWORK=-1, then the | |||
! minimal length of IWORK is computed and returned in | |||
! IWORK(1). See the description of LIWORK. | |||
!..... | |||
! LIWORK (input) INTEGER | |||
! The minimal length of the workspace vector IWORK. | |||
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 | |||
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N)) | |||
! If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1) | |||
! If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N) | |||
! If on entry LIWORK = -1, then a workspace query is | |||
! assumed and the procedure only computes the minimal | |||
! and the optimal workspace lengths for ZWORK, RWORK and | |||
! IWORK. See the descriptions of ZWORK, RWORK and IWORK. | |||
!..... | |||
! INFO (output) INTEGER | |||
! -i < 0 :: On entry, the i-th argument had an | |||
! illegal value | |||
! = 0 :: Successful return. | |||
! = 1 :: Void input. Quick exit (M=0 or N=0). | |||
! = 2 :: The SVD computation of X did not converge. | |||
! Suggestion: Check the input data and/or | |||
! repeat with different WHTSVD. | |||
! = 3 :: The computation of the eigenvalues did not | |||
! converge. | |||
! = 4 :: If data scaling was requested on input and | |||
! the procedure found inconsistency in the data | |||
! such that for some column index i, | |||
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set | |||
! to zero if JOBS=='C'. The computation proceeds | |||
! with original or modified data and warning | |||
! flag is set with INFO=4. | |||
!............................................................. | |||
!............................................................. | |||
! Parameters | |||
! ~~~~~~~~~~ | |||
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP | |||
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP | |||
COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP ) | |||
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP ) | |||
! Local scalars | |||
! ~~~~~~~~~~~~~ | |||
REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, & | |||
SSUM, XSCL1, XSCL2 | |||
INTEGER :: i, j, IMINWR, INFO1, INFO2, & | |||
LWRKEV, LWRSDD, LWRSVD, LWRSVJ, & | |||
LWRSVQ, MLWORK, MWRKEV, MWRSDD, & | |||
MWRSVD, MWRSVJ, MWRSVQ, NUMRNK, & | |||
OLWORK, MLRWRK | |||
LOGICAL :: BADXY, LQUERY, SCCOLX, SCCOLY, & | |||
WNTEX, WNTREF, WNTRES, WNTVEC | |||
CHARACTER :: JOBZL, T_OR_N | |||
CHARACTER :: JSVOPT | |||
! | |||
! Local arrays | |||
! ~~~~~~~~~~~~ | |||
REAL(KIND=WP) :: RDUMMY(2) | |||
! External functions (BLAS and LAPACK) | |||
! ~~~~~~~~~~~~~~~~~ | |||
REAL(KIND=WP) ZLANGE, DLAMCH, DZNRM2 | |||
EXTERNAL ZLANGE, DLAMCH, DZNRM2, IZAMAX | |||
INTEGER IZAMAX | |||
LOGICAL DISNAN, LSAME | |||
EXTERNAL DISNAN, LSAME | |||
! External subroutines (BLAS and LAPACK) | |||
! ~~~~~~~~~~~~~~~~~~~~ | |||
EXTERNAL ZAXPY, ZGEMM, ZDSCAL | |||
EXTERNAL ZGEEV, ZGEJSV, ZGESDD, ZGESVD, ZGESVDQ, & | |||
ZLACPY, ZLASCL, ZLASSQ, XERBLA | |||
! Intrinsic functions | |||
! ~~~~~~~~~~~~~~~~~~~ | |||
INTRINSIC DBLE, INT, MAX, SQRT | |||
!............................................................ | |||
! | |||
! Test the input arguments | |||
! | |||
WNTRES = LSAME(JOBR,'R') | |||
SCCOLX = LSAME(JOBS,'S') .OR. LSAME(JOBS,'C') | |||
SCCOLY = LSAME(JOBS,'Y') | |||
WNTVEC = LSAME(JOBZ,'V') | |||
WNTREF = LSAME(JOBF,'R') | |||
WNTEX = LSAME(JOBF,'E') | |||
INFO = 0 | |||
LQUERY = ( ( LZWORK == -1 ) .OR. ( LIWORK == -1 ) & | |||
.OR. ( LRWORK == -1 ) ) | |||
! | |||
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. & | |||
LSAME(JOBS,'N')) ) THEN | |||
INFO = -1 | |||
ELSE IF ( .NOT. (WNTVEC .OR. LSAME(JOBZ,'N') & | |||
.OR. LSAME(JOBZ,'F')) ) THEN | |||
INFO = -2 | |||
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. & | |||
( WNTRES .AND. (.NOT.WNTVEC) ) ) THEN | |||
INFO = -3 | |||
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. & | |||
LSAME(JOBF,'N') ) ) THEN | |||
INFO = -4 | |||
ELSE IF ( .NOT.((WHTSVD == 1) .OR. (WHTSVD == 2) .OR. & | |||
(WHTSVD == 3) .OR. (WHTSVD == 4) )) THEN | |||
INFO = -5 | |||
ELSE IF ( M < 0 ) THEN | |||
INFO = -6 | |||
ELSE IF ( ( N < 0 ) .OR. ( N > M ) ) THEN | |||
INFO = -7 | |||
ELSE IF ( LDX < M ) THEN | |||
INFO = -9 | |||
ELSE IF ( LDY < M ) THEN | |||
INFO = -11 | |||
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. & | |||
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN | |||
INFO = -12 | |||
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN | |||
INFO = -13 | |||
ELSE IF ( LDZ < M ) THEN | |||
INFO = -17 | |||
ELSE IF ( (WNTREF .OR. WNTEX ) .AND. ( LDB < M ) ) THEN | |||
INFO = -20 | |||
ELSE IF ( LDW < N ) THEN | |||
INFO = -22 | |||
ELSE IF ( LDS < N ) THEN | |||
INFO = -24 | |||
END IF | |||
! | |||
IF ( INFO == 0 ) THEN | |||
! Compute the minimal and the optimal workspace | |||
! requirements. Simulate running the code and | |||
! determine minimal and optimal sizes of the | |||
! workspace at any moment of the run. | |||
IF ( N == 0 ) THEN | |||
! Quick return. All output except K is void. | |||
! INFO=1 signals the void input. | |||
! In case of a workspace query, the default | |||
! minimal workspace lengths are returned. | |||
IF ( LQUERY ) THEN | |||
IWORK(1) = 1 | |||
RWORK(1) = 1 | |||
ZWORK(1) = 2 | |||
ZWORK(2) = 2 | |||
ELSE | |||
K = 0 | |||
END IF | |||
INFO = 1 | |||
RETURN | |||
END IF | |||
IMINWR = 1 | |||
MLRWRK = MAX(1,N) | |||
MLWORK = 2 | |||
OLWORK = 2 | |||
SELECT CASE ( WHTSVD ) | |||
CASE (1) | |||
! The following is specified as the minimal | |||
! length of WORK in the definition of ZGESVD: | |||
! MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N)) | |||
MWRSVD = MAX(1,2*MIN(M,N)+MAX(M,N)) | |||
MLWORK = MAX(MLWORK,MWRSVD) | |||
MLRWRK = MAX(MLRWRK,N + 5*MIN(M,N)) | |||
IF ( LQUERY ) THEN | |||
CALL ZGESVD( 'O', 'S', M, N, X, LDX, RWORK, & | |||
B, LDB, W, LDW, ZWORK, -1, RDUMMY, INFO1 ) | |||
LWRSVD = INT( ZWORK(1) ) | |||
OLWORK = MAX(OLWORK,LWRSVD) | |||
END IF | |||
CASE (2) | |||
! The following is specified as the minimal | |||
! length of WORK in the definition of ZGESDD: | |||
! MWRSDD = 2*min(M,N)*min(M,N)+2*min(M,N)+max(M,N). | |||
! RWORK length: 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N) | |||
! In LAPACK 3.10.1 RWORK is defined differently. | |||
! Below we take max over the two versions. | |||
! IMINWR = 8*MIN(M,N) | |||
MWRSDD = 2*MIN(M,N)*MIN(M,N)+2*MIN(M,N)+MAX(M,N) | |||
MLWORK = MAX(MLWORK,MWRSDD) | |||
IMINWR = 8*MIN(M,N) | |||
MLRWRK = MAX( MLRWRK, N + & | |||
MAX( 5*MIN(M,N)*MIN(M,N)+7*MIN(M,N), & | |||
5*MIN(M,N)*MIN(M,N)+5*MIN(M,N), & | |||
2*MAX(M,N)*MIN(M,N)+ & | |||
2*MIN(M,N)*MIN(M,N)+MIN(M,N) ) ) | |||
IF ( LQUERY ) THEN | |||
CALL ZGESDD( 'O', M, N, X, LDX, RWORK, B,LDB,& | |||
W, LDW, ZWORK, -1, RDUMMY, IWORK, INFO1 ) | |||
LWRSDD = MAX( MWRSDD,INT( ZWORK(1) )) | |||
! Possible bug in ZGESDD optimal workspace size. | |||
OLWORK = MAX(OLWORK,LWRSDD) | |||
END IF | |||
CASE (3) | |||
CALL ZGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, & | |||
X, LDX, RWORK, Z, LDZ, W, LDW, NUMRNK, & | |||
IWORK, -1, ZWORK, -1, RDUMMY, -1, INFO1 ) | |||
IMINWR = IWORK(1) | |||
MWRSVQ = INT(ZWORK(2)) | |||
MLWORK = MAX(MLWORK,MWRSVQ) | |||
MLRWRK = MAX(MLRWRK,N + INT(RDUMMY(1))) | |||
IF ( LQUERY ) THEN | |||
LWRSVQ = INT(ZWORK(1)) | |||
OLWORK = MAX(OLWORK,LWRSVQ) | |||
END IF | |||
CASE (4) | |||
JSVOPT = 'J' | |||
CALL ZGEJSV( 'F', 'U', JSVOPT, 'R', 'N', 'P', M, & | |||
N, X, LDX, RWORK, Z, LDZ, W, LDW, & | |||
ZWORK, -1, RDUMMY, -1, IWORK, INFO1 ) | |||
IMINWR = IWORK(1) | |||
MWRSVJ = INT(ZWORK(2)) | |||
MLWORK = MAX(MLWORK,MWRSVJ) | |||
MLRWRK = MAX(MLRWRK,N + MAX(7,INT(RDUMMY(1)))) | |||
IF ( LQUERY ) THEN | |||
LWRSVJ = INT(ZWORK(1)) | |||
OLWORK = MAX(OLWORK,LWRSVJ) | |||
END IF | |||
END SELECT | |||
IF ( WNTVEC .OR. WNTEX .OR. LSAME(JOBZ,'F') ) THEN | |||
JOBZL = 'V' | |||
ELSE | |||
JOBZL = 'N' | |||
END IF | |||
! Workspace calculation to the ZGEEV call | |||
MWRKEV = MAX( 1, 2*N ) | |||
MLWORK = MAX(MLWORK,MWRKEV) | |||
MLRWRK = MAX(MLRWRK,N+2*N) | |||
IF ( LQUERY ) THEN | |||
CALL ZGEEV( 'N', JOBZL, N, S, LDS, EIGS, & | |||
W, LDW, W, LDW, ZWORK, -1, RWORK, INFO1 ) | |||
LWRKEV = INT(ZWORK(1)) | |||
OLWORK = MAX( OLWORK, LWRKEV ) | |||
END IF | |||
! | |||
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -30 | |||
IF ( LRWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -28 | |||
IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -26 | |||
END IF | |||
! | |||
IF( INFO /= 0 ) THEN | |||
CALL XERBLA( 'ZGEDMD', -INFO ) | |||
RETURN | |||
ELSE IF ( LQUERY ) THEN | |||
! Return minimal and optimal workspace sizes | |||
IWORK(1) = IMINWR | |||
RWORK(1) = MLRWRK | |||
ZWORK(1) = MLWORK | |||
ZWORK(2) = OLWORK | |||
RETURN | |||
END IF | |||
!............................................................ | |||
! | |||
OFL = DLAMCH('O') | |||
SMALL = DLAMCH('S') | |||
BADXY = .FALSE. | |||
! | |||
! <1> Optional scaling of the snapshots (columns of X, Y) | |||
! ========================================================== | |||
IF ( SCCOLX ) THEN | |||
! The columns of X will be normalized. | |||
! To prevent overflows, the column norms of X are | |||
! carefully computed using ZLASSQ. | |||
K = 0 | |||
DO i = 1, N | |||
!WORK(i) = DZNRM2( M, X(1,i), 1 ) | |||
SCALE = ZERO | |||
CALL ZLASSQ( M, X(1,i), 1, SCALE, SSUM ) | |||
IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN | |||
K = 0 | |||
INFO = -8 | |||
CALL XERBLA('ZGEDMD',-INFO) | |||
END IF | |||
IF ( (SCALE /= ZERO) .AND. (SSUM /= ZERO) ) THEN | |||
ROOTSC = SQRT(SSUM) | |||
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN | |||
! Norm of X(:,i) overflows. First, X(:,i) | |||
! is scaled by | |||
! ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2. | |||
! Next, the norm of X(:,i) is stored without | |||
! overflow as RWORK(i) = - SCALE * (ROOTSC/M), | |||
! the minus sign indicating the 1/M factor. | |||
! Scaling is performed without overflow, and | |||
! underflow may occur in the smallest entries | |||
! of X(:,i). The relative backward and forward | |||
! errors are small in the ell_2 norm. | |||
CALL ZLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, & | |||
M, 1, X(1,i), LDX, INFO2 ) | |||
RWORK(i) = - SCALE * ( ROOTSC / DBLE(M) ) | |||
ELSE | |||
! X(:,i) will be scaled to unit 2-norm | |||
RWORK(i) = SCALE * ROOTSC | |||
CALL ZLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, & | |||
X(1,i), LDX, INFO2 ) ! LAPACK CALL | |||
! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC | |||
END IF | |||
ELSE | |||
RWORK(i) = ZERO | |||
K = K + 1 | |||
END IF | |||
END DO | |||
IF ( K == N ) THEN | |||
! All columns of X are zero. Return error code -8. | |||
! (the 8th input variable had an illegal value) | |||
K = 0 | |||
INFO = -8 | |||
CALL XERBLA('ZGEDMD',-INFO) | |||
RETURN | |||
END IF | |||
DO i = 1, N | |||
! Now, apply the same scaling to the columns of Y. | |||
IF ( RWORK(i) > ZERO ) THEN | |||
CALL ZDSCAL( M, ONE/RWORK(i), Y(1,i), 1 ) ! BLAS CALL | |||
! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC | |||
ELSE IF ( RWORK(i) < ZERO ) THEN | |||
CALL ZLASCL( 'G', 0, 0, -RWORK(i), & | |||
ONE/DBLE(M), M, 1, Y(1,i), LDY, INFO2 ) ! LAPACK CALL | |||
ELSE IF ( ABS(Y(IZAMAX(M, Y(1,i),1),i )) & | |||
/= ZERO ) THEN | |||
! X(:,i) is zero vector. For consistency, | |||
! Y(:,i) should also be zero. If Y(:,i) is not | |||
! zero, then the data might be inconsistent or | |||
! corrupted. If JOBS == 'C', Y(:,i) is set to | |||
! zero and a warning flag is raised. | |||
! The computation continues but the | |||
! situation will be reported in the output. | |||
BADXY = .TRUE. | |||
IF ( LSAME(JOBS,'C')) & | |||
CALL ZDSCAL( M, ZERO, Y(1,i), 1 ) ! BLAS CALL | |||
END IF | |||
END DO | |||
END IF | |||
! | |||
IF ( SCCOLY ) THEN | |||
! The columns of Y will be normalized. | |||
! To prevent overflows, the column norms of Y are | |||
! carefully computed using ZLASSQ. | |||
DO i = 1, N | |||
!RWORK(i) = DZNRM2( M, Y(1,i), 1 ) | |||
SCALE = ZERO | |||
CALL ZLASSQ( M, Y(1,i), 1, SCALE, SSUM ) | |||
IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN | |||
K = 0 | |||
INFO = -10 | |||
CALL XERBLA('ZGEDMD',-INFO) | |||
END IF | |||
IF ( SCALE /= ZERO .AND. (SSUM /= ZERO) ) THEN | |||
ROOTSC = SQRT(SSUM) | |||
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN | |||
! Norm of Y(:,i) overflows. First, Y(:,i) | |||
! is scaled by | |||
! ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2. | |||
! Next, the norm of Y(:,i) is stored without | |||
! overflow as RWORK(i) = - SCALE * (ROOTSC/M), | |||
! the minus sign indicating the 1/M factor. | |||
! Scaling is performed without overflow, and | |||
! underflow may occur in the smallest entries | |||
! of Y(:,i). The relative backward and forward | |||
! errors are small in the ell_2 norm. | |||
CALL ZLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, & | |||
M, 1, Y(1,i), LDY, INFO2 ) | |||
RWORK(i) = - SCALE * ( ROOTSC / DBLE(M) ) | |||
ELSE | |||
! Y(:,i) will be scaled to unit 2-norm | |||
RWORK(i) = SCALE * ROOTSC | |||
CALL ZLASCL( 'G',0, 0, RWORK(i), ONE, M, 1, & | |||
Y(1,i), LDY, INFO2 ) ! LAPACK CALL | |||
! Y(1:M,i) = (ONE/RWORK(i)) * Y(1:M,i) ! INTRINSIC | |||
END IF | |||
ELSE | |||
RWORK(i) = ZERO | |||
END IF | |||
END DO | |||
DO i = 1, N | |||
! Now, apply the same scaling to the columns of X. | |||
IF ( RWORK(i) > ZERO ) THEN | |||
CALL ZDSCAL( M, ONE/RWORK(i), X(1,i), 1 ) ! BLAS CALL | |||
! X(1:M,i) = (ONE/RWORK(i)) * X(1:M,i) ! INTRINSIC | |||
ELSE IF ( RWORK(i) < ZERO ) THEN | |||
CALL ZLASCL( 'G', 0, 0, -RWORK(i), & | |||
ONE/DBLE(M), M, 1, X(1,i), LDX, INFO2 ) ! LAPACK CALL | |||
ELSE IF ( ABS(X(IZAMAX(M, X(1,i),1),i )) & | |||
/= ZERO ) THEN | |||
! Y(:,i) is zero vector. If X(:,i) is not | |||
! zero, then a warning flag is raised. | |||
! The computation continues but the | |||
! situation will be reported in the output. | |||
BADXY = .TRUE. | |||
END IF | |||
END DO | |||
END IF | |||
! | |||
! <2> SVD of the data snapshot matrix X. | |||
! ===================================== | |||
! The left singular vectors are stored in the array X. | |||
! The right singular vectors are in the array W. | |||
! The array W will later on contain the eigenvectors | |||
! of a Rayleigh quotient. | |||
NUMRNK = N | |||
SELECT CASE ( WHTSVD ) | |||
CASE (1) | |||
CALL ZGESVD( 'O', 'S', M, N, X, LDX, RWORK, B, & | |||
LDB, W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL | |||
T_OR_N = 'C' | |||
CASE (2) | |||
CALL ZGESDD( 'O', M, N, X, LDX, RWORK, B, LDB, W, & | |||
LDW, ZWORK, LZWORK, RWORK(N+1), IWORK, INFO1 ) ! LAPACK CALL | |||
T_OR_N = 'C' | |||
CASE (3) | |||
CALL ZGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, & | |||
X, LDX, RWORK, Z, LDZ, W, LDW, & | |||
NUMRNK, IWORK, LIWORK, ZWORK, & | |||
LZWORK, RWORK(N+1), LRWORK-N, INFO1) ! LAPACK CALL | |||
CALL ZLACPY( 'A', M, NUMRNK, Z, LDZ, X, LDX ) ! LAPACK CALL | |||
T_OR_N = 'C' | |||
CASE (4) | |||
CALL ZGEJSV( 'F', 'U', JSVOPT, 'R', 'N', 'P', M, & | |||
N, X, LDX, RWORK, Z, LDZ, W, LDW, & | |||
ZWORK, LZWORK, RWORK(N+1), LRWORK-N, IWORK, INFO1 ) ! LAPACK CALL | |||
CALL ZLACPY( 'A', M, N, Z, LDZ, X, LDX ) ! LAPACK CALL | |||
T_OR_N = 'N' | |||
XSCL1 = RWORK(N+1) | |||
XSCL2 = RWORK(N+2) | |||
IF ( XSCL1 /= XSCL2 ) THEN | |||
! This is an exceptional situation. If the | |||
! data matrices are not scaled and the | |||
! largest singular value of X overflows. | |||
! In that case ZGEJSV can return the SVD | |||
! in scaled form. The scaling factor can be used | |||
! to rescale the data (X and Y). | |||
CALL ZLASCL( 'G', 0, 0, XSCL1, XSCL2, M, N, Y, LDY, INFO2 ) | |||
END IF | |||
END SELECT | |||
! | |||
IF ( INFO1 > 0 ) THEN | |||
! The SVD selected subroutine did not converge. | |||
! Return with an error code. | |||
INFO = 2 | |||
RETURN | |||
END IF | |||
! | |||
IF ( RWORK(1) == ZERO ) THEN | |||
! The largest computed singular value of (scaled) | |||
! X is zero. Return error code -8 | |||
! (the 8th input variable had an illegal value). | |||
K = 0 | |||
INFO = -8 | |||
CALL XERBLA('ZGEDMD',-INFO) | |||
RETURN | |||
END IF | |||
! | |||
!<3> Determine the numerical rank of the data | |||
! snapshots matrix X. This depends on the | |||
! parameters NRNK and TOL. | |||
SELECT CASE ( NRNK ) | |||
CASE ( -1 ) | |||
K = 1 | |||
DO i = 2, NUMRNK | |||
IF ( ( RWORK(i) <= RWORK(1)*TOL ) .OR. & | |||
( RWORK(i) <= SMALL ) ) EXIT | |||
K = K + 1 | |||
END DO | |||
CASE ( -2 ) | |||
K = 1 | |||
DO i = 1, NUMRNK-1 | |||
IF ( ( RWORK(i+1) <= RWORK(i)*TOL ) .OR. & | |||
( RWORK(i) <= SMALL ) ) EXIT | |||
K = K + 1 | |||
END DO | |||
CASE DEFAULT | |||
K = 1 | |||
DO i = 2, NRNK | |||
IF ( RWORK(i) <= SMALL ) EXIT | |||
K = K + 1 | |||
END DO | |||
END SELECT | |||
! Now, U = X(1:M,1:K) is the SVD/POD basis for the | |||
! snapshot data in the input matrix X. | |||
!<4> Compute the Rayleigh quotient S = U^H * A * U. | |||
! Depending on the requested outputs, the computation | |||
! is organized to compute additional auxiliary | |||
! matrices (for the residuals and refinements). | |||
! | |||
! In all formulas below, we need V_k*Sigma_k^(-1) | |||
! where either V_k is in W(1:N,1:K), or V_k^H is in | |||
! W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)). | |||
IF ( LSAME(T_OR_N, 'N') ) THEN | |||
DO i = 1, K | |||
CALL ZDSCAL( N, ONE/RWORK(i), W(1,i), 1 ) ! BLAS CALL | |||
! W(1:N,i) = (ONE/RWORK(i)) * W(1:N,i) ! INTRINSIC | |||
END DO | |||
ELSE | |||
! This non-unit stride access is due to the fact | |||
! that ZGESVD, ZGESVDQ and ZGESDD return the | |||
! adjoint matrix of the right singular vectors. | |||
!DO i = 1, K | |||
! CALL ZDSCAL( N, ONE/RWORK(i), W(i,1), LDW ) ! BLAS CALL | |||
! ! W(i,1:N) = (ONE/RWORK(i)) * W(i,1:N) ! INTRINSIC | |||
!END DO | |||
DO i = 1, K | |||
RWORK(N+i) = ONE/RWORK(i) | |||
END DO | |||
DO j = 1, N | |||
DO i = 1, K | |||
W(i,j) = CMPLX(RWORK(N+i),ZERO,KIND=WP)*W(i,j) | |||
END DO | |||
END DO | |||
END IF | |||
! | |||
IF ( WNTREF ) THEN | |||
! | |||
! Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K))) | |||
! for computing the refined Ritz vectors | |||
! (optionally, outside ZGEDMD). | |||
CALL ZGEMM( 'N', T_OR_N, M, K, N, ZONE, Y, LDY, W, & | |||
LDW, ZZERO, Z, LDZ ) ! BLAS CALL | |||
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(CONJG(W(1:K,1:N)))) ! INTRINSIC, for T_OR_N=='C' | |||
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K)) ! INTRINSIC, for T_OR_N=='N' | |||
! | |||
! At this point Z contains | |||
! A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and | |||
! this is needed for computing the residuals. | |||
! This matrix is returned in the array B and | |||
! it can be used to compute refined Ritz vectors. | |||
CALL ZLACPY( 'A', M, K, Z, LDZ, B, LDB ) ! BLAS CALL | |||
! B(1:M,1:K) = Z(1:M,1:K) ! INTRINSIC | |||
CALL ZGEMM( 'C', 'N', K, K, M, ZONE, X, LDX, Z, & | |||
LDZ, ZZERO, S, LDS ) ! BLAS CALL | |||
! S(1:K,1:K) = MATMUL(TRANSPOSE(CONJG(X(1:M,1:K))),Z(1:M,1:K)) ! INTRINSIC | |||
! At this point S = U^H * A * U is the Rayleigh quotient. | |||
ELSE | |||
! A * U(:,1:K) is not explicitly needed and the | |||
! computation is organized differently. The Rayleigh | |||
! quotient is computed more efficiently. | |||
CALL ZGEMM( 'C', 'N', K, N, M, ZONE, X, LDX, Y, LDY, & | |||
ZZERO, Z, LDZ ) ! BLAS CALL | |||
! Z(1:K,1:N) = MATMUL( TRANSPOSE(CONJG(X(1:M,1:K))), Y(1:M,1:N) ) ! INTRINSIC | |||
! | |||
CALL ZGEMM( 'N', T_OR_N, K, K, N, ZONE, Z, LDZ, W, & | |||
LDW, ZZERO, S, LDS ) ! BLAS CALL | |||
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(CONJG(W(1:K,1:N)))) ! INTRINSIC, for T_OR_N=='T' | |||
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K))) ! INTRINSIC, for T_OR_N=='N' | |||
! At this point S = U^H * A * U is the Rayleigh quotient. | |||
! If the residuals are requested, save scaled V_k into Z. | |||
! Recall that V_k or V_k^H is stored in W. | |||
IF ( WNTRES .OR. WNTEX ) THEN | |||
IF ( LSAME(T_OR_N, 'N') ) THEN | |||
CALL ZLACPY( 'A', N, K, W, LDW, Z, LDZ ) | |||
ELSE | |||
CALL ZLACPY( 'A', K, N, W, LDW, Z, LDZ ) | |||
END IF | |||
END IF | |||
END IF | |||
! | |||
!<5> Compute the Ritz values and (if requested) the | |||
! right eigenvectors of the Rayleigh quotient. | |||
! | |||
CALL ZGEEV( 'N', JOBZL, K, S, LDS, EIGS, W, LDW, & | |||
W, LDW, ZWORK, LZWORK, RWORK(N+1), INFO1 ) ! LAPACK CALL | |||
! | |||
! W(1:K,1:K) contains the eigenvectors of the Rayleigh | |||
! quotient. See the description of Z. | |||
! Also, see the description of ZGEEV. | |||
IF ( INFO1 > 0 ) THEN | |||
! ZGEEV failed to compute the eigenvalues and | |||
! eigenvectors of the Rayleigh quotient. | |||
INFO = 3 | |||
RETURN | |||
END IF | |||
! | |||
! <6> Compute the eigenvectors (if requested) and, | |||
! the residuals (if requested). | |||
! | |||
IF ( WNTVEC .OR. WNTEX ) THEN | |||
IF ( WNTRES ) THEN | |||
IF ( WNTREF ) THEN | |||
! Here, if the refinement is requested, we have | |||
! A*U(:,1:K) already computed and stored in Z. | |||
! For the residuals, need Y = A * U(:,1;K) * W. | |||
CALL ZGEMM( 'N', 'N', M, K, K, ZONE, Z, LDZ, W, & | |||
LDW, ZZERO, Y, LDY ) ! BLAS CALL | |||
! Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K) ! INTRINSIC | |||
! This frees Z; Y contains A * U(:,1:K) * W. | |||
ELSE | |||
! Compute S = V_k * Sigma_k^(-1) * W, where | |||
! V_k * Sigma_k^(-1) (or its adjoint) is stored in Z | |||
CALL ZGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, & | |||
W, LDW, ZZERO, S, LDS ) | |||
! Then, compute Z = Y * S = | |||
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) = | |||
! = A * U(:,1:K) * W(1:K,1:K) | |||
CALL ZGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, & | |||
LDS, ZZERO, Z, LDZ ) | |||
! Save a copy of Z into Y and free Z for holding | |||
! the Ritz vectors. | |||
CALL ZLACPY( 'A', M, K, Z, LDZ, Y, LDY ) | |||
IF ( WNTEX ) CALL ZLACPY( 'A', M, K, Z, LDZ, B, LDB ) | |||
END IF | |||
ELSE IF ( WNTEX ) THEN | |||
! Compute S = V_k * Sigma_k^(-1) * W, where | |||
! V_k * Sigma_k^(-1) is stored in Z | |||
CALL ZGEMM( T_OR_N, 'N', N, K, K, ZONE, Z, LDZ, & | |||
W, LDW, ZZERO, S, LDS ) | |||
! Then, compute Z = Y * S = | |||
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) = | |||
! = A * U(:,1:K) * W(1:K,1:K) | |||
CALL ZGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, & | |||
LDS, ZZERO, B, LDB ) | |||
! The above call replaces the following two calls | |||
! that were used in the developing-testing phase. | |||
! CALL ZGEMM( 'N', 'N', M, K, N, ZONE, Y, LDY, S, & | |||
! LDS, ZZERO, Z, LDZ) | |||
! Save a copy of Z into B and free Z for holding | |||
! the Ritz vectors. | |||
! CALL ZLACPY( 'A', M, K, Z, LDZ, B, LDB ) | |||
END IF | |||
! | |||
! Compute the Ritz vectors | |||
IF ( WNTVEC ) CALL ZGEMM( 'N', 'N', M, K, K, ZONE, X, LDX, W, LDW, & | |||
ZZERO, Z, LDZ ) ! BLAS CALL | |||
! Z(1:M,1:K) = MATMUL(X(1:M,1:K), W(1:K,1:K)) ! INTRINSIC | |||
! | |||
IF ( WNTRES ) THEN | |||
DO i = 1, K | |||
CALL ZAXPY( M, -EIGS(i), Z(1,i), 1, Y(1,i), 1 ) ! BLAS CALL | |||
! Y(1:M,i) = Y(1:M,i) - EIGS(i) * Z(1:M,i) ! INTRINSIC | |||
RES(i) = DZNRM2( M, Y(1,i), 1 ) ! BLAS CALL | |||
END DO | |||
END IF | |||
END IF | |||
! | |||
IF ( WHTSVD == 4 ) THEN | |||
RWORK(N+1) = XSCL1 | |||
RWORK(N+2) = XSCL2 | |||
END IF | |||
! | |||
! Successful exit. | |||
IF ( .NOT. BADXY ) THEN | |||
INFO = 0 | |||
ELSE | |||
! A warning on possible data inconsistency. | |||
! This should be a rare event. | |||
INFO = 4 | |||
END IF | |||
!............................................................ | |||
RETURN | |||
! ...... | |||
END SUBROUTINE ZGEDMD | |||
@@ -0,0 +1,689 @@ | |||
SUBROUTINE ZGEDMDQ( JOBS, JOBZ, JOBR, JOBQ, JOBT, JOBF, & | |||
WHTSVD, M, N, F, LDF, X, LDX, Y, & | |||
LDY, NRNK, TOL, K, EIGS, & | |||
Z, LDZ, RES, B, LDB, V, LDV, & | |||
S, LDS, ZWORK, LZWORK, WORK, LWORK, & | |||
IWORK, LIWORK, INFO ) | |||
! March 2023 | |||
!..... | |||
USE iso_fortran_env | |||
IMPLICIT NONE | |||
INTEGER, PARAMETER :: WP = real64 | |||
!..... | |||
! Scalar arguments | |||
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBQ, & | |||
JOBT, JOBF | |||
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDF, LDX, & | |||
LDY, NRNK, LDZ, LDB, LDV, & | |||
LDS, LZWORK, LWORK, LIWORK | |||
INTEGER, INTENT(OUT) :: INFO, K | |||
REAL(KIND=WP), INTENT(IN) :: TOL | |||
! Array arguments | |||
COMPLEX(KIND=WP), INTENT(INOUT) :: F(LDF,*) | |||
COMPLEX(KIND=WP), INTENT(OUT) :: X(LDX,*), Y(LDY,*), & | |||
Z(LDZ,*), B(LDB,*), & | |||
V(LDV,*), S(LDS,*) | |||
COMPLEX(KIND=WP), INTENT(OUT) :: EIGS(*) | |||
COMPLEX(KIND=WP), INTENT(OUT) :: ZWORK(*) | |||
REAL(KIND=WP), INTENT(OUT) :: RES(*) | |||
REAL(KIND=WP), INTENT(OUT) :: WORK(*) | |||
INTEGER, INTENT(OUT) :: IWORK(*) | |||
!..... | |||
! Purpose | |||
! ======= | |||
! ZGEDMDQ computes the Dynamic Mode Decomposition (DMD) for | |||
! a pair of data snapshot matrices, using a QR factorization | |||
! based compression of the data. For the input matrices | |||
! X and Y such that Y = A*X with an unaccessible matrix | |||
! A, ZGEDMDQ computes a certain number of Ritz pairs of A using | |||
! the standard Rayleigh-Ritz extraction from a subspace of | |||
! range(X) that is determined using the leading left singular | |||
! vectors of X. Optionally, ZGEDMDQ returns the residuals | |||
! of the computed Ritz pairs, the information needed for | |||
! a refinement of the Ritz vectors, or the eigenvectors of | |||
! the Exact DMD. | |||
! For further details see the references listed | |||
! below. For more details of the implementation see [3]. | |||
! | |||
! References | |||
! ========== | |||
! [1] P. Schmid: Dynamic mode decomposition of numerical | |||
! and experimental data, | |||
! Journal of Fluid Mechanics 656, 5-28, 2010. | |||
! [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal | |||
! decompositions: analysis and enhancements, | |||
! SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018. | |||
! [3] Z. Drmac: A LAPACK implementation of the Dynamic | |||
! Mode Decomposition I. Technical report. AIMDyn Inc. | |||
! and LAPACK Working Note 298. | |||
! [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. | |||
! Brunton, N. Kutz: On Dynamic Mode Decomposition: | |||
! Theory and Applications, Journal of Computational | |||
! Dynamics 1(2), 391 -421, 2014. | |||
! | |||
! Developed and supported by: | |||
! =========================== | |||
! Developed and coded by Zlatko Drmac, Faculty of Science, | |||
! University of Zagreb; drmac@math.hr | |||
! In cooperation with | |||
! AIMdyn Inc., Santa Barbara, CA. | |||
! and supported by | |||
! - DARPA SBIR project "Koopman Operator-Based Forecasting | |||
! for Nonstationary Processes from Near-Term, Limited | |||
! Observational Data" Contract No: W31P4Q-21-C-0007 | |||
! - DARPA PAI project "Physics-Informed Machine Learning | |||
! Methodologies" Contract No: HR0011-18-9-0033 | |||
! - DARPA MoDyL project "A Data-Driven, Operator-Theoretic | |||
! Framework for Space-Time Analysis of Process Dynamics" | |||
! Contract No: HR0011-16-C-0116 | |||
! Any opinions, findings and conclusions or recommendations | |||
! expressed in this material are those of the author and | |||
! do not necessarily reflect the views of the DARPA SBIR | |||
! Program Office. | |||
!============================================================ | |||
! Distribution Statement A: | |||
! Approved for Public Release, Distribution Unlimited. | |||
! Cleared by DARPA on September 29, 2022 | |||
!============================================================ | |||
!...................................................................... | |||
! Arguments | |||
! ========= | |||
! JOBS (input) CHARACTER*1 | |||
! Determines whether the initial data snapshots are scaled | |||
! by a diagonal matrix. The data snapshots are the columns | |||
! of F. The leading N-1 columns of F are denoted X and the | |||
! trailing N-1 columns are denoted Y. | |||
! 'S' :: The data snapshots matrices X and Y are multiplied | |||
! with a diagonal matrix D so that X*D has unit | |||
! nonzero columns (in the Euclidean 2-norm) | |||
! 'C' :: The snapshots are scaled as with the 'S' option. | |||
! If it is found that an i-th column of X is zero | |||
! vector and the corresponding i-th column of Y is | |||
! non-zero, then the i-th column of Y is set to | |||
! zero and a warning flag is raised. | |||
! 'Y' :: The data snapshots matrices X and Y are multiplied | |||
! by a diagonal matrix D so that Y*D has unit | |||
! nonzero columns (in the Euclidean 2-norm) | |||
! 'N' :: No data scaling. | |||
!..... | |||
! JOBZ (input) CHARACTER*1 | |||
! Determines whether the eigenvectors (Koopman modes) will | |||
! be computed. | |||
! 'V' :: The eigenvectors (Koopman modes) will be computed | |||
! and returned in the matrix Z. | |||
! See the description of Z. | |||
! 'F' :: The eigenvectors (Koopman modes) will be returned | |||
! in factored form as the product Z*V, where Z | |||
! is orthonormal and V contains the eigenvectors | |||
! of the corresponding Rayleigh quotient. | |||
! See the descriptions of F, V, Z. | |||
! 'Q' :: The eigenvectors (Koopman modes) will be returned | |||
! in factored form as the product Q*Z, where Z | |||
! contains the eigenvectors of the compression of the | |||
! underlying discretized operator onto the span of | |||
! the data snapshots. See the descriptions of F, V, Z. | |||
! Q is from the initial QR factorization. | |||
! 'N' :: The eigenvectors are not computed. | |||
!..... | |||
! JOBR (input) CHARACTER*1 | |||
! Determines whether to compute the residuals. | |||
! 'R' :: The residuals for the computed eigenpairs will | |||
! be computed and stored in the array RES. | |||
! See the description of RES. | |||
! For this option to be legal, JOBZ must be 'V'. | |||
! 'N' :: The residuals are not computed. | |||
!..... | |||
! JOBQ (input) CHARACTER*1 | |||
! Specifies whether to explicitly compute and return the | |||
! unitary matrix from the QR factorization. | |||
! 'Q' :: The matrix Q of the QR factorization of the data | |||
! snapshot matrix is computed and stored in the | |||
! array F. See the description of F. | |||
! 'N' :: The matrix Q is not explicitly computed. | |||
!..... | |||
! JOBT (input) CHARACTER*1 | |||
! Specifies whether to return the upper triangular factor | |||
! from the QR factorization. | |||
! 'R' :: The matrix R of the QR factorization of the data | |||
! snapshot matrix F is returned in the array Y. | |||
! See the description of Y and Further details. | |||
! 'N' :: The matrix R is not returned. | |||
!..... | |||
! JOBF (input) CHARACTER*1 | |||
! Specifies whether to store information needed for post- | |||
! processing (e.g. computing refined Ritz vectors) | |||
! 'R' :: The matrix needed for the refinement of the Ritz | |||
! vectors is computed and stored in the array B. | |||
! See the description of B. | |||
! 'E' :: The unscaled eigenvectors of the Exact DMD are | |||
! computed and returned in the array B. See the | |||
! description of B. | |||
! 'N' :: No eigenvector refinement data is computed. | |||
! To be useful on exit, this option needs JOBQ='Q'. | |||
!..... | |||
! WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 } | |||
! Allows for a selection of the SVD algorithm from the | |||
! LAPACK library. | |||
! 1 :: ZGESVD (the QR SVD algorithm) | |||
! 2 :: ZGESDD (the Divide and Conquer algorithm; if enough | |||
! workspace available, this is the fastest option) | |||
! 3 :: ZGESVDQ (the preconditioned QR SVD ; this and 4 | |||
! are the most accurate options) | |||
! 4 :: ZGEJSV (the preconditioned Jacobi SVD; this and 3 | |||
! are the most accurate options) | |||
! For the four methods above, a significant difference in | |||
! the accuracy of small singular values is possible if | |||
! the snapshots vary in norm so that X is severely | |||
! ill-conditioned. If small (smaller than EPS*||X||) | |||
! singular values are of interest and JOBS=='N', then | |||
! the options (3, 4) give the most accurate results, where | |||
! the option 4 is slightly better and with stronger | |||
! theoretical background. | |||
! If JOBS=='S', i.e. the columns of X will be normalized, | |||
! then all methods give nearly equally accurate results. | |||
!..... | |||
! M (input) INTEGER, M >= 0 | |||
! The state space dimension (the number of rows of F). | |||
!..... | |||
! N (input) INTEGER, 0 <= N <= M | |||
! The number of data snapshots from a single trajectory, | |||
! taken at equidistant discrete times. This is the | |||
! number of columns of F. | |||
!..... | |||
! F (input/output) COMPLEX(KIND=WP) M-by-N array | |||
! > On entry, | |||
! the columns of F are the sequence of data snapshots | |||
! from a single trajectory, taken at equidistant discrete | |||
! times. It is assumed that the column norms of F are | |||
! in the range of the normalized floating point numbers. | |||
! < On exit, | |||
! If JOBQ == 'Q', the array F contains the orthogonal | |||
! matrix/factor of the QR factorization of the initial | |||
! data snapshots matrix F. See the description of JOBQ. | |||
! If JOBQ == 'N', the entries in F strictly below the main | |||
! diagonal contain, column-wise, the information on the | |||
! Householder vectors, as returned by ZGEQRF. The | |||
! remaining information to restore the orthogonal matrix | |||
! of the initial QR factorization is stored in ZWORK(1:MIN(M,N)). | |||
! See the description of ZWORK. | |||
!..... | |||
! LDF (input) INTEGER, LDF >= M | |||
! The leading dimension of the array F. | |||
!..... | |||
! X (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array | |||
! X is used as workspace to hold representations of the | |||
! leading N-1 snapshots in the orthonormal basis computed | |||
! in the QR factorization of F. | |||
! On exit, the leading K columns of X contain the leading | |||
! K left singular vectors of the above described content | |||
! of X. To lift them to the space of the left singular | |||
! vectors U(:,1:K) of the input data, pre-multiply with the | |||
! Q factor from the initial QR factorization. | |||
! See the descriptions of F, K, V and Z. | |||
!..... | |||
! LDX (input) INTEGER, LDX >= N | |||
! The leading dimension of the array X. | |||
!..... | |||
! Y (workspace/output) COMPLEX(KIND=WP) MIN(M,N)-by-(N) array | |||
! Y is used as workspace to hold representations of the | |||
! trailing N-1 snapshots in the orthonormal basis computed | |||
! in the QR factorization of F. | |||
! On exit, | |||
! If JOBT == 'R', Y contains the MIN(M,N)-by-N upper | |||
! triangular factor from the QR factorization of the data | |||
! snapshot matrix F. | |||
!..... | |||
! LDY (input) INTEGER , LDY >= N | |||
! The leading dimension of the array Y. | |||
!..... | |||
! NRNK (input) INTEGER | |||
! Determines the mode how to compute the numerical rank, | |||
! i.e. how to truncate small singular values of the input | |||
! matrix X. On input, if | |||
! NRNK = -1 :: i-th singular value sigma(i) is truncated | |||
! if sigma(i) <= TOL*sigma(1) | |||
! This option is recommended. | |||
! NRNK = -2 :: i-th singular value sigma(i) is truncated | |||
! if sigma(i) <= TOL*sigma(i-1) | |||
! This option is included for R&D purposes. | |||
! It requires highly accurate SVD, which | |||
! may not be feasible. | |||
! The numerical rank can be enforced by using positive | |||
! value of NRNK as follows: | |||
! 0 < NRNK <= N-1 :: at most NRNK largest singular values | |||
! will be used. If the number of the computed nonzero | |||
! singular values is less than NRNK, then only those | |||
! nonzero values will be used and the actually used | |||
! dimension is less than NRNK. The actual number of | |||
! the nonzero singular values is returned in the variable | |||
! K. See the description of K. | |||
!..... | |||
! TOL (input) REAL(KIND=WP), 0 <= TOL < 1 | |||
! The tolerance for truncating small singular values. | |||
! See the description of NRNK. | |||
!..... | |||
! K (output) INTEGER, 0 <= K <= N | |||
! The dimension of the SVD/POD basis for the leading N-1 | |||
! data snapshots (columns of F) and the number of the | |||
! computed Ritz pairs. The value of K is determined | |||
! according to the rule set by the parameters NRNK and | |||
! TOL. See the descriptions of NRNK and TOL. | |||
!..... | |||
! EIGS (output) COMPLEX(KIND=WP) (N-1)-by-1 array | |||
! The leading K (K<=N-1) entries of EIGS contain | |||
! the computed eigenvalues (Ritz values). | |||
! See the descriptions of K, and Z. | |||
!..... | |||
! Z (workspace/output) COMPLEX(KIND=WP) M-by-(N-1) array | |||
! If JOBZ =='V' then Z contains the Ritz vectors. Z(:,i) | |||
! is an eigenvector of the i-th Ritz value; ||Z(:,i)||_2=1. | |||
! If JOBZ == 'F', then the Z(:,i)'s are given implicitly as | |||
! Z*V, where Z contains orthonormal matrix (the product of | |||
! Q from the initial QR factorization and the SVD/POD_basis | |||
! returned by ZGEDMD in X) and the second factor (the | |||
! eigenvectors of the Rayleigh quotient) is in the array V, | |||
! as returned by ZGEDMD. That is, X(:,1:K)*V(:,i) | |||
! is an eigenvector corresponding to EIGS(i). The columns | |||
! of V(1:K,1:K) are the computed eigenvectors of the | |||
! K-by-K Rayleigh quotient. | |||
! See the descriptions of EIGS, X and V. | |||
!..... | |||
! LDZ (input) INTEGER , LDZ >= M | |||
! The leading dimension of the array Z. | |||
!..... | |||
! RES (output) REAL(KIND=WP) (N-1)-by-1 array | |||
! RES(1:K) contains the residuals for the K computed | |||
! Ritz pairs, | |||
! RES(i) = || A * Z(:,i) - EIGS(i)*Z(:,i))||_2. | |||
! See the description of EIGS and Z. | |||
!..... | |||
! B (output) COMPLEX(KIND=WP) MIN(M,N)-by-(N-1) array. | |||
! IF JOBF =='R', B(1:N,1:K) contains A*U(:,1:K), and can | |||
! be used for computing the refined vectors; see further | |||
! details in the provided references. | |||
! If JOBF == 'E', B(1:N,1;K) contains | |||
! A*U(:,1:K)*W(1:K,1:K), which are the vectors from the | |||
! Exact DMD, up to scaling by the inverse eigenvalues. | |||
! In both cases, the content of B can be lifted to the | |||
! original dimension of the input data by pre-multiplying | |||
! with the Q factor from the initial QR factorization. | |||
! Here A denotes a compression of the underlying operator. | |||
! See the descriptions of F and X. | |||
! If JOBF =='N', then B is not referenced. | |||
!..... | |||
! LDB (input) INTEGER, LDB >= MIN(M,N) | |||
! The leading dimension of the array B. | |||
!..... | |||
! V (workspace/output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array | |||
! On exit, V(1:K,1:K) V contains the K eigenvectors of | |||
! the Rayleigh quotient. The Ritz vectors | |||
! (returned in Z) are the product of Q from the initial QR | |||
! factorization (see the description of F) X (see the | |||
! description of X) and V. | |||
!..... | |||
! LDV (input) INTEGER, LDV >= N-1 | |||
! The leading dimension of the array V. | |||
!..... | |||
! S (output) COMPLEX(KIND=WP) (N-1)-by-(N-1) array | |||
! The array S(1:K,1:K) is used for the matrix Rayleigh | |||
! quotient. This content is overwritten during | |||
! the eigenvalue decomposition by ZGEEV. | |||
! See the description of K. | |||
!..... | |||
! LDS (input) INTEGER, LDS >= N-1 | |||
! The leading dimension of the array S. | |||
!..... | |||
! ZWORK (workspace/output) COMPLEX(KIND=WP) LWORK-by-1 array | |||
! On exit, | |||
! ZWORK(1:MIN(M,N)) contains the scalar factors of the | |||
! elementary reflectors as returned by ZGEQRF of the | |||
! M-by-N input matrix F. | |||
! If the call to ZGEDMDQ is only workspace query, then | |||
! ZWORK(1) contains the minimal complex workspace length and | |||
! ZWORK(2) is the optimal complex workspace length. | |||
! Hence, the length of work is at least 2. | |||
! See the description of LZWORK. | |||
!..... | |||
! LZWORK (input) INTEGER | |||
! The minimal length of the workspace vector ZWORK. | |||
! LZWORK is calculated as follows: | |||
! Let MLWQR = N (minimal workspace for ZGEQRF[M,N]) | |||
! MLWDMD = minimal workspace for ZGEDMD (see the | |||
! description of LWORK in ZGEDMD) | |||
! MLWMQR = N (minimal workspace for | |||
! ZUNMQR['L','N',M,N,N]) | |||
! MLWGQR = N (minimal workspace for ZUNGQR[M,N,N]) | |||
! MINMN = MIN(M,N) | |||
! Then | |||
! LZWORK = MAX(2, MIN(M,N)+MLWQR, MINMN+MLWDMD) | |||
! is further updated as follows: | |||
! if JOBZ == 'V' or JOBZ == 'F' THEN | |||
! LZWORK = MAX(LZWORK, MINMN+MLWMQR) | |||
! if JOBQ == 'Q' THEN | |||
! LZWORK = MAX(ZLWORK, MINMN+MLWGQR) | |||
! | |||
!..... | |||
! WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array | |||
! On exit, | |||
! WORK(1:N-1) contains the singular values of | |||
! the input submatrix F(1:M,1:N-1). | |||
! If the call to ZGEDMDQ is only workspace query, then | |||
! WORK(1) contains the minimal workspace length and | |||
! WORK(2) is the optimal workspace length. hence, the | |||
! length of work is at least 2. | |||
! See the description of LWORK. | |||
!..... | |||
! LWORK (input) INTEGER | |||
! The minimal length of the workspace vector WORK. | |||
! LWORK is the same as in ZGEDMD, because in ZGEDMDQ | |||
! only ZGEDMD requires real workspace for snapshots | |||
! of dimensions MIN(M,N)-by-(N-1). | |||
! If on entry LWORK = -1, then a workspace query is | |||
! assumed and the procedure only computes the minimal | |||
! and the optimal workspace length for WORK. | |||
!..... | |||
! IWORK (workspace/output) INTEGER LIWORK-by-1 array | |||
! Workspace that is required only if WHTSVD equals | |||
! 2 , 3 or 4. (See the description of WHTSVD). | |||
! If on entry LWORK =-1 or LIWORK=-1, then the | |||
! minimal length of IWORK is computed and returned in | |||
! IWORK(1). See the description of LIWORK. | |||
!..... | |||
! LIWORK (input) INTEGER | |||
! The minimal length of the workspace vector IWORK. | |||
! If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1 | |||
! Let M1=MIN(M,N), N1=N-1. Then | |||
! If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M1,N1)) | |||
! If WHTSVD == 3, then LIWORK >= MAX(1,M1+N1-1) | |||
! If WHTSVD == 4, then LIWORK >= MAX(3,M1+3*N1) | |||
! If on entry LIWORK = -1, then a workspace query is | |||
! assumed and the procedure only computes the minimal | |||
! and the optimal workspace lengths for both WORK and | |||
! IWORK. See the descriptions of WORK and IWORK. | |||
!..... | |||
! INFO (output) INTEGER | |||
! -i < 0 :: On entry, the i-th argument had an | |||
! illegal value | |||
! = 0 :: Successful return. | |||
! = 1 :: Void input. Quick exit (M=0 or N=0). | |||
! = 2 :: The SVD computation of X did not converge. | |||
! Suggestion: Check the input data and/or | |||
! repeat with different WHTSVD. | |||
! = 3 :: The computation of the eigenvalues did not | |||
! converge. | |||
! = 4 :: If data scaling was requested on input and | |||
! the procedure found inconsistency in the data | |||
! such that for some column index i, | |||
! X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set | |||
! to zero if JOBS=='C'. The computation proceeds | |||
! with original or modified data and warning | |||
! flag is set with INFO=4. | |||
!............................................................. | |||
!............................................................. | |||
! Parameters | |||
! ~~~~~~~~~~ | |||
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP | |||
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP | |||
! COMPLEX(KIND=WP), PARAMETER :: ZONE = ( 1.0_WP, 0.0_WP ) | |||
COMPLEX(KIND=WP), PARAMETER :: ZZERO = ( 0.0_WP, 0.0_WP ) | |||
! | |||
! Local scalars | |||
! ~~~~~~~~~~~~~ | |||
INTEGER :: IMINWR, INFO1, MINMN, MLRWRK, & | |||
MLWDMD, MLWGQR, MLWMQR, MLWORK, & | |||
MLWQR, OLWDMD, OLWGQR, OLWMQR, & | |||
OLWORK, OLWQR | |||
LOGICAL :: LQUERY, SCCOLX, SCCOLY, WANTQ, & | |||
WNTTRF, WNTRES, WNTVEC, WNTVCF, & | |||
WNTVCQ, WNTREF, WNTEX | |||
CHARACTER(LEN=1) :: JOBVL | |||
! | |||
! External functions (BLAS and LAPACK) | |||
! ~~~~~~~~~~~~~~~~~ | |||
LOGICAL LSAME | |||
EXTERNAL LSAME | |||
! | |||
! External subroutines (BLAS and LAPACK) | |||
! ~~~~~~~~~~~~~~~~~~~~ | |||
EXTERNAL ZGEQRF, ZLACPY, ZLASET, ZUNGQR, & | |||
ZUNMQR, XERBLA | |||
! External subroutines | |||
! ~~~~~~~~~~~~~~~~~~~~ | |||
EXTERNAL ZGEDMD | |||
! Intrinsic functions | |||
! ~~~~~~~~~~~~~~~~~~~ | |||
INTRINSIC MAX, MIN, INT | |||
!.......................................................... | |||
! | |||
! Test the input arguments | |||
WNTRES = LSAME(JOBR,'R') | |||
SCCOLX = LSAME(JOBS,'S') .OR. LSAME( JOBS, 'C' ) | |||
SCCOLY = LSAME(JOBS,'Y') | |||
WNTVEC = LSAME(JOBZ,'V') | |||
WNTVCF = LSAME(JOBZ,'F') | |||
WNTVCQ = LSAME(JOBZ,'Q') | |||
WNTREF = LSAME(JOBF,'R') | |||
WNTEX = LSAME(JOBF,'E') | |||
WANTQ = LSAME(JOBQ,'Q') | |||
WNTTRF = LSAME(JOBT,'R') | |||
MINMN = MIN(M,N) | |||
INFO = 0 | |||
LQUERY = ( (LZWORK == -1) .OR. (LWORK == -1) .OR. (LIWORK == -1) ) | |||
! | |||
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. & | |||
LSAME(JOBS,'N')) ) THEN | |||
INFO = -1 | |||
ELSE IF ( .NOT. (WNTVEC .OR. WNTVCF .OR. WNTVCQ & | |||
.OR. LSAME(JOBZ,'N')) ) THEN | |||
INFO = -2 | |||
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. & | |||
( WNTRES .AND. LSAME(JOBZ,'N') ) ) THEN | |||
INFO = -3 | |||
ELSE IF ( .NOT. (WANTQ .OR. LSAME(JOBQ,'N')) ) THEN | |||
INFO = -4 | |||
ELSE IF ( .NOT. ( WNTTRF .OR. LSAME(JOBT,'N') ) ) THEN | |||
INFO = -5 | |||
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. & | |||
LSAME(JOBF,'N') ) ) THEN | |||
INFO = -6 | |||
ELSE IF ( .NOT. ((WHTSVD == 1).OR.(WHTSVD == 2).OR. & | |||
(WHTSVD == 3).OR.(WHTSVD == 4)) ) THEN | |||
INFO = -7 | |||
ELSE IF ( M < 0 ) THEN | |||
INFO = -8 | |||
ELSE IF ( ( N < 0 ) .OR. ( N > M+1 ) ) THEN | |||
INFO = -9 | |||
ELSE IF ( LDF < M ) THEN | |||
INFO = -11 | |||
ELSE IF ( LDX < MINMN ) THEN | |||
INFO = -13 | |||
ELSE IF ( LDY < MINMN ) THEN | |||
INFO = -15 | |||
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. & | |||
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN | |||
INFO = -16 | |||
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN | |||
INFO = -17 | |||
ELSE IF ( LDZ < M ) THEN | |||
INFO = -21 | |||
ELSE IF ( (WNTREF.OR.WNTEX ).AND.( LDB < MINMN ) ) THEN | |||
INFO = -24 | |||
ELSE IF ( LDV < N-1 ) THEN | |||
INFO = -26 | |||
ELSE IF ( LDS < N-1 ) THEN | |||
INFO = -28 | |||
END IF | |||
! | |||
IF ( WNTVEC .OR. WNTVCF .OR. WNTVCQ ) THEN | |||
JOBVL = 'V' | |||
ELSE | |||
JOBVL = 'N' | |||
END IF | |||
IF ( INFO == 0 ) THEN | |||
! Compute the minimal and the optimal workspace | |||
! requirements. Simulate running the code and | |||
! determine minimal and optimal sizes of the | |||
! workspace at any moment of the run. | |||
IF ( ( N == 0 ) .OR. ( N == 1 ) ) THEN | |||
! All output except K is void. INFO=1 signals | |||
! the void input. In case of a workspace query, | |||
! the minimal workspace lengths are returned. | |||
IF ( LQUERY ) THEN | |||
IWORK(1) = 1 | |||
ZWORK(1) = 2 | |||
ZWORK(2) = 2 | |||
WORK(1) = 2 | |||
WORK(2) = 2 | |||
ELSE | |||
K = 0 | |||
END IF | |||
INFO = 1 | |||
RETURN | |||
END IF | |||
MLRWRK = 2 | |||
MLWORK = 2 | |||
OLWORK = 2 | |||
IMINWR = 1 | |||
MLWQR = MAX(1,N) ! Minimal workspace length for ZGEQRF. | |||
MLWORK = MAX(MLWORK,MINMN + MLWQR) | |||
IF ( LQUERY ) THEN | |||
CALL ZGEQRF( M, N, F, LDF, ZWORK, ZWORK, -1, & | |||
INFO1 ) | |||
OLWQR = INT(ZWORK(1)) | |||
OLWORK = MAX(OLWORK,MINMN + OLWQR) | |||
END IF | |||
CALL ZGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN,& | |||
N-1, X, LDX, Y, LDY, NRNK, TOL, K, & | |||
EIGS, Z, LDZ, RES, B, LDB, V, LDV, & | |||
S, LDS, ZWORK, -1, WORK, -1, IWORK,& | |||
-1, INFO1 ) | |||
MLWDMD = INT(ZWORK(1)) | |||
MLWORK = MAX(MLWORK, MINMN + MLWDMD) | |||
MLRWRK = MAX(MLRWRK, INT(WORK(1))) | |||
IMINWR = MAX(IMINWR, IWORK(1)) | |||
IF ( LQUERY ) THEN | |||
OLWDMD = INT(ZWORK(2)) | |||
OLWORK = MAX(OLWORK, MINMN+OLWDMD) | |||
END IF | |||
IF ( WNTVEC .OR. WNTVCF ) THEN | |||
MLWMQR = MAX(1,N) | |||
MLWORK = MAX(MLWORK,MINMN+MLWMQR) | |||
IF ( LQUERY ) THEN | |||
CALL ZUNMQR( 'L','N', M, N, MINMN, F, LDF, & | |||
ZWORK, Z, LDZ, ZWORK, -1, INFO1 ) | |||
OLWMQR = INT(ZWORK(1)) | |||
OLWORK = MAX(OLWORK,MINMN+OLWMQR) | |||
END IF | |||
END IF | |||
IF ( WANTQ ) THEN | |||
MLWGQR = MAX(1,N) | |||
MLWORK = MAX(MLWORK,MINMN+MLWGQR) | |||
IF ( LQUERY ) THEN | |||
CALL ZUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, & | |||
ZWORK, -1, INFO1 ) | |||
OLWGQR = INT(ZWORK(1)) | |||
OLWORK = MAX(OLWORK,MINMN+OLWGQR) | |||
END IF | |||
END IF | |||
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -34 | |||
IF ( LWORK < MLRWRK .AND. (.NOT.LQUERY) ) INFO = -32 | |||
IF ( LZWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -30 | |||
END IF | |||
IF( INFO /= 0 ) THEN | |||
CALL XERBLA( 'ZGEDMDQ', -INFO ) | |||
RETURN | |||
ELSE IF ( LQUERY ) THEN | |||
! Return minimal and optimal workspace sizes | |||
IWORK(1) = IMINWR | |||
ZWORK(1) = MLWORK | |||
ZWORK(2) = OLWORK | |||
WORK(1) = MLRWRK | |||
WORK(2) = MLRWRK | |||
RETURN | |||
END IF | |||
!..... | |||
! Initial QR factorization that is used to represent the | |||
! snapshots as elements of lower dimensional subspace. | |||
! For large scale computation with M >> N, at this place | |||
! one can use an out of core QRF. | |||
! | |||
CALL ZGEQRF( M, N, F, LDF, ZWORK, & | |||
ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) | |||
! | |||
! Define X and Y as the snapshots representations in the | |||
! orthogonal basis computed in the QR factorization. | |||
! X corresponds to the leading N-1 and Y to the trailing | |||
! N-1 snapshots. | |||
CALL ZLASET( 'L', MINMN, N-1, ZZERO, ZZERO, X, LDX ) | |||
CALL ZLACPY( 'U', MINMN, N-1, F, LDF, X, LDX ) | |||
CALL ZLACPY( 'A', MINMN, N-1, F(1,2), LDF, Y, LDY ) | |||
IF ( M >= 3 ) THEN | |||
CALL ZLASET( 'L', MINMN-2, N-2, ZZERO, ZZERO, & | |||
Y(3,1), LDY ) | |||
END IF | |||
! | |||
! Compute the DMD of the projected snapshot pairs (X,Y) | |||
CALL ZGEDMD( JOBS, JOBVL, JOBR, JOBF, WHTSVD, MINMN, & | |||
N-1, X, LDX, Y, LDY, NRNK, TOL, K, & | |||
EIGS, Z, LDZ, RES, B, LDB, V, LDV, & | |||
S, LDS, ZWORK(MINMN+1), LZWORK-MINMN, & | |||
WORK, LWORK, IWORK, LIWORK, INFO1 ) | |||
IF ( INFO1 == 2 .OR. INFO1 == 3 ) THEN | |||
! Return with error code. See ZGEDMD for details. | |||
INFO = INFO1 | |||
RETURN | |||
ELSE | |||
INFO = INFO1 | |||
END IF | |||
! | |||
! The Ritz vectors (Koopman modes) can be explicitly | |||
! formed or returned in factored form. | |||
IF ( WNTVEC ) THEN | |||
! Compute the eigenvectors explicitly. | |||
IF ( M > MINMN ) CALL ZLASET( 'A', M-MINMN, K, ZZERO, & | |||
ZZERO, Z(MINMN+1,1), LDZ ) | |||
CALL ZUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, & | |||
LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) | |||
ELSE IF ( WNTVCF ) THEN | |||
! Return the Ritz vectors (eigenvectors) in factored | |||
! form Z*V, where Z contains orthonormal matrix (the | |||
! product of Q from the initial QR factorization and | |||
! the SVD/POD_basis returned by ZGEDMD in X) and the | |||
! second factor (the eigenvectors of the Rayleigh | |||
! quotient) is in the array V, as returned by ZGEDMD. | |||
CALL ZLACPY( 'A', N, K, X, LDX, Z, LDZ ) | |||
IF ( M > N ) CALL ZLASET( 'A', M-N, K, ZZERO, ZZERO, & | |||
Z(N+1,1), LDZ ) | |||
CALL ZUNMQR( 'L','N', M, K, MINMN, F, LDF, ZWORK, Z, & | |||
LDZ, ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) | |||
END IF | |||
! | |||
! Some optional output variables: | |||
! | |||
! The upper triangular factor R in the initial QR | |||
! factorization is optionally returned in the array Y. | |||
! This is useful if this call to ZGEDMDQ is to be | |||
! followed by a streaming DMD that is implemented in a | |||
! QR compressed form. | |||
IF ( WNTTRF ) THEN ! Return the upper triangular R in Y | |||
CALL ZLASET( 'A', MINMN, N, ZZERO, ZZERO, Y, LDY ) | |||
CALL ZLACPY( 'U', MINMN, N, F, LDF, Y, LDY ) | |||
END IF | |||
! | |||
! The orthonormal/unitary factor Q in the initial QR | |||
! factorization is optionally returned in the array F. | |||
! Same as with the triangular factor above, this is | |||
! useful in a streaming DMD. | |||
IF ( WANTQ ) THEN ! Q overwrites F | |||
CALL ZUNGQR( M, MINMN, MINMN, F, LDF, ZWORK, & | |||
ZWORK(MINMN+1), LZWORK-MINMN, INFO1 ) | |||
END IF | |||
! | |||
RETURN | |||
! | |||
END SUBROUTINE ZGEDMDQ | |||