|
|
@@ -0,0 +1,664 @@ |
|
|
|
/*********************************************************************/ |
|
|
|
/* Copyright 2009, 2010 The University of Texas at Austin. */ |
|
|
|
/* All rights reserved. */ |
|
|
|
/* */ |
|
|
|
/* Redistribution and use in source and binary forms, with or */ |
|
|
|
/* without modification, are permitted provided that the following */ |
|
|
|
/* conditions are met: */ |
|
|
|
/* */ |
|
|
|
/* 1. Redistributions of source code must retain the above */ |
|
|
|
/* copyright notice, this list of conditions and the following */ |
|
|
|
/* disclaimer. */ |
|
|
|
/* */ |
|
|
|
/* 2. Redistributions in binary form must reproduce the above */ |
|
|
|
/* copyright notice, this list of conditions and the following */ |
|
|
|
/* disclaimer in the documentation and/or other materials */ |
|
|
|
/* provided with the distribution. */ |
|
|
|
/* */ |
|
|
|
/* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */ |
|
|
|
/* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */ |
|
|
|
/* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */ |
|
|
|
/* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */ |
|
|
|
/* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */ |
|
|
|
/* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */ |
|
|
|
/* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */ |
|
|
|
/* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */ |
|
|
|
/* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */ |
|
|
|
/* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */ |
|
|
|
/* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */ |
|
|
|
/* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */ |
|
|
|
/* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */ |
|
|
|
/* POSSIBILITY OF SUCH DAMAGE. */ |
|
|
|
/* */ |
|
|
|
/* The views and conclusions contained in the software and */ |
|
|
|
/* documentation are those of the authors and should not be */ |
|
|
|
/* interpreted as representing official policies, either expressed */ |
|
|
|
/* or implied, of The University of Texas at Austin. */ |
|
|
|
/*********************************************************************/ |
|
|
|
|
|
|
|
#include <stdio.h> |
|
|
|
#include "common.h" |
|
|
|
|
|
|
|
#ifndef USE_SIMPLE_THREADED_LEVEL3 |
|
|
|
|
|
|
|
//The array of job_t may overflow the stack. |
|
|
|
//Instead, use malloc to alloc job_t. |
|
|
|
#if MAX_CPU_NUMBER > BLAS3_MEM_ALLOC_THRESHOLD |
|
|
|
#define USE_ALLOC_HEAP |
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
static FLOAT dm1 = -1.; |
|
|
|
|
|
|
|
#ifndef KERNEL_FUNC |
|
|
|
#ifndef LOWER |
|
|
|
#define KERNEL_FUNC SYRK_KERNEL_U |
|
|
|
#else |
|
|
|
#define KERNEL_FUNC SYRK_KERNEL_L |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifndef LOWER |
|
|
|
#ifndef COMPLEX |
|
|
|
#define TRSM_KERNEL TRSM_KERNEL_LT |
|
|
|
#else |
|
|
|
#define TRSM_KERNEL TRSM_KERNEL_LC |
|
|
|
#endif |
|
|
|
#else |
|
|
|
#ifndef COMPLEX |
|
|
|
#define TRSM_KERNEL TRSM_KERNEL_RN |
|
|
|
#else |
|
|
|
#define TRSM_KERNEL TRSM_KERNEL_RR |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifndef CACHE_LINE_SIZE |
|
|
|
#define CACHE_LINE_SIZE 8 |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifndef DIVIDE_RATE |
|
|
|
#define DIVIDE_RATE 2 |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifndef SWITCH_RATIO |
|
|
|
#define SWITCH_RATIO 2 |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifndef LOWER |
|
|
|
#define TRANS |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifndef SYRK_LOCAL |
|
|
|
#if !defined(LOWER) && !defined(TRANS) |
|
|
|
#define SYRK_LOCAL SYRK_UN |
|
|
|
#elif !defined(LOWER) && defined(TRANS) |
|
|
|
#define SYRK_LOCAL SYRK_UT |
|
|
|
#elif defined(LOWER) && !defined(TRANS) |
|
|
|
#define SYRK_LOCAL SYRK_LN |
|
|
|
#else |
|
|
|
#define SYRK_LOCAL SYRK_LT |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
typedef struct { |
|
|
|
#if _STDC_VERSION__ >= 201112L |
|
|
|
_Atomic |
|
|
|
#else |
|
|
|
volatile |
|
|
|
#endif |
|
|
|
BLASLONG working[MAX_CPU_NUMBER][CACHE_LINE_SIZE * DIVIDE_RATE]; |
|
|
|
} job_t; |
|
|
|
|
|
|
|
|
|
|
|
#ifndef KERNEL_OPERATION |
|
|
|
#ifndef COMPLEX |
|
|
|
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \ |
|
|
|
KERNEL_FUNC(M, N, K, ALPHA[0], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y)) |
|
|
|
#else |
|
|
|
#define KERNEL_OPERATION(M, N, K, ALPHA, SA, SB, C, LDC, X, Y) \ |
|
|
|
KERNEL_FUNC(M, N, K, ALPHA[0], ALPHA[1], SA, SB, (FLOAT *)(C) + ((X) + (Y) * LDC) * COMPSIZE, LDC, (X) - (Y)) |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifndef ICOPY_OPERATION |
|
|
|
#ifndef TRANS |
|
|
|
#define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ITCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER); |
|
|
|
#else |
|
|
|
#define ICOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_INCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER); |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifndef OCOPY_OPERATION |
|
|
|
#ifdef TRANS |
|
|
|
#define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_ONCOPY(M, N, (FLOAT *)(A) + ((X) + (Y) * (LDA)) * COMPSIZE, LDA, BUFFER); |
|
|
|
#else |
|
|
|
#define OCOPY_OPERATION(M, N, A, LDA, X, Y, BUFFER) GEMM_OTCOPY(M, N, (FLOAT *)(A) + ((Y) + (X) * (LDA)) * COMPSIZE, LDA, BUFFER); |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifndef S |
|
|
|
#define S args -> a |
|
|
|
#endif |
|
|
|
#ifndef A |
|
|
|
#define A args -> b |
|
|
|
#endif |
|
|
|
#ifndef C |
|
|
|
#define C args -> c |
|
|
|
#endif |
|
|
|
#ifndef LDA |
|
|
|
#define LDA args -> lda |
|
|
|
#endif |
|
|
|
#ifndef N |
|
|
|
#define N args -> m |
|
|
|
#endif |
|
|
|
#ifndef K |
|
|
|
#define K args -> k |
|
|
|
#endif |
|
|
|
|
|
|
|
static int inner_thread(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG mypos){ |
|
|
|
|
|
|
|
FLOAT *buffer[DIVIDE_RATE]; |
|
|
|
|
|
|
|
BLASLONG k, lda; |
|
|
|
BLASLONG m_from, m_to; |
|
|
|
|
|
|
|
FLOAT *alpha; |
|
|
|
FLOAT *a, *c; |
|
|
|
job_t *job = (job_t *)args -> common; |
|
|
|
BLASLONG xxx, bufferside; |
|
|
|
|
|
|
|
BLASLONG jjs, min_jj; |
|
|
|
BLASLONG is, min_i, div_n; |
|
|
|
|
|
|
|
BLASLONG i, current; |
|
|
|
|
|
|
|
k = K; |
|
|
|
|
|
|
|
a = (FLOAT *)A; |
|
|
|
c = (FLOAT *)C; |
|
|
|
|
|
|
|
lda = LDA; |
|
|
|
|
|
|
|
alpha = (FLOAT *)args -> alpha; |
|
|
|
|
|
|
|
m_from = range_n[mypos + 0]; |
|
|
|
m_to = range_n[mypos + 1]; |
|
|
|
|
|
|
|
#if 0 |
|
|
|
fprintf(stderr, "Thread[%ld] m_from : %ld m_to : %ld\n", mypos, m_from, m_to); |
|
|
|
#endif |
|
|
|
|
|
|
|
div_n = (((m_to - m_from + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN; |
|
|
|
|
|
|
|
buffer[0] = (FLOAT *)((((BLASULONG)(sb + k * k * COMPSIZE) + GEMM_ALIGN) & ~GEMM_ALIGN) + GEMM_OFFSET_B); |
|
|
|
for (i = 1; i < DIVIDE_RATE; i++) { |
|
|
|
buffer[i] = buffer[i - 1] + GEMM_Q * div_n * COMPSIZE; |
|
|
|
} |
|
|
|
|
|
|
|
#ifndef LOWER |
|
|
|
TRSM_IUNCOPY(k, k, (FLOAT *)S, lda, 0, sb); |
|
|
|
#else |
|
|
|
TRSM_OLTCOPY(k, k, (FLOAT *)S, lda, 0, sb); |
|
|
|
#endif |
|
|
|
|
|
|
|
for (xxx = m_from, bufferside = 0; xxx < m_to; xxx += div_n, bufferside ++) { |
|
|
|
|
|
|
|
for(jjs = xxx; jjs < MIN(m_to, xxx + div_n); jjs += min_jj){ |
|
|
|
|
|
|
|
min_jj = MIN(m_to, xxx + div_n) - jjs; |
|
|
|
|
|
|
|
#ifndef LOWER |
|
|
|
if (min_jj > GEMM_UNROLL_MN) min_jj = GEMM_UNROLL_MN; |
|
|
|
#else |
|
|
|
if (min_jj > GEMM_P) min_jj = GEMM_P; |
|
|
|
#endif |
|
|
|
|
|
|
|
#ifndef LOWER |
|
|
|
OCOPY_OPERATION (k, min_jj, a, lda, 0, jjs, buffer[bufferside] + k * (jjs - xxx) * COMPSIZE); |
|
|
|
|
|
|
|
TRSM_KERNEL (k, min_jj, k, dm1, |
|
|
|
#ifdef COMPLEX |
|
|
|
ZERO, |
|
|
|
#endif |
|
|
|
sb, |
|
|
|
buffer[bufferside] + k * (jjs - xxx) * COMPSIZE, |
|
|
|
a + jjs * lda * COMPSIZE, lda, 0); |
|
|
|
#else |
|
|
|
ICOPY_OPERATION (k, min_jj, a, lda, 0, jjs, buffer[bufferside] + k * (jjs - xxx) * COMPSIZE); |
|
|
|
|
|
|
|
TRSM_KERNEL (min_jj, k, k, dm1, |
|
|
|
#ifdef COMPLEX |
|
|
|
ZERO, |
|
|
|
#endif |
|
|
|
buffer[bufferside] + k * (jjs - xxx) * COMPSIZE, |
|
|
|
sb, |
|
|
|
a + jjs * COMPSIZE, lda, 0); |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
#ifndef LOWER |
|
|
|
for (i = 0; i <= mypos; i++) |
|
|
|
job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside]; |
|
|
|
#else |
|
|
|
for (i = mypos; i < args -> nthreads; i++) |
|
|
|
job[mypos].working[i][CACHE_LINE_SIZE * bufferside] = (BLASLONG)buffer[bufferside]; |
|
|
|
#endif |
|
|
|
|
|
|
|
WMB; |
|
|
|
} |
|
|
|
|
|
|
|
min_i = m_to - m_from; |
|
|
|
|
|
|
|
if (min_i >= GEMM_P * 2) { |
|
|
|
min_i = GEMM_P; |
|
|
|
} else |
|
|
|
if (min_i > GEMM_P) { |
|
|
|
min_i = (((min_i + 1) / 2 + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN; |
|
|
|
} |
|
|
|
|
|
|
|
#ifndef LOWER |
|
|
|
ICOPY_OPERATION(k, min_i, a, lda, 0, m_from, sa); |
|
|
|
#else |
|
|
|
OCOPY_OPERATION(k, min_i, a, lda, 0, m_from, sa); |
|
|
|
#endif |
|
|
|
|
|
|
|
current = mypos; |
|
|
|
|
|
|
|
#ifndef LOWER |
|
|
|
while (current < args -> nthreads) |
|
|
|
#else |
|
|
|
while (current >= 0) |
|
|
|
#endif |
|
|
|
{ |
|
|
|
div_n = (((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN; |
|
|
|
|
|
|
|
for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { |
|
|
|
|
|
|
|
/* thread has to wait */ |
|
|
|
if (current != mypos) while(job[current].working[mypos][CACHE_LINE_SIZE * bufferside] == 0) {YIELDING;}; |
|
|
|
|
|
|
|
KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k, alpha, |
|
|
|
sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], |
|
|
|
c, lda, m_from, xxx); |
|
|
|
|
|
|
|
if (m_from + min_i >= m_to) { |
|
|
|
job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; |
|
|
|
WMB; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
#ifndef LOWER |
|
|
|
current ++; |
|
|
|
#else |
|
|
|
current --; |
|
|
|
#endif |
|
|
|
} |
|
|
|
|
|
|
|
for(is = m_from + min_i; is < m_to; is += min_i){ |
|
|
|
min_i = m_to - is; |
|
|
|
|
|
|
|
if (min_i >= GEMM_P * 2) { |
|
|
|
min_i = GEMM_P; |
|
|
|
} else |
|
|
|
if (min_i > GEMM_P) { |
|
|
|
min_i = (((min_i + 1) / 2 + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN; |
|
|
|
} |
|
|
|
|
|
|
|
#ifndef LOWER |
|
|
|
ICOPY_OPERATION(k, min_i, a, lda, 0, is, sa); |
|
|
|
#else |
|
|
|
OCOPY_OPERATION(k, min_i, a, lda, 0, is, sa); |
|
|
|
#endif |
|
|
|
|
|
|
|
current = mypos; |
|
|
|
|
|
|
|
#ifndef LOWER |
|
|
|
while (current < args -> nthreads) |
|
|
|
#else |
|
|
|
while (current >= 0) |
|
|
|
#endif |
|
|
|
{ |
|
|
|
div_n = (((range_n[current + 1] - range_n[current] + DIVIDE_RATE - 1) / DIVIDE_RATE + GEMM_UNROLL_MN - 1)/GEMM_UNROLL_MN) * GEMM_UNROLL_MN; |
|
|
|
|
|
|
|
for (xxx = range_n[current], bufferside = 0; xxx < range_n[current + 1]; xxx += div_n, bufferside ++) { |
|
|
|
|
|
|
|
KERNEL_OPERATION(min_i, MIN(range_n[current + 1] - xxx, div_n), k, alpha, |
|
|
|
sa, (FLOAT *)job[current].working[mypos][CACHE_LINE_SIZE * bufferside], |
|
|
|
c, lda, is, xxx); |
|
|
|
|
|
|
|
if (is + min_i >= m_to) { |
|
|
|
job[current].working[mypos][CACHE_LINE_SIZE * bufferside] &= 0; |
|
|
|
WMB; |
|
|
|
} |
|
|
|
} |
|
|
|
#ifndef LOWER |
|
|
|
current ++; |
|
|
|
#else |
|
|
|
current --; |
|
|
|
#endif |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
for (i = 0; i < args -> nthreads; i++) { |
|
|
|
if (i != mypos) { |
|
|
|
for (xxx = 0; xxx < DIVIDE_RATE; xxx++) { |
|
|
|
while (job[mypos].working[i][CACHE_LINE_SIZE * xxx] ) {YIELDING;}; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
return 0; |
|
|
|
} |
|
|
|
|
|
|
|
static int thread_driver(blas_arg_t *args, FLOAT *sa, FLOAT *sb){ |
|
|
|
|
|
|
|
blas_arg_t newarg; |
|
|
|
|
|
|
|
#ifndef USE_ALLOC_HEAP |
|
|
|
job_t job[MAX_CPU_NUMBER]; |
|
|
|
#else |
|
|
|
job_t * job = NULL; |
|
|
|
#endif |
|
|
|
|
|
|
|
blas_queue_t queue[MAX_CPU_NUMBER]; |
|
|
|
|
|
|
|
BLASLONG range[MAX_CPU_NUMBER + 100]; |
|
|
|
|
|
|
|
BLASLONG num_cpu; |
|
|
|
|
|
|
|
BLASLONG nthreads = args -> nthreads; |
|
|
|
|
|
|
|
BLASLONG width, i, j, k; |
|
|
|
BLASLONG n, n_from, n_to; |
|
|
|
int mode, mask; |
|
|
|
double dnum; |
|
|
|
|
|
|
|
#ifndef COMPLEX |
|
|
|
#ifdef XDOUBLE |
|
|
|
mode = BLAS_XDOUBLE | BLAS_REAL; |
|
|
|
mask = MAX(QGEMM_UNROLL_M, QGEMM_UNROLL_N) - 1; |
|
|
|
#elif defined(DOUBLE) |
|
|
|
mode = BLAS_DOUBLE | BLAS_REAL; |
|
|
|
mask = MAX(DGEMM_UNROLL_M, DGEMM_UNROLL_N) - 1; |
|
|
|
#else |
|
|
|
mode = BLAS_SINGLE | BLAS_REAL; |
|
|
|
mask = MAX(SGEMM_UNROLL_M, SGEMM_UNROLL_N) - 1; |
|
|
|
#endif |
|
|
|
#else |
|
|
|
#ifdef XDOUBLE |
|
|
|
mode = BLAS_XDOUBLE | BLAS_COMPLEX; |
|
|
|
mask = MAX(XGEMM_UNROLL_M, XGEMM_UNROLL_N) - 1; |
|
|
|
#elif defined(DOUBLE) |
|
|
|
mode = BLAS_DOUBLE | BLAS_COMPLEX; |
|
|
|
mask = MAX(ZGEMM_UNROLL_M, ZGEMM_UNROLL_N) - 1; |
|
|
|
#else |
|
|
|
mode = BLAS_SINGLE | BLAS_COMPLEX; |
|
|
|
mask = MAX(CGEMM_UNROLL_M, CGEMM_UNROLL_N) - 1; |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
newarg.m = args -> m; |
|
|
|
newarg.k = args -> k; |
|
|
|
newarg.a = args -> a; |
|
|
|
newarg.b = args -> b; |
|
|
|
newarg.c = args -> c; |
|
|
|
newarg.lda = args -> lda; |
|
|
|
newarg.alpha = args -> alpha; |
|
|
|
|
|
|
|
#ifdef USE_ALLOC_HEAP |
|
|
|
job = (job_t*)malloc(MAX_CPU_NUMBER * sizeof(job_t)); |
|
|
|
if(job==NULL){ |
|
|
|
fprintf(stderr, "OpenBLAS: malloc failed in %s\n", __func__); |
|
|
|
exit(1); |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
newarg.common = (void *)job; |
|
|
|
|
|
|
|
n_from = 0; |
|
|
|
n_to = args -> m; |
|
|
|
|
|
|
|
#ifndef LOWER |
|
|
|
|
|
|
|
range[MAX_CPU_NUMBER] = n_to - n_from; |
|
|
|
range[0] = 0; |
|
|
|
num_cpu = 0; |
|
|
|
i = 0; |
|
|
|
n = n_to - n_from; |
|
|
|
|
|
|
|
dnum = (double)n * (double)n /(double)nthreads; |
|
|
|
|
|
|
|
while (i < n){ |
|
|
|
|
|
|
|
if (nthreads - num_cpu > 1) { |
|
|
|
|
|
|
|
double di = (double)i; |
|
|
|
|
|
|
|
width = ((((BLASLONG)(sqrt(di * di + dnum) - di) + mask)/(mask+1)) * (mask+1)); |
|
|
|
|
|
|
|
if (num_cpu == 0) width = n - (((n - width)/(mask+1)) * (mask+1)); |
|
|
|
|
|
|
|
if ((width > n - i) || (width < mask)) width = n - i; |
|
|
|
|
|
|
|
} else { |
|
|
|
width = n - i; |
|
|
|
} |
|
|
|
|
|
|
|
range[MAX_CPU_NUMBER - num_cpu - 1] = range[MAX_CPU_NUMBER - num_cpu] - width; |
|
|
|
|
|
|
|
queue[num_cpu].mode = mode; |
|
|
|
queue[num_cpu].routine = inner_thread; |
|
|
|
queue[num_cpu].args = &newarg; |
|
|
|
queue[num_cpu].range_m = NULL; |
|
|
|
|
|
|
|
queue[num_cpu].sa = NULL; |
|
|
|
queue[num_cpu].sb = NULL; |
|
|
|
queue[num_cpu].next = &queue[num_cpu + 1]; |
|
|
|
|
|
|
|
num_cpu ++; |
|
|
|
i += width; |
|
|
|
} |
|
|
|
|
|
|
|
for (i = 0; i < num_cpu; i ++) queue[i].range_n = &range[MAX_CPU_NUMBER - num_cpu]; |
|
|
|
|
|
|
|
#else |
|
|
|
|
|
|
|
range[0] = 0; |
|
|
|
num_cpu = 0; |
|
|
|
i = 0; |
|
|
|
n = n_to - n_from; |
|
|
|
|
|
|
|
dnum = (double)n * (double)n /(double)nthreads; |
|
|
|
|
|
|
|
while (i < n){ |
|
|
|
|
|
|
|
if (nthreads - num_cpu > 1) { |
|
|
|
|
|
|
|
double di = (double)i; |
|
|
|
|
|
|
|
width = ((((BLASLONG)(sqrt(di * di + dnum) - di) + mask)/(mask+1)) * (mask+1)); |
|
|
|
|
|
|
|
if ((width > n - i) || (width < mask)) width = n - i; |
|
|
|
|
|
|
|
} else { |
|
|
|
width = n - i; |
|
|
|
} |
|
|
|
|
|
|
|
range[num_cpu + 1] = range[num_cpu] + width; |
|
|
|
|
|
|
|
queue[num_cpu].mode = mode; |
|
|
|
queue[num_cpu].routine = inner_thread; |
|
|
|
queue[num_cpu].args = &newarg; |
|
|
|
queue[num_cpu].range_m = NULL; |
|
|
|
queue[num_cpu].range_n = range; |
|
|
|
queue[num_cpu].sa = NULL; |
|
|
|
queue[num_cpu].sb = NULL; |
|
|
|
queue[num_cpu].next = &queue[num_cpu + 1]; |
|
|
|
|
|
|
|
num_cpu ++; |
|
|
|
i += width; |
|
|
|
} |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
newarg.nthreads = num_cpu; |
|
|
|
|
|
|
|
if (num_cpu) { |
|
|
|
|
|
|
|
for (j = 0; j < num_cpu; j++) { |
|
|
|
for (i = 0; i < num_cpu; i++) { |
|
|
|
for (k = 0; k < DIVIDE_RATE; k++) { |
|
|
|
job[j].working[i][CACHE_LINE_SIZE * k] = 0; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
queue[0].sa = sa; |
|
|
|
queue[0].sb = sb; |
|
|
|
queue[num_cpu - 1].next = NULL; |
|
|
|
|
|
|
|
exec_blas(num_cpu, queue); |
|
|
|
} |
|
|
|
|
|
|
|
#ifdef USE_ALLOC_HEAP |
|
|
|
free(job); |
|
|
|
#endif |
|
|
|
|
|
|
|
return 0; |
|
|
|
} |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
blasint CNAME(blas_arg_t *args, BLASLONG *range_m, BLASLONG *range_n, FLOAT *sa, FLOAT *sb, BLASLONG myid) { |
|
|
|
|
|
|
|
BLASLONG n, bk, i, blocking, lda; |
|
|
|
BLASLONG info; |
|
|
|
int mode; |
|
|
|
blas_arg_t newarg; |
|
|
|
FLOAT *a; |
|
|
|
FLOAT alpha[2] = { -ONE, ZERO}; |
|
|
|
|
|
|
|
#ifndef COMPLEX |
|
|
|
#ifdef XDOUBLE |
|
|
|
mode = BLAS_XDOUBLE | BLAS_REAL; |
|
|
|
#elif defined(DOUBLE) |
|
|
|
mode = BLAS_DOUBLE | BLAS_REAL; |
|
|
|
#else |
|
|
|
mode = BLAS_SINGLE | BLAS_REAL; |
|
|
|
#endif |
|
|
|
#else |
|
|
|
#ifdef XDOUBLE |
|
|
|
mode = BLAS_XDOUBLE | BLAS_COMPLEX; |
|
|
|
#elif defined(DOUBLE) |
|
|
|
mode = BLAS_DOUBLE | BLAS_COMPLEX; |
|
|
|
#else |
|
|
|
mode = BLAS_SINGLE | BLAS_COMPLEX; |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
if (args -> nthreads == 1) { |
|
|
|
#ifndef LOWER |
|
|
|
info = POTRF_U_SINGLE(args, NULL, NULL, sa, sb, 0); |
|
|
|
#else |
|
|
|
info = POTRF_L_SINGLE(args, NULL, NULL, sa, sb, 0); |
|
|
|
#endif |
|
|
|
return info; |
|
|
|
} |
|
|
|
|
|
|
|
n = args -> n; |
|
|
|
a = (FLOAT *)args -> a; |
|
|
|
lda = args -> lda; |
|
|
|
|
|
|
|
if (range_n) n = range_n[1] - range_n[0]; |
|
|
|
|
|
|
|
if (n <= GEMM_UNROLL_N * 2) { |
|
|
|
#ifndef LOWER |
|
|
|
info = POTRF_U_SINGLE(args, NULL, range_n, sa, sb, 0); |
|
|
|
#else |
|
|
|
info = POTRF_L_SINGLE(args, NULL, range_n, sa, sb, 0); |
|
|
|
#endif |
|
|
|
return info; |
|
|
|
} |
|
|
|
|
|
|
|
newarg.lda = lda; |
|
|
|
newarg.ldb = lda; |
|
|
|
newarg.ldc = lda; |
|
|
|
newarg.alpha = alpha; |
|
|
|
newarg.beta = NULL; |
|
|
|
newarg.nthreads = args -> nthreads; |
|
|
|
|
|
|
|
blocking = ((n / 2 + GEMM_UNROLL_N - 1)/GEMM_UNROLL_N) * GEMM_UNROLL_N; |
|
|
|
if (blocking > GEMM_Q) blocking = GEMM_Q; |
|
|
|
|
|
|
|
for (i = 0; i < n; i += blocking) { |
|
|
|
bk = n - i; |
|
|
|
if (bk > blocking) bk = blocking; |
|
|
|
|
|
|
|
newarg.m = bk; |
|
|
|
newarg.n = bk; |
|
|
|
newarg.a = a + (i + i * lda) * COMPSIZE; |
|
|
|
|
|
|
|
info = CNAME(&newarg, NULL, NULL, sa, sb, 0); |
|
|
|
if (info) return info + i; |
|
|
|
|
|
|
|
if (n - i - bk > 0) { |
|
|
|
#ifndef USE_SIMPLE_THREADED_LEVEL3 |
|
|
|
newarg.m = n - i - bk; |
|
|
|
newarg.k = bk; |
|
|
|
#ifndef LOWER |
|
|
|
newarg.b = a + ( i + (i + bk) * lda) * COMPSIZE; |
|
|
|
#else |
|
|
|
newarg.b = a + ((i + bk) + i * lda) * COMPSIZE; |
|
|
|
#endif |
|
|
|
newarg.c = a + ((i + bk) + (i + bk) * lda) * COMPSIZE; |
|
|
|
|
|
|
|
thread_driver(&newarg, sa, sb); |
|
|
|
#else |
|
|
|
|
|
|
|
#ifndef LOWER |
|
|
|
newarg.m = bk; |
|
|
|
newarg.n = n - i - bk; |
|
|
|
newarg.a = a + (i + i * lda) * COMPSIZE; |
|
|
|
newarg.b = a + (i + (i + bk) * lda) * COMPSIZE; |
|
|
|
|
|
|
|
gemm_thread_n(mode | BLAS_TRANSA_T, |
|
|
|
&newarg, NULL, NULL, (void *)TRSM_LCUN, sa, sb, args -> nthreads); |
|
|
|
|
|
|
|
newarg.n = n - i - bk; |
|
|
|
newarg.k = bk; |
|
|
|
newarg.a = a + ( i + (i + bk) * lda) * COMPSIZE; |
|
|
|
newarg.c = a + ((i + bk) + (i + bk) * lda) * COMPSIZE; |
|
|
|
|
|
|
|
#if 0 |
|
|
|
HERK_THREAD_UC(&newarg, NULL, NULL, sa, sb, 0); |
|
|
|
#else |
|
|
|
syrk_thread(mode | BLAS_TRANSA_N | BLAS_TRANSB_T, |
|
|
|
&newarg, NULL, NULL, (void *)HERK_UC, sa, sb, args -> nthreads); |
|
|
|
#endif |
|
|
|
#else |
|
|
|
newarg.m = n - i - bk; |
|
|
|
newarg.n = bk; |
|
|
|
newarg.a = a + (i + i * lda) * COMPSIZE; |
|
|
|
newarg.b = a + (i + bk + i * lda) * COMPSIZE; |
|
|
|
|
|
|
|
gemm_thread_m(mode | BLAS_RSIDE | BLAS_TRANSA_T | BLAS_UPLO, |
|
|
|
&newarg, NULL, NULL, (void *)TRSM_RCLN, sa, sb, args -> nthreads); |
|
|
|
|
|
|
|
newarg.n = n - i - bk; |
|
|
|
newarg.k = bk; |
|
|
|
newarg.a = a + (i + bk + i * lda) * COMPSIZE; |
|
|
|
newarg.c = a + (i + bk + (i + bk) * lda) * COMPSIZE; |
|
|
|
|
|
|
|
#if 0 |
|
|
|
HERK_THREAD_LN(&newarg, NULL, NULL, sa, sb, 0); |
|
|
|
#else |
|
|
|
syrk_thread(mode | BLAS_TRANSA_N | BLAS_TRANSB_T | BLAS_UPLO, |
|
|
|
&newarg, NULL, NULL, (void *)HERK_LN, sa, sb, args -> nthreads); |
|
|
|
#endif |
|
|
|
#endif |
|
|
|
|
|
|
|
#endif |
|
|
|
} |
|
|
|
} |
|
|
|
return 0; |
|
|
|
} |