Rewrite ?LAQR5 and S/DHGEQZ , add tests for TRECV3 (Reference-LAPACK PR 682)tags/v0.3.22^2
@@ -533,11 +533,13 @@ | |||
* . Mth bulge. Exploit fact that first two elements | |||
* . of row are actually zero. ==== | |||
* | |||
REFSUM = V( 1, M )*V( 3, M )*H( K+3, K+2 ) | |||
H( K+3, K ) = -REFSUM | |||
H( K+3, K+1 ) = -REFSUM*CONJG( V( 2, M ) ) | |||
H( K+3, K+2 ) = H( K+3, K+2 ) - | |||
$ REFSUM*CONJG( V( 3, M ) ) | |||
T1 = V( 1, M ) | |||
T2 = T1*CONJG( V( 2, M ) ) | |||
T3 = T1*CONJG( V( 3, M ) ) | |||
REFSUM = V( 3, M )*H( K+3, K+2 ) | |||
H( K+3, K ) = -REFSUM*T1 | |||
H( K+3, K+1 ) = -REFSUM*T2 | |||
H( K+3, K+2 ) = H( K+3, K+2 ) - REFSUM*T3 | |||
* | |||
* ==== Calculate reflection to move | |||
* . Mth bulge one step. ==== | |||
@@ -572,12 +574,13 @@ | |||
$ S( 2*M ), VT ) | |||
ALPHA = VT( 1 ) | |||
CALL CLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) ) | |||
REFSUM = CONJG( VT( 1 ) )* | |||
$ ( H( K+1, K )+CONJG( VT( 2 ) )* | |||
$ H( K+2, K ) ) | |||
T1 = CONJG( VT( 1 ) ) | |||
T2 = T1*VT( 2 ) | |||
T3 = T1*VT( 3 ) | |||
REFSUM = H( K+1, K )+CONJG( VT( 2 ) )*H( K+2, K ) | |||
* | |||
IF( CABS1( H( K+2, K )-REFSUM*VT( 2 ) )+ | |||
$ CABS1( REFSUM*VT( 3 ) ).GT.ULP* | |||
IF( CABS1( H( K+2, K )-REFSUM*T2 )+ | |||
$ CABS1( REFSUM*T3 ).GT.ULP* | |||
$ ( CABS1( H( K, K ) )+CABS1( H( K+1, | |||
$ K+1 ) )+CABS1( H( K+2, K+2 ) ) ) ) THEN | |||
* | |||
@@ -595,7 +598,7 @@ | |||
* . Replace the old reflector with | |||
* . the new one. ==== | |||
* | |||
H( K+1, K ) = H( K+1, K ) - REFSUM | |||
H( K+1, K ) = H( K+1, K ) - REFSUM*T1 | |||
H( K+2, K ) = ZERO | |||
H( K+3, K ) = ZERO | |||
V( 1, M ) = VT( 1 ) | |||
@@ -337,9 +337,9 @@ | |||
$ BTOL, C, C11I, C11R, C12, C21, C22I, C22R, CL, | |||
$ CQ, CR, CZ, ESHIFT, S, S1, S1INV, S2, SAFMAX, | |||
$ SAFMIN, SCALE, SL, SQI, SQR, SR, SZI, SZR, T1, | |||
$ TAU, TEMP, TEMP2, TEMPI, TEMPR, U1, U12, U12L, | |||
$ U2, ULP, VS, W11, W12, W21, W22, WABS, WI, WR, | |||
$ WR2 | |||
$ T2, T3, TAU, TEMP, TEMP2, TEMPI, TEMPR, U1, | |||
$ U12, U12L, U2, ULP, VS, W11, W12, W21, W22, | |||
$ WABS, WI, WR, WR2 | |||
* .. | |||
* .. Local Arrays .. | |||
DOUBLE PRECISION V( 3 ) | |||
@@ -1127,25 +1127,27 @@ | |||
H( J+2, J-1 ) = ZERO | |||
END IF | |||
* | |||
T2 = TAU*V( 2 ) | |||
T3 = TAU*V( 3 ) | |||
DO 230 JC = J, ILASTM | |||
TEMP = TAU*( H( J, JC )+V( 2 )*H( J+1, JC )+V( 3 )* | |||
$ H( J+2, JC ) ) | |||
H( J, JC ) = H( J, JC ) - TEMP | |||
H( J+1, JC ) = H( J+1, JC ) - TEMP*V( 2 ) | |||
H( J+2, JC ) = H( J+2, JC ) - TEMP*V( 3 ) | |||
TEMP2 = TAU*( T( J, JC )+V( 2 )*T( J+1, JC )+V( 3 )* | |||
$ T( J+2, JC ) ) | |||
T( J, JC ) = T( J, JC ) - TEMP2 | |||
T( J+1, JC ) = T( J+1, JC ) - TEMP2*V( 2 ) | |||
T( J+2, JC ) = T( J+2, JC ) - TEMP2*V( 3 ) | |||
TEMP = H( J, JC )+V( 2 )*H( J+1, JC )+V( 3 )* | |||
$ H( J+2, JC ) | |||
H( J, JC ) = H( J, JC ) - TEMP*TAU | |||
H( J+1, JC ) = H( J+1, JC ) - TEMP*T2 | |||
H( J+2, JC ) = H( J+2, JC ) - TEMP*T3 | |||
TEMP2 = T( J, JC )+V( 2 )*T( J+1, JC )+V( 3 )* | |||
$ T( J+2, JC ) | |||
T( J, JC ) = T( J, JC ) - TEMP2*TAU | |||
T( J+1, JC ) = T( J+1, JC ) - TEMP2*T2 | |||
T( J+2, JC ) = T( J+2, JC ) - TEMP2*T3 | |||
230 CONTINUE | |||
IF( ILQ ) THEN | |||
DO 240 JR = 1, N | |||
TEMP = TAU*( Q( JR, J )+V( 2 )*Q( JR, J+1 )+V( 3 )* | |||
$ Q( JR, J+2 ) ) | |||
Q( JR, J ) = Q( JR, J ) - TEMP | |||
Q( JR, J+1 ) = Q( JR, J+1 ) - TEMP*V( 2 ) | |||
Q( JR, J+2 ) = Q( JR, J+2 ) - TEMP*V( 3 ) | |||
TEMP = Q( JR, J )+V( 2 )*Q( JR, J+1 )+V( 3 )* | |||
$ Q( JR, J+2 ) | |||
Q( JR, J ) = Q( JR, J ) - TEMP*TAU | |||
Q( JR, J+1 ) = Q( JR, J+1 ) - TEMP*T2 | |||
Q( JR, J+2 ) = Q( JR, J+2 ) - TEMP*T3 | |||
240 CONTINUE | |||
END IF | |||
* | |||
@@ -1233,27 +1235,29 @@ | |||
* | |||
* Apply transformations from the right. | |||
* | |||
T2 = TAU*V(2) | |||
T3 = TAU*V(3) | |||
DO 260 JR = IFRSTM, MIN( J+3, ILAST ) | |||
TEMP = TAU*( H( JR, J )+V( 2 )*H( JR, J+1 )+V( 3 )* | |||
$ H( JR, J+2 ) ) | |||
H( JR, J ) = H( JR, J ) - TEMP | |||
H( JR, J+1 ) = H( JR, J+1 ) - TEMP*V( 2 ) | |||
H( JR, J+2 ) = H( JR, J+2 ) - TEMP*V( 3 ) | |||
TEMP = H( JR, J )+V( 2 )*H( JR, J+1 )+V( 3 )* | |||
$ H( JR, J+2 ) | |||
H( JR, J ) = H( JR, J ) - TEMP*TAU | |||
H( JR, J+1 ) = H( JR, J+1 ) - TEMP*T2 | |||
H( JR, J+2 ) = H( JR, J+2 ) - TEMP*T3 | |||
260 CONTINUE | |||
DO 270 JR = IFRSTM, J + 2 | |||
TEMP = TAU*( T( JR, J )+V( 2 )*T( JR, J+1 )+V( 3 )* | |||
$ T( JR, J+2 ) ) | |||
T( JR, J ) = T( JR, J ) - TEMP | |||
T( JR, J+1 ) = T( JR, J+1 ) - TEMP*V( 2 ) | |||
T( JR, J+2 ) = T( JR, J+2 ) - TEMP*V( 3 ) | |||
TEMP = T( JR, J )+V( 2 )*T( JR, J+1 )+V( 3 )* | |||
$ T( JR, J+2 ) | |||
T( JR, J ) = T( JR, J ) - TEMP*TAU | |||
T( JR, J+1 ) = T( JR, J+1 ) - TEMP*T2 | |||
T( JR, J+2 ) = T( JR, J+2 ) - TEMP*T3 | |||
270 CONTINUE | |||
IF( ILZ ) THEN | |||
DO 280 JR = 1, N | |||
TEMP = TAU*( Z( JR, J )+V( 2 )*Z( JR, J+1 )+V( 3 )* | |||
$ Z( JR, J+2 ) ) | |||
Z( JR, J ) = Z( JR, J ) - TEMP | |||
Z( JR, J+1 ) = Z( JR, J+1 ) - TEMP*V( 2 ) | |||
Z( JR, J+2 ) = Z( JR, J+2 ) - TEMP*V( 3 ) | |||
TEMP = Z( JR, J )+V( 2 )*Z( JR, J+1 )+V( 3 )* | |||
$ Z( JR, J+2 ) | |||
Z( JR, J ) = Z( JR, J ) - TEMP*TAU | |||
Z( JR, J+1 ) = Z( JR, J+1 ) - TEMP*T2 | |||
Z( JR, J+2 ) = Z( JR, J+2 ) - TEMP*T3 | |||
280 CONTINUE | |||
END IF | |||
T( J+1, J ) = ZERO | |||
@@ -558,10 +558,13 @@ | |||
* . Mth bulge. Exploit fact that first two elements | |||
* . of row are actually zero. ==== | |||
* | |||
REFSUM = V( 1, M )*V( 3, M )*H( K+3, K+2 ) | |||
H( K+3, K ) = -REFSUM | |||
H( K+3, K+1 ) = -REFSUM*V( 2, M ) | |||
H( K+3, K+2 ) = H( K+3, K+2 ) - REFSUM*V( 3, M ) | |||
T1 = V( 1, M ) | |||
T2 = T1*V( 2, M ) | |||
T3 = T1*V( 3, M ) | |||
REFSUM = V( 3, M )*H( K+3, K+2 ) | |||
H( K+3, K ) = -REFSUM*T1 | |||
H( K+3, K+1 ) = -REFSUM*T2 | |||
H( K+3, K+2 ) = H( K+3, K+2 ) - REFSUM*T3 | |||
* | |||
* ==== Calculate reflection to move | |||
* . Mth bulge one step. ==== | |||
@@ -597,11 +600,13 @@ | |||
$ VT ) | |||
ALPHA = VT( 1 ) | |||
CALL DLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) ) | |||
REFSUM = VT( 1 )*( H( K+1, K )+VT( 2 )* | |||
$ H( K+2, K ) ) | |||
T1 = VT( 1 ) | |||
T2 = T1*VT( 2 ) | |||
T3 = T1*VT( 3 ) | |||
REFSUM = H( K+1, K ) + VT( 2 )*H( K+2, K ) | |||
* | |||
IF( ABS( H( K+2, K )-REFSUM*VT( 2 ) )+ | |||
$ ABS( REFSUM*VT( 3 ) ).GT.ULP* | |||
IF( ABS( H( K+2, K )-REFSUM*T2 )+ | |||
$ ABS( REFSUM*T3 ).GT.ULP* | |||
$ ( ABS( H( K, K ) )+ABS( H( K+1, | |||
$ K+1 ) )+ABS( H( K+2, K+2 ) ) ) ) THEN | |||
* | |||
@@ -619,7 +624,7 @@ | |||
* . Replace the old reflector with | |||
* . the new one. ==== | |||
* | |||
H( K+1, K ) = H( K+1, K ) - REFSUM | |||
H( K+1, K ) = H( K+1, K ) - REFSUM*T1 | |||
H( K+2, K ) = ZERO | |||
H( K+3, K ) = ZERO | |||
V( 1, M ) = VT( 1 ) | |||
@@ -337,9 +337,9 @@ | |||
$ BTOL, C, C11I, C11R, C12, C21, C22I, C22R, CL, | |||
$ CQ, CR, CZ, ESHIFT, S, S1, S1INV, S2, SAFMAX, | |||
$ SAFMIN, SCALE, SL, SQI, SQR, SR, SZI, SZR, T1, | |||
$ TAU, TEMP, TEMP2, TEMPI, TEMPR, U1, U12, U12L, | |||
$ U2, ULP, VS, W11, W12, W21, W22, WABS, WI, WR, | |||
$ WR2 | |||
$ T2, T3, TAU, TEMP, TEMP2, TEMPI, TEMPR, U1, | |||
$ U12, U12L, U2, ULP, VS, W11, W12, W21, W22, | |||
$ WABS, WI, WR, WR2 | |||
* .. | |||
* .. Local Arrays .. | |||
REAL V( 3 ) | |||
@@ -1127,25 +1127,27 @@ | |||
H( J+2, J-1 ) = ZERO | |||
END IF | |||
* | |||
T2 = TAU * V( 2 ) | |||
T3 = TAU * V( 3 ) | |||
DO 230 JC = J, ILASTM | |||
TEMP = TAU*( H( J, JC )+V( 2 )*H( J+1, JC )+V( 3 )* | |||
$ H( J+2, JC ) ) | |||
H( J, JC ) = H( J, JC ) - TEMP | |||
H( J+1, JC ) = H( J+1, JC ) - TEMP*V( 2 ) | |||
H( J+2, JC ) = H( J+2, JC ) - TEMP*V( 3 ) | |||
TEMP2 = TAU*( T( J, JC )+V( 2 )*T( J+1, JC )+V( 3 )* | |||
$ T( J+2, JC ) ) | |||
T( J, JC ) = T( J, JC ) - TEMP2 | |||
T( J+1, JC ) = T( J+1, JC ) - TEMP2*V( 2 ) | |||
T( J+2, JC ) = T( J+2, JC ) - TEMP2*V( 3 ) | |||
TEMP = H( J, JC )+V( 2 )*H( J+1, JC )+V( 3 )* | |||
$ H( J+2, JC ) | |||
H( J, JC ) = H( J, JC ) - TEMP*TAU | |||
H( J+1, JC ) = H( J+1, JC ) - TEMP*T2 | |||
H( J+2, JC ) = H( J+2, JC ) - TEMP*T3 | |||
TEMP2 = T( J, JC )+V( 2 )*T( J+1, JC )+V( 3 )* | |||
$ T( J+2, JC ) | |||
T( J, JC ) = T( J, JC ) - TEMP2*TAU | |||
T( J+1, JC ) = T( J+1, JC ) - TEMP2*T2 | |||
T( J+2, JC ) = T( J+2, JC ) - TEMP2*T3 | |||
230 CONTINUE | |||
IF( ILQ ) THEN | |||
DO 240 JR = 1, N | |||
TEMP = TAU*( Q( JR, J )+V( 2 )*Q( JR, J+1 )+V( 3 )* | |||
$ Q( JR, J+2 ) ) | |||
Q( JR, J ) = Q( JR, J ) - TEMP | |||
Q( JR, J+1 ) = Q( JR, J+1 ) - TEMP*V( 2 ) | |||
Q( JR, J+2 ) = Q( JR, J+2 ) - TEMP*V( 3 ) | |||
TEMP = Q( JR, J )+V( 2 )*Q( JR, J+1 )+V( 3 )* | |||
$ Q( JR, J+2 ) | |||
Q( JR, J ) = Q( JR, J ) - TEMP*TAU | |||
Q( JR, J+1 ) = Q( JR, J+1 ) - TEMP*T2 | |||
Q( JR, J+2 ) = Q( JR, J+2 ) - TEMP*T3 | |||
240 CONTINUE | |||
END IF | |||
* | |||
@@ -1233,27 +1235,29 @@ | |||
* | |||
* Apply transformations from the right. | |||
* | |||
T2 = TAU*V( 2 ) | |||
T3 = TAU*V( 3 ) | |||
DO 260 JR = IFRSTM, MIN( J+3, ILAST ) | |||
TEMP = TAU*( H( JR, J )+V( 2 )*H( JR, J+1 )+V( 3 )* | |||
$ H( JR, J+2 ) ) | |||
H( JR, J ) = H( JR, J ) - TEMP | |||
H( JR, J+1 ) = H( JR, J+1 ) - TEMP*V( 2 ) | |||
H( JR, J+2 ) = H( JR, J+2 ) - TEMP*V( 3 ) | |||
TEMP = H( JR, J )+V( 2 )*H( JR, J+1 )+V( 3 )* | |||
$ H( JR, J+2 ) | |||
H( JR, J ) = H( JR, J ) - TEMP*TAU | |||
H( JR, J+1 ) = H( JR, J+1 ) - TEMP*T2 | |||
H( JR, J+2 ) = H( JR, J+2 ) - TEMP*T3 | |||
260 CONTINUE | |||
DO 270 JR = IFRSTM, J + 2 | |||
TEMP = TAU*( T( JR, J )+V( 2 )*T( JR, J+1 )+V( 3 )* | |||
$ T( JR, J+2 ) ) | |||
T( JR, J ) = T( JR, J ) - TEMP | |||
T( JR, J+1 ) = T( JR, J+1 ) - TEMP*V( 2 ) | |||
T( JR, J+2 ) = T( JR, J+2 ) - TEMP*V( 3 ) | |||
TEMP = T( JR, J )+V( 2 )*T( JR, J+1 )+V( 3 )* | |||
$ T( JR, J+2 ) | |||
T( JR, J ) = T( JR, J ) - TEMP*TAU | |||
T( JR, J+1 ) = T( JR, J+1 ) - TEMP*T2 | |||
T( JR, J+2 ) = T( JR, J+2 ) - TEMP*T3 | |||
270 CONTINUE | |||
IF( ILZ ) THEN | |||
DO 280 JR = 1, N | |||
TEMP = TAU*( Z( JR, J )+V( 2 )*Z( JR, J+1 )+V( 3 )* | |||
$ Z( JR, J+2 ) ) | |||
Z( JR, J ) = Z( JR, J ) - TEMP | |||
Z( JR, J+1 ) = Z( JR, J+1 ) - TEMP*V( 2 ) | |||
Z( JR, J+2 ) = Z( JR, J+2 ) - TEMP*V( 3 ) | |||
TEMP = Z( JR, J )+V( 2 )*Z( JR, J+1 )+V( 3 )* | |||
$ Z( JR, J+2 ) | |||
Z( JR, J ) = Z( JR, J ) - TEMP*TAU | |||
Z( JR, J+1 ) = Z( JR, J+1 ) - TEMP*T2 | |||
Z( JR, J+2 ) = Z( JR, J+2 ) - TEMP*T3 | |||
280 CONTINUE | |||
END IF | |||
T( J+1, J ) = ZERO | |||
@@ -558,10 +558,13 @@ | |||
* . Mth bulge. Exploit fact that first two elements | |||
* . of row are actually zero. ==== | |||
* | |||
REFSUM = V( 1, M )*V( 3, M )*H( K+3, K+2 ) | |||
H( K+3, K ) = -REFSUM | |||
H( K+3, K+1 ) = -REFSUM*V( 2, M ) | |||
H( K+3, K+2 ) = H( K+3, K+2 ) - REFSUM*V( 3, M ) | |||
T1 = V( 1, M ) | |||
T2 = T1*V( 2, M ) | |||
T3 = T1*V( 3, M ) | |||
REFSUM = V( 3, M )*H( K+3, K+2 ) | |||
H( K+3, K ) = -REFSUM*T1 | |||
H( K+3, K+1 ) = -REFSUM*T2 | |||
H( K+3, K+2 ) = H( K+3, K+2 ) - REFSUM*T3 | |||
* | |||
* ==== Calculate reflection to move | |||
* . Mth bulge one step. ==== | |||
@@ -597,11 +600,13 @@ | |||
$ VT ) | |||
ALPHA = VT( 1 ) | |||
CALL SLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) ) | |||
REFSUM = VT( 1 )*( H( K+1, K )+VT( 2 )* | |||
$ H( K+2, K ) ) | |||
T1 = VT( 1 ) | |||
T2 = T1*VT( 2 ) | |||
T3 = T2*VT( 3 ) | |||
REFSUM = H( K+1, K )+VT( 2 )*H( K+2, K ) | |||
* | |||
IF( ABS( H( K+2, K )-REFSUM*VT( 2 ) )+ | |||
$ ABS( REFSUM*VT( 3 ) ).GT.ULP* | |||
IF( ABS( H( K+2, K )-REFSUM*T2 )+ | |||
$ ABS( REFSUM*T3 ).GT.ULP* | |||
$ ( ABS( H( K, K ) )+ABS( H( K+1, | |||
$ K+1 ) )+ABS( H( K+2, K+2 ) ) ) ) THEN | |||
* | |||
@@ -619,7 +624,7 @@ | |||
* . Replace the old reflector with | |||
* . the new one. ==== | |||
* | |||
H( K+1, K ) = H( K+1, K ) - REFSUM | |||
H( K+1, K ) = H( K+1, K ) - REFSUM*T1 | |||
H( K+2, K ) = ZERO | |||
H( K+3, K ) = ZERO | |||
V( 1, M ) = VT( 1 ) | |||
@@ -533,11 +533,13 @@ | |||
* . Mth bulge. Exploit fact that first two elements | |||
* . of row are actually zero. ==== | |||
* | |||
REFSUM = V( 1, M )*V( 3, M )*H( K+3, K+2 ) | |||
H( K+3, K ) = -REFSUM | |||
H( K+3, K+1 ) = -REFSUM*DCONJG( V( 2, M ) ) | |||
H( K+3, K+2 ) = H( K+3, K+2 ) - | |||
$ REFSUM*DCONJG( V( 3, M ) ) | |||
T1 = V( 1, M ) | |||
T2 = T1*DCONJG( V( 2, M ) ) | |||
T3 = T1*DCONJG( V( 3, M ) ) | |||
REFSUM = V( 3, M )*H( K+3, K+2 ) | |||
H( K+3, K ) = -REFSUM*T1 | |||
H( K+3, K+1 ) = -REFSUM*T2 | |||
H( K+3, K+2 ) = H( K+3, K+2 ) - REFSUM*T3 | |||
* | |||
* ==== Calculate reflection to move | |||
* . Mth bulge one step. ==== | |||
@@ -572,12 +574,13 @@ | |||
$ S( 2*M ), VT ) | |||
ALPHA = VT( 1 ) | |||
CALL ZLARFG( 3, ALPHA, VT( 2 ), 1, VT( 1 ) ) | |||
REFSUM = DCONJG( VT( 1 ) )* | |||
$ ( H( K+1, K )+DCONJG( VT( 2 ) )* | |||
$ H( K+2, K ) ) | |||
T1 = DCONJG( VT( 1 ) ) | |||
T2 = T1*VT( 2 ) | |||
T3 = T1*VT( 3 ) | |||
REFSUM = H( K+1, K )+DCONJG( VT( 2 ) )*H( K+2, K ) | |||
* | |||
IF( CABS1( H( K+2, K )-REFSUM*VT( 2 ) )+ | |||
$ CABS1( REFSUM*VT( 3 ) ).GT.ULP* | |||
IF( CABS1( H( K+2, K )-REFSUM*T2 )+ | |||
$ CABS1( REFSUM*T3 ).GT.ULP* | |||
$ ( CABS1( H( K, K ) )+CABS1( H( K+1, | |||
$ K+1 ) )+CABS1( H( K+2, K+2 ) ) ) ) THEN | |||
* | |||
@@ -595,7 +598,7 @@ | |||
* . Replace the old reflector with | |||
* . the new one. ==== | |||
* | |||
H( K+1, K ) = H( K+1, K ) - REFSUM | |||
H( K+1, K ) = H( K+1, K ) - REFSUM*T1 | |||
H( K+2, K ) = ZERO | |||
H( K+3, K ) = ZERO | |||
V( 1, M ) = VT( 1 ) | |||
@@ -21,7 +21,7 @@ | |||
* .. Array Arguments .. | |||
* LOGICAL DOTYPE( * ), SELECT( * ) | |||
* INTEGER ISEED( 4 ), IWORK( * ), NN( * ) | |||
* REAL RESULT( 14 ), RWORK( * ) | |||
* REAL RESULT( 16 ), RWORK( * ) | |||
* COMPLEX A( LDA, * ), EVECTL( LDU, * ), | |||
* $ EVECTR( LDU, * ), EVECTX( LDU, * ), | |||
* $ EVECTY( LDU, * ), H( LDA, * ), T1( LDA, * ), | |||
@@ -64,10 +64,15 @@ | |||
*> eigenvectors of H. Y is lower triangular, and X is | |||
*> upper triangular. | |||
*> | |||
*> CTREVC3 computes left and right eigenvector matrices | |||
*> from a Schur matrix T and backtransforms them with Z | |||
*> to eigenvector matrices L and R for A. L and R are | |||
*> GE matrices. | |||
*> | |||
*> When CCHKHS is called, a number of matrix "sizes" ("n's") and a | |||
*> number of matrix "types" are specified. For each size ("n") | |||
*> and each type of matrix, one matrix will be generated and used | |||
*> to test the nonsymmetric eigenroutines. For each matrix, 14 | |||
*> to test the nonsymmetric eigenroutines. For each matrix, 16 | |||
*> tests will be performed: | |||
*> | |||
*> (1) | A - U H U**H | / ( |A| n ulp ) | |||
@@ -98,6 +103,10 @@ | |||
*> | |||
*> (14) | Y**H A - W**H Y | / ( |A| |Y| ulp ) | |||
*> | |||
*> (15) | AR - RW | / ( |A| |R| ulp ) | |||
*> | |||
*> (16) | LA - WL | / ( |A| |L| ulp ) | |||
*> | |||
*> The "sizes" are specified by an array NN(1:NSIZES); the value of | |||
*> each element NN(j) specifies one size. | |||
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); | |||
@@ -331,7 +340,7 @@ | |||
*> Workspace. Could be equivalenced to IWORK, but not RWORK. | |||
*> Modified. | |||
*> | |||
*> RESULT - REAL array, dimension (14) | |||
*> RESULT - REAL array, dimension (16) | |||
*> The values computed by the fourteen tests described above. | |||
*> The values are currently limited to 1/ulp, to avoid | |||
*> overflow. | |||
@@ -421,7 +430,7 @@ | |||
* .. Array Arguments .. | |||
LOGICAL DOTYPE( * ), SELECT( * ) | |||
INTEGER ISEED( 4 ), IWORK( * ), NN( * ) | |||
REAL RESULT( 14 ), RWORK( * ) | |||
REAL RESULT( 16 ), RWORK( * ) | |||
COMPLEX A( LDA, * ), EVECTL( LDU, * ), | |||
$ EVECTR( LDU, * ), EVECTX( LDU, * ), | |||
$ EVECTY( LDU, * ), H( LDA, * ), T1( LDA, * ), | |||
@@ -463,8 +472,8 @@ | |||
* .. External Subroutines .. | |||
EXTERNAL CCOPY, CGEHRD, CGEMM, CGET10, CGET22, CHSEIN, | |||
$ CHSEQR, CHST01, CLACPY, CLASET, CLATME, CLATMR, | |||
$ CLATMS, CTREVC, CUNGHR, CUNMHR, SLABAD, SLAFTS, | |||
$ SLASUM, XERBLA | |||
$ CLATMS, CTREVC, CTREVC3, CUNGHR, CUNMHR, | |||
$ SLABAD, SLAFTS, SLASUM, XERBLA | |||
* .. | |||
* .. Intrinsic Functions .. | |||
INTRINSIC ABS, MAX, MIN, REAL, SQRT | |||
@@ -1067,6 +1076,66 @@ | |||
$ RESULT( 14 ) = DUMMA( 3 )*ANINV | |||
END IF | |||
* | |||
* Compute Left and Right Eigenvectors of A | |||
* | |||
* Compute a Right eigenvector matrix: | |||
* | |||
NTEST = 15 | |||
RESULT( 15 ) = ULPINV | |||
* | |||
CALL CLACPY( ' ', N, N, UZ, LDU, EVECTR, LDU ) | |||
* | |||
CALL CTREVC3( 'Right', 'Back', SELECT, N, T1, LDA, CDUMMA, | |||
$ LDU, EVECTR, LDU, N, IN, WORK, NWORK, RWORK, | |||
$ N, IINFO ) | |||
IF( IINFO.NE.0 ) THEN | |||
WRITE( NOUNIT, FMT = 9999 )'CTREVC3(R,B)', IINFO, N, | |||
$ JTYPE, IOLDSD | |||
INFO = ABS( IINFO ) | |||
GO TO 250 | |||
END IF | |||
* | |||
* Test 15: | AR - RW | / ( |A| |R| ulp ) | |||
* | |||
* (from Schur decomposition) | |||
* | |||
CALL CGET22( 'N', 'N', 'N', N, A, LDA, EVECTR, LDU, W1, | |||
$ WORK, RWORK, DUMMA( 1 ) ) | |||
RESULT( 15 ) = DUMMA( 1 ) | |||
IF( DUMMA( 2 ).GT.THRESH ) THEN | |||
WRITE( NOUNIT, FMT = 9998 )'Right', 'CTREVC3', | |||
$ DUMMA( 2 ), N, JTYPE, IOLDSD | |||
END IF | |||
* | |||
* Compute a Left eigenvector matrix: | |||
* | |||
NTEST = 16 | |||
RESULT( 16 ) = ULPINV | |||
* | |||
CALL CLACPY( ' ', N, N, UZ, LDU, EVECTL, LDU ) | |||
* | |||
CALL CTREVC3( 'Left', 'Back', SELECT, N, T1, LDA, EVECTL, | |||
$ LDU, CDUMMA, LDU, N, IN, WORK, NWORK, RWORK, | |||
$ N, IINFO ) | |||
IF( IINFO.NE.0 ) THEN | |||
WRITE( NOUNIT, FMT = 9999 )'CTREVC3(L,B)', IINFO, N, | |||
$ JTYPE, IOLDSD | |||
INFO = ABS( IINFO ) | |||
GO TO 250 | |||
END IF | |||
* | |||
* Test 16: | LA - WL | / ( |A| |L| ulp ) | |||
* | |||
* (from Schur decomposition) | |||
* | |||
CALL CGET22( 'Conj', 'N', 'Conj', N, A, LDA, EVECTL, LDU, | |||
$ W1, WORK, RWORK, DUMMA( 3 ) ) | |||
RESULT( 16 ) = DUMMA( 3 ) | |||
IF( DUMMA( 4 ).GT.THRESH ) THEN | |||
WRITE( NOUNIT, FMT = 9998 )'Left', 'CTREVC3', DUMMA( 4 ), | |||
$ N, JTYPE, IOLDSD | |||
END IF | |||
* | |||
* End of Loop -- Check for RESULT(j) > THRESH | |||
* | |||
240 CONTINUE | |||
@@ -23,7 +23,7 @@ | |||
* INTEGER ISEED( 4 ), IWORK( * ), NN( * ) | |||
* DOUBLE PRECISION A( LDA, * ), EVECTL( LDU, * ), | |||
* $ EVECTR( LDU, * ), EVECTX( LDU, * ), | |||
* $ EVECTY( LDU, * ), H( LDA, * ), RESULT( 14 ), | |||
* $ EVECTY( LDU, * ), H( LDA, * ), RESULT( 16 ), | |||
* $ T1( LDA, * ), T2( LDA, * ), TAU( * ), | |||
* $ U( LDU, * ), UU( LDU, * ), UZ( LDU, * ), | |||
* $ WI1( * ), WI2( * ), WI3( * ), WORK( * ), | |||
@@ -49,15 +49,21 @@ | |||
*> T is "quasi-triangular", and the eigenvalue vector W. | |||
*> | |||
*> DTREVC computes the left and right eigenvector matrices | |||
*> L and R for T. | |||
*> L and R for T. L is lower quasi-triangular, and R is | |||
*> upper quasi-triangular. | |||
*> | |||
*> DHSEIN computes the left and right eigenvector matrices | |||
*> Y and X for H, using inverse iteration. | |||
*> | |||
*> DTREVC3 computes left and right eigenvector matrices | |||
*> from a Schur matrix T and backtransforms them with Z | |||
*> to eigenvector matrices L and R for A. L and R are | |||
*> GE matrices. | |||
*> | |||
*> When DCHKHS is called, a number of matrix "sizes" ("n's") and a | |||
*> number of matrix "types" are specified. For each size ("n") | |||
*> and each type of matrix, one matrix will be generated and used | |||
*> to test the nonsymmetric eigenroutines. For each matrix, 14 | |||
*> to test the nonsymmetric eigenroutines. For each matrix, 16 | |||
*> tests will be performed: | |||
*> | |||
*> (1) | A - U H U**T | / ( |A| n ulp ) | |||
@@ -88,6 +94,10 @@ | |||
*> | |||
*> (14) | Y**H A - W**H Y | / ( |A| |Y| ulp ) | |||
*> | |||
*> (15) | AR - RW | / ( |A| |R| ulp ) | |||
*> | |||
*> (16) | LA - WL | / ( |A| |L| ulp ) | |||
*> | |||
*> The "sizes" are specified by an array NN(1:NSIZES); the value of | |||
*> each element NN(j) specifies one size. | |||
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); | |||
@@ -331,7 +341,7 @@ | |||
*> Workspace. | |||
*> Modified. | |||
*> | |||
*> RESULT - DOUBLE PRECISION array, dimension (14) | |||
*> RESULT - DOUBLE PRECISION array, dimension (16) | |||
*> The values computed by the fourteen tests described above. | |||
*> The values are currently limited to 1/ulp, to avoid | |||
*> overflow. | |||
@@ -423,7 +433,7 @@ | |||
INTEGER ISEED( 4 ), IWORK( * ), NN( * ) | |||
DOUBLE PRECISION A( LDA, * ), EVECTL( LDU, * ), | |||
$ EVECTR( LDU, * ), EVECTX( LDU, * ), | |||
$ EVECTY( LDU, * ), H( LDA, * ), RESULT( 14 ), | |||
$ EVECTY( LDU, * ), H( LDA, * ), RESULT( 16 ), | |||
$ T1( LDA, * ), T2( LDA, * ), TAU( * ), | |||
$ U( LDU, * ), UU( LDU, * ), UZ( LDU, * ), | |||
$ WI1( * ), WI2( * ), WI3( * ), WORK( * ), | |||
@@ -461,7 +471,7 @@ | |||
EXTERNAL DCOPY, DGEHRD, DGEMM, DGET10, DGET22, DHSEIN, | |||
$ DHSEQR, DHST01, DLABAD, DLACPY, DLAFTS, DLASET, | |||
$ DLASUM, DLATME, DLATMR, DLATMS, DORGHR, DORMHR, | |||
$ DTREVC, XERBLA | |||
$ DTREVC, DTREVC3, XERBLA | |||
* .. | |||
* .. Intrinsic Functions .. | |||
INTRINSIC ABS, DBLE, MAX, MIN, SQRT | |||
@@ -561,7 +571,7 @@ | |||
* | |||
* Initialize RESULT | |||
* | |||
DO 30 J = 1, 14 | |||
DO 30 J = 1, 16 | |||
RESULT( J ) = ZERO | |||
30 CONTINUE | |||
* | |||
@@ -1108,6 +1118,64 @@ | |||
$ RESULT( 14 ) = DUMMA( 3 )*ANINV | |||
END IF | |||
* | |||
* Compute Left and Right Eigenvectors of A | |||
* | |||
* Compute a Right eigenvector matrix: | |||
* | |||
NTEST = 15 | |||
RESULT( 15 ) = ULPINV | |||
* | |||
CALL DLACPY( ' ', N, N, UZ, LDU, EVECTR, LDU ) | |||
* | |||
CALL DTREVC3( 'Right', 'Back', SELECT, N, T1, LDA, DUMMA, | |||
$ LDU, EVECTR, LDU, N, IN, WORK, NWORK, IINFO ) | |||
IF( IINFO.NE.0 ) THEN | |||
WRITE( NOUNIT, FMT = 9999 )'DTREVC3(R,B)', IINFO, N, | |||
$ JTYPE, IOLDSD | |||
INFO = ABS( IINFO ) | |||
GO TO 250 | |||
END IF | |||
* | |||
* Test 15: | AR - RW | / ( |A| |R| ulp ) | |||
* | |||
* (from Schur decomposition) | |||
* | |||
CALL DGET22( 'N', 'N', 'N', N, A, LDA, EVECTR, LDU, WR1, | |||
$ WI1, WORK, DUMMA( 1 ) ) | |||
RESULT( 15 ) = DUMMA( 1 ) | |||
IF( DUMMA( 2 ).GT.THRESH ) THEN | |||
WRITE( NOUNIT, FMT = 9998 )'Right', 'DTREVC3', | |||
$ DUMMA( 2 ), N, JTYPE, IOLDSD | |||
END IF | |||
* | |||
* Compute a Left eigenvector matrix: | |||
* | |||
NTEST = 16 | |||
RESULT( 16 ) = ULPINV | |||
* | |||
CALL DLACPY( ' ', N, N, UZ, LDU, EVECTL, LDU ) | |||
* | |||
CALL DTREVC3( 'Left', 'Back', SELECT, N, T1, LDA, EVECTL, | |||
$ LDU, DUMMA, LDU, N, IN, WORK, NWORK, IINFO ) | |||
IF( IINFO.NE.0 ) THEN | |||
WRITE( NOUNIT, FMT = 9999 )'DTREVC3(L,B)', IINFO, N, | |||
$ JTYPE, IOLDSD | |||
INFO = ABS( IINFO ) | |||
GO TO 250 | |||
END IF | |||
* | |||
* Test 16: | LA - WL | / ( |A| |L| ulp ) | |||
* | |||
* (from Schur decomposition) | |||
* | |||
CALL DGET22( 'Trans', 'N', 'Conj', N, A, LDA, EVECTL, LDU, | |||
$ WR1, WI1, WORK, DUMMA( 3 ) ) | |||
RESULT( 16 ) = DUMMA( 3 ) | |||
IF( DUMMA( 4 ).GT.THRESH ) THEN | |||
WRITE( NOUNIT, FMT = 9998 )'Left', 'DTREVC3', DUMMA( 4 ), | |||
$ N, JTYPE, IOLDSD | |||
END IF | |||
* | |||
* End of Loop -- Check for RESULT(j) > THRESH | |||
* | |||
250 CONTINUE | |||
@@ -23,7 +23,7 @@ | |||
* INTEGER ISEED( 4 ), IWORK( * ), NN( * ) | |||
* REAL A( LDA, * ), EVECTL( LDU, * ), | |||
* $ EVECTR( LDU, * ), EVECTX( LDU, * ), | |||
* $ EVECTY( LDU, * ), H( LDA, * ), RESULT( 14 ), | |||
* $ EVECTY( LDU, * ), H( LDA, * ), RESULT( 16 ), | |||
* $ T1( LDA, * ), T2( LDA, * ), TAU( * ), | |||
* $ U( LDU, * ), UU( LDU, * ), UZ( LDU, * ), | |||
* $ WI1( * ), WI2( * ), WI3( * ), WORK( * ), | |||
@@ -54,10 +54,15 @@ | |||
*> SHSEIN computes the left and right eigenvector matrices | |||
*> Y and X for H, using inverse iteration. | |||
*> | |||
*> STREVC3 computes left and right eigenvector matrices | |||
*> from a Schur matrix T and backtransforms them with Z | |||
*> to eigenvector matrices L and R for A. L and R are | |||
*> GE matrices. | |||
*> | |||
*> When SCHKHS is called, a number of matrix "sizes" ("n's") and a | |||
*> number of matrix "types" are specified. For each size ("n") | |||
*> and each type of matrix, one matrix will be generated and used | |||
*> to test the nonsymmetric eigenroutines. For each matrix, 14 | |||
*> to test the nonsymmetric eigenroutines. For each matrix, 16 | |||
*> tests will be performed: | |||
*> | |||
*> (1) | A - U H U**T | / ( |A| n ulp ) | |||
@@ -88,6 +93,10 @@ | |||
*> | |||
*> (14) | Y**H A - W**H Y | / ( |A| |Y| ulp ) | |||
*> | |||
*> (15) | AR - RW | / ( |A| |R| ulp ) | |||
*> | |||
*> (16) | LA - WL | / ( |A| |L| ulp ) | |||
*> | |||
*> The "sizes" are specified by an array NN(1:NSIZES); the value of | |||
*> each element NN(j) specifies one size. | |||
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); | |||
@@ -331,7 +340,7 @@ | |||
*> Workspace. | |||
*> Modified. | |||
*> | |||
*> RESULT - REAL array, dimension (14) | |||
*> RESULT - REAL array, dimension (16) | |||
*> The values computed by the fourteen tests described above. | |||
*> The values are currently limited to 1/ulp, to avoid | |||
*> overflow. | |||
@@ -423,7 +432,7 @@ | |||
INTEGER ISEED( 4 ), IWORK( * ), NN( * ) | |||
REAL A( LDA, * ), EVECTL( LDU, * ), | |||
$ EVECTR( LDU, * ), EVECTX( LDU, * ), | |||
$ EVECTY( LDU, * ), H( LDA, * ), RESULT( 14 ), | |||
$ EVECTY( LDU, * ), H( LDA, * ), RESULT( 16 ), | |||
$ T1( LDA, * ), T2( LDA, * ), TAU( * ), | |||
$ U( LDU, * ), UU( LDU, * ), UZ( LDU, * ), | |||
$ WI1( * ), WI2( * ), WI3( * ), WORK( * ), | |||
@@ -461,7 +470,7 @@ | |||
EXTERNAL SCOPY, SGEHRD, SGEMM, SGET10, SGET22, SHSEIN, | |||
$ SHSEQR, SHST01, SLABAD, SLACPY, SLAFTS, SLASET, | |||
$ SLASUM, SLATME, SLATMR, SLATMS, SORGHR, SORMHR, | |||
$ STREVC, XERBLA | |||
$ STREVC, STREVC3, XERBLA | |||
* .. | |||
* .. Intrinsic Functions .. | |||
INTRINSIC ABS, MAX, MIN, REAL, SQRT | |||
@@ -561,7 +570,7 @@ | |||
* | |||
* Initialize RESULT | |||
* | |||
DO 30 J = 1, 14 | |||
DO 30 J = 1, 16 | |||
RESULT( J ) = ZERO | |||
30 CONTINUE | |||
* | |||
@@ -1108,6 +1117,64 @@ | |||
$ RESULT( 14 ) = DUMMA( 3 )*ANINV | |||
END IF | |||
* | |||
* Compute Left and Right Eigenvectors of A | |||
* | |||
* Compute a Right eigenvector matrix: | |||
* | |||
NTEST = 15 | |||
RESULT( 15 ) = ULPINV | |||
* | |||
CALL SLACPY( ' ', N, N, UZ, LDU, EVECTR, LDU ) | |||
* | |||
CALL STREVC3( 'Right', 'Back', SELECT, N, T1, LDA, DUMMA, | |||
$ LDU, EVECTR, LDU, N, IN, WORK, NWORK, IINFO ) | |||
IF( IINFO.NE.0 ) THEN | |||
WRITE( NOUNIT, FMT = 9999 )'STREVC3(R,B)', IINFO, N, | |||
$ JTYPE, IOLDSD | |||
INFO = ABS( IINFO ) | |||
GO TO 250 | |||
END IF | |||
* | |||
* Test 15: | AR - RW | / ( |A| |R| ulp ) | |||
* | |||
* (from Schur decomposition) | |||
* | |||
CALL SGET22( 'N', 'N', 'N', N, A, LDA, EVECTR, LDU, WR1, | |||
$ WI1, WORK, DUMMA( 1 ) ) | |||
RESULT( 15 ) = DUMMA( 1 ) | |||
IF( DUMMA( 2 ).GT.THRESH ) THEN | |||
WRITE( NOUNIT, FMT = 9998 )'Right', 'STREVC3', | |||
$ DUMMA( 2 ), N, JTYPE, IOLDSD | |||
END IF | |||
* | |||
* Compute a Left eigenvector matrix: | |||
* | |||
NTEST = 16 | |||
RESULT( 16 ) = ULPINV | |||
* | |||
CALL SLACPY( ' ', N, N, UZ, LDU, EVECTL, LDU ) | |||
* | |||
CALL STREVC3( 'Left', 'Back', SELECT, N, T1, LDA, EVECTL, | |||
$ LDU, DUMMA, LDU, N, IN, WORK, NWORK, IINFO ) | |||
IF( IINFO.NE.0 ) THEN | |||
WRITE( NOUNIT, FMT = 9999 )'STREVC3(L,B)', IINFO, N, | |||
$ JTYPE, IOLDSD | |||
INFO = ABS( IINFO ) | |||
GO TO 250 | |||
END IF | |||
* | |||
* Test 16: | LA - WL | / ( |A| |L| ulp ) | |||
* | |||
* (from Schur decomposition) | |||
* | |||
CALL SGET22( 'Trans', 'N', 'Conj', N, A, LDA, EVECTL, LDU, | |||
$ WR1, WI1, WORK, DUMMA( 3 ) ) | |||
RESULT( 16 ) = DUMMA( 3 ) | |||
IF( DUMMA( 4 ).GT.THRESH ) THEN | |||
WRITE( NOUNIT, FMT = 9998 )'Left', 'STREVC3', DUMMA( 4 ), | |||
$ N, JTYPE, IOLDSD | |||
END IF | |||
* | |||
* End of Loop -- Check for RESULT(j) > THRESH | |||
* | |||
250 CONTINUE | |||
@@ -21,7 +21,7 @@ | |||
* .. Array Arguments .. | |||
* LOGICAL DOTYPE( * ), SELECT( * ) | |||
* INTEGER ISEED( 4 ), IWORK( * ), NN( * ) | |||
* DOUBLE PRECISION RESULT( 14 ), RWORK( * ) | |||
* DOUBLE PRECISION RESULT( 16 ), RWORK( * ) | |||
* COMPLEX*16 A( LDA, * ), EVECTL( LDU, * ), | |||
* $ EVECTR( LDU, * ), EVECTX( LDU, * ), | |||
* $ EVECTY( LDU, * ), H( LDA, * ), T1( LDA, * ), | |||
@@ -64,10 +64,15 @@ | |||
*> eigenvectors of H. Y is lower triangular, and X is | |||
*> upper triangular. | |||
*> | |||
*> ZTREVC3 computes left and right eigenvector matrices | |||
*> from a Schur matrix T and backtransforms them with Z | |||
*> to eigenvector matrices L and R for A. L and R are | |||
*> GE matrices. | |||
*> | |||
*> When ZCHKHS is called, a number of matrix "sizes" ("n's") and a | |||
*> number of matrix "types" are specified. For each size ("n") | |||
*> and each type of matrix, one matrix will be generated and used | |||
*> to test the nonsymmetric eigenroutines. For each matrix, 14 | |||
*> to test the nonsymmetric eigenroutines. For each matrix, 16 | |||
*> tests will be performed: | |||
*> | |||
*> (1) | A - U H U**H | / ( |A| n ulp ) | |||
@@ -98,6 +103,10 @@ | |||
*> | |||
*> (14) | Y**H A - W**H Y | / ( |A| |Y| ulp ) | |||
*> | |||
*> (15) | AR - RW | / ( |A| |R| ulp ) | |||
*> | |||
*> (16) | LA - WL | / ( |A| |L| ulp ) | |||
*> | |||
*> The "sizes" are specified by an array NN(1:NSIZES); the value of | |||
*> each element NN(j) specifies one size. | |||
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); | |||
@@ -331,7 +340,7 @@ | |||
*> Workspace. Could be equivalenced to IWORK, but not RWORK. | |||
*> Modified. | |||
*> | |||
*> RESULT - DOUBLE PRECISION array, dimension (14) | |||
*> RESULT - DOUBLE PRECISION array, dimension (16) | |||
*> The values computed by the fourteen tests described above. | |||
*> The values are currently limited to 1/ulp, to avoid | |||
*> overflow. | |||
@@ -421,7 +430,7 @@ | |||
* .. Array Arguments .. | |||
LOGICAL DOTYPE( * ), SELECT( * ) | |||
INTEGER ISEED( 4 ), IWORK( * ), NN( * ) | |||
DOUBLE PRECISION RESULT( 14 ), RWORK( * ) | |||
DOUBLE PRECISION RESULT( 16 ), RWORK( * ) | |||
COMPLEX*16 A( LDA, * ), EVECTL( LDU, * ), | |||
$ EVECTR( LDU, * ), EVECTX( LDU, * ), | |||
$ EVECTY( LDU, * ), H( LDA, * ), T1( LDA, * ), | |||
@@ -464,7 +473,7 @@ | |||
EXTERNAL DLABAD, DLAFTS, DLASUM, XERBLA, ZCOPY, ZGEHRD, | |||
$ ZGEMM, ZGET10, ZGET22, ZHSEIN, ZHSEQR, ZHST01, | |||
$ ZLACPY, ZLASET, ZLATME, ZLATMR, ZLATMS, ZTREVC, | |||
$ ZUNGHR, ZUNMHR | |||
$ ZTREVC3, ZUNGHR, ZUNMHR | |||
* .. | |||
* .. Intrinsic Functions .. | |||
INTRINSIC ABS, DBLE, MAX, MIN, SQRT | |||
@@ -1067,6 +1076,66 @@ | |||
$ RESULT( 14 ) = DUMMA( 3 )*ANINV | |||
END IF | |||
* | |||
* Compute Left and Right Eigenvectors of A | |||
* | |||
* Compute a Right eigenvector matrix: | |||
* | |||
NTEST = 15 | |||
RESULT( 15 ) = ULPINV | |||
* | |||
CALL ZLACPY( ' ', N, N, UZ, LDU, EVECTR, LDU ) | |||
* | |||
CALL ZTREVC3( 'Right', 'Back', SELECT, N, T1, LDA, CDUMMA, | |||
$ LDU, EVECTR, LDU, N, IN, WORK, NWORK, RWORK, | |||
$ N, IINFO ) | |||
IF( IINFO.NE.0 ) THEN | |||
WRITE( NOUNIT, FMT = 9999 )'ZTREVC3(R,B)', IINFO, N, | |||
$ JTYPE, IOLDSD | |||
INFO = ABS( IINFO ) | |||
GO TO 250 | |||
END IF | |||
* | |||
* Test 15: | AR - RW | / ( |A| |R| ulp ) | |||
* | |||
* (from Schur decomposition) | |||
* | |||
CALL ZGET22( 'N', 'N', 'N', N, A, LDA, EVECTR, LDU, W1, | |||
$ WORK, RWORK, DUMMA( 1 ) ) | |||
RESULT( 15 ) = DUMMA( 1 ) | |||
IF( DUMMA( 2 ).GT.THRESH ) THEN | |||
WRITE( NOUNIT, FMT = 9998 )'Right', 'ZTREVC3', | |||
$ DUMMA( 2 ), N, JTYPE, IOLDSD | |||
END IF | |||
* | |||
* Compute a Left eigenvector matrix: | |||
* | |||
NTEST = 16 | |||
RESULT( 16 ) = ULPINV | |||
* | |||
CALL ZLACPY( ' ', N, N, UZ, LDU, EVECTL, LDU ) | |||
* | |||
CALL ZTREVC3( 'Left', 'Back', SELECT, N, T1, LDA, EVECTL, | |||
$ LDU, CDUMMA, LDU, N, IN, WORK, NWORK, RWORK, | |||
$ N, IINFO ) | |||
IF( IINFO.NE.0 ) THEN | |||
WRITE( NOUNIT, FMT = 9999 )'ZTREVC3(L,B)', IINFO, N, | |||
$ JTYPE, IOLDSD | |||
INFO = ABS( IINFO ) | |||
GO TO 250 | |||
END IF | |||
* | |||
* Test 16: | LA - WL | / ( |A| |L| ulp ) | |||
* | |||
* (from Schur decomposition) | |||
* | |||
CALL ZGET22( 'Conj', 'N', 'Conj', N, A, LDA, EVECTL, LDU, | |||
$ W1, WORK, RWORK, DUMMA( 3 ) ) | |||
RESULT( 16 ) = DUMMA( 3 ) | |||
IF( DUMMA( 4 ).GT.THRESH ) THEN | |||
WRITE( NOUNIT, FMT = 9998 )'Left', 'ZTREVC3', DUMMA( 4 ), | |||
$ N, JTYPE, IOLDSD | |||
END IF | |||
* | |||
* End of Loop -- Check for RESULT(j) > THRESH | |||
* | |||
240 CONTINUE | |||