| @@ -1,602 +0,0 @@ | |||
| *> \brief <b> CGESVX computes the solution to system of linear equations A * X = B for GE matrices</b> | |||
| * | |||
| * =========== DOCUMENTATION =========== | |||
| * | |||
| * Online html documentation available at | |||
| * http://www.netlib.org/lapack/explore-html/ | |||
| * | |||
| *> \htmlonly | |||
| *> Download CGESVX + dependencies | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cgesvx.f"> | |||
| *> [TGZ]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cgesvx.f"> | |||
| *> [ZIP]</a> | |||
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cgesvx.f"> | |||
| *> [TXT]</a> | |||
| *> \endhtmlonly | |||
| * | |||
| * Definition: | |||
| * =========== | |||
| * | |||
| * SUBROUTINE CGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, | |||
| * EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, | |||
| * WORK, RWORK, INFO ) | |||
| * | |||
| * .. Scalar Arguments .. | |||
| * CHARACTER EQUED, FACT, TRANS | |||
| * INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS | |||
| * REAL RCOND | |||
| * .. | |||
| * .. Array Arguments .. | |||
| * INTEGER IPIV( * ) | |||
| * REAL BERR( * ), C( * ), FERR( * ), R( * ), | |||
| * $ RWORK( * ) | |||
| * COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ), | |||
| * $ WORK( * ), X( LDX, * ) | |||
| * .. | |||
| * | |||
| * | |||
| *> \par Purpose: | |||
| * ============= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> CGESVX uses the LU factorization to compute the solution to a complex | |||
| *> system of linear equations | |||
| *> A * X = B, | |||
| *> where A is an N-by-N matrix and X and B are N-by-NRHS matrices. | |||
| *> | |||
| *> Error bounds on the solution and a condition estimate are also | |||
| *> provided. | |||
| *> \endverbatim | |||
| * | |||
| *> \par Description: | |||
| * ================= | |||
| *> | |||
| *> \verbatim | |||
| *> | |||
| *> The following steps are performed: | |||
| *> | |||
| *> 1. If FACT = 'E', real scaling factors are computed to equilibrate | |||
| *> the system: | |||
| *> TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B | |||
| *> TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B | |||
| *> TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B | |||
| *> Whether or not the system will be equilibrated depends on the | |||
| *> scaling of the matrix A, but if equilibration is used, A is | |||
| *> overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') | |||
| *> or diag(C)*B (if TRANS = 'T' or 'C'). | |||
| *> | |||
| *> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the | |||
| *> matrix A (after equilibration if FACT = 'E') as | |||
| *> A = P * L * U, | |||
| *> where P is a permutation matrix, L is a unit lower triangular | |||
| *> matrix, and U is upper triangular. | |||
| *> | |||
| *> 3. If some U(i,i)=0, so that U is exactly singular, then the routine | |||
| *> returns with INFO = i. Otherwise, the factored form of A is used | |||
| *> to estimate the condition number of the matrix A. If the | |||
| *> reciprocal of the condition number is less than machine precision, | |||
| *> INFO = N+1 is returned as a warning, but the routine still goes on | |||
| *> to solve for X and compute error bounds as described below. | |||
| *> | |||
| *> 4. The system of equations is solved for X using the factored form | |||
| *> of A. | |||
| *> | |||
| *> 5. Iterative refinement is applied to improve the computed solution | |||
| *> matrix and calculate error bounds and backward error estimates | |||
| *> for it. | |||
| *> | |||
| *> 6. If equilibration was used, the matrix X is premultiplied by | |||
| *> diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so | |||
| *> that it solves the original system before equilibration. | |||
| *> \endverbatim | |||
| * | |||
| * Arguments: | |||
| * ========== | |||
| * | |||
| *> \param[in] FACT | |||
| *> \verbatim | |||
| *> FACT is CHARACTER*1 | |||
| *> Specifies whether or not the factored form of the matrix A is | |||
| *> supplied on entry, and if not, whether the matrix A should be | |||
| *> equilibrated before it is factored. | |||
| *> = 'F': On entry, AF and IPIV contain the factored form of A. | |||
| *> If EQUED is not 'N', the matrix A has been | |||
| *> equilibrated with scaling factors given by R and C. | |||
| *> A, AF, and IPIV are not modified. | |||
| *> = 'N': The matrix A will be copied to AF and factored. | |||
| *> = 'E': The matrix A will be equilibrated if necessary, then | |||
| *> copied to AF and factored. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] TRANS | |||
| *> \verbatim | |||
| *> TRANS is CHARACTER*1 | |||
| *> Specifies the form of the system of equations: | |||
| *> = 'N': A * X = B (No transpose) | |||
| *> = 'T': A**T * X = B (Transpose) | |||
| *> = 'C': A**H * X = B (Conjugate transpose) | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] N | |||
| *> \verbatim | |||
| *> N is INTEGER | |||
| *> The number of linear equations, i.e., the order of the | |||
| *> matrix A. N >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] NRHS | |||
| *> \verbatim | |||
| *> NRHS is INTEGER | |||
| *> The number of right hand sides, i.e., the number of columns | |||
| *> of the matrices B and X. NRHS >= 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] A | |||
| *> \verbatim | |||
| *> A is COMPLEX array, dimension (LDA,N) | |||
| *> On entry, the N-by-N matrix A. If FACT = 'F' and EQUED is | |||
| *> not 'N', then A must have been equilibrated by the scaling | |||
| *> factors in R and/or C. A is not modified if FACT = 'F' or | |||
| *> 'N', or if FACT = 'E' and EQUED = 'N' on exit. | |||
| *> | |||
| *> On exit, if EQUED .ne. 'N', A is scaled as follows: | |||
| *> EQUED = 'R': A := diag(R) * A | |||
| *> EQUED = 'C': A := A * diag(C) | |||
| *> EQUED = 'B': A := diag(R) * A * diag(C). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDA | |||
| *> \verbatim | |||
| *> LDA is INTEGER | |||
| *> The leading dimension of the array A. LDA >= max(1,N). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] AF | |||
| *> \verbatim | |||
| *> AF is COMPLEX array, dimension (LDAF,N) | |||
| *> If FACT = 'F', then AF is an input argument and on entry | |||
| *> contains the factors L and U from the factorization | |||
| *> A = P*L*U as computed by CGETRF. If EQUED .ne. 'N', then | |||
| *> AF is the factored form of the equilibrated matrix A. | |||
| *> | |||
| *> If FACT = 'N', then AF is an output argument and on exit | |||
| *> returns the factors L and U from the factorization A = P*L*U | |||
| *> of the original matrix A. | |||
| *> | |||
| *> If FACT = 'E', then AF is an output argument and on exit | |||
| *> returns the factors L and U from the factorization A = P*L*U | |||
| *> of the equilibrated matrix A (see the description of A for | |||
| *> the form of the equilibrated matrix). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDAF | |||
| *> \verbatim | |||
| *> LDAF is INTEGER | |||
| *> The leading dimension of the array AF. LDAF >= max(1,N). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] IPIV | |||
| *> \verbatim | |||
| *> IPIV is INTEGER array, dimension (N) | |||
| *> If FACT = 'F', then IPIV is an input argument and on entry | |||
| *> contains the pivot indices from the factorization A = P*L*U | |||
| *> as computed by CGETRF; row i of the matrix was interchanged | |||
| *> with row IPIV(i). | |||
| *> | |||
| *> If FACT = 'N', then IPIV is an output argument and on exit | |||
| *> contains the pivot indices from the factorization A = P*L*U | |||
| *> of the original matrix A. | |||
| *> | |||
| *> If FACT = 'E', then IPIV is an output argument and on exit | |||
| *> contains the pivot indices from the factorization A = P*L*U | |||
| *> of the equilibrated matrix A. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] EQUED | |||
| *> \verbatim | |||
| *> EQUED is CHARACTER*1 | |||
| *> Specifies the form of equilibration that was done. | |||
| *> = 'N': No equilibration (always true if FACT = 'N'). | |||
| *> = 'R': Row equilibration, i.e., A has been premultiplied by | |||
| *> diag(R). | |||
| *> = 'C': Column equilibration, i.e., A has been postmultiplied | |||
| *> by diag(C). | |||
| *> = 'B': Both row and column equilibration, i.e., A has been | |||
| *> replaced by diag(R) * A * diag(C). | |||
| *> EQUED is an input argument if FACT = 'F'; otherwise, it is an | |||
| *> output argument. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] R | |||
| *> \verbatim | |||
| *> R is REAL array, dimension (N) | |||
| *> The row scale factors for A. If EQUED = 'R' or 'B', A is | |||
| *> multiplied on the left by diag(R); if EQUED = 'N' or 'C', R | |||
| *> is not accessed. R is an input argument if FACT = 'F'; | |||
| *> otherwise, R is an output argument. If FACT = 'F' and | |||
| *> EQUED = 'R' or 'B', each element of R must be positive. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] C | |||
| *> \verbatim | |||
| *> C is REAL array, dimension (N) | |||
| *> The column scale factors for A. If EQUED = 'C' or 'B', A is | |||
| *> multiplied on the right by diag(C); if EQUED = 'N' or 'R', C | |||
| *> is not accessed. C is an input argument if FACT = 'F'; | |||
| *> otherwise, C is an output argument. If FACT = 'F' and | |||
| *> EQUED = 'C' or 'B', each element of C must be positive. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in,out] B | |||
| *> \verbatim | |||
| *> B is COMPLEX array, dimension (LDB,NRHS) | |||
| *> On entry, the N-by-NRHS right hand side matrix B. | |||
| *> On exit, | |||
| *> if EQUED = 'N', B is not modified; | |||
| *> if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by | |||
| *> diag(R)*B; | |||
| *> if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is | |||
| *> overwritten by diag(C)*B. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDB | |||
| *> \verbatim | |||
| *> LDB is INTEGER | |||
| *> The leading dimension of the array B. LDB >= max(1,N). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] X | |||
| *> \verbatim | |||
| *> X is COMPLEX array, dimension (LDX,NRHS) | |||
| *> If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X | |||
| *> to the original system of equations. Note that A and B are | |||
| *> modified on exit if EQUED .ne. 'N', and the solution to the | |||
| *> equilibrated system is inv(diag(C))*X if TRANS = 'N' and | |||
| *> EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C' | |||
| *> and EQUED = 'R' or 'B'. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[in] LDX | |||
| *> \verbatim | |||
| *> LDX is INTEGER | |||
| *> The leading dimension of the array X. LDX >= max(1,N). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] RCOND | |||
| *> \verbatim | |||
| *> RCOND is REAL | |||
| *> The estimate of the reciprocal condition number of the matrix | |||
| *> A after equilibration (if done). If RCOND is less than the | |||
| *> machine precision (in particular, if RCOND = 0), the matrix | |||
| *> is singular to working precision. This condition is | |||
| *> indicated by a return code of INFO > 0. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] FERR | |||
| *> \verbatim | |||
| *> FERR is REAL array, dimension (NRHS) | |||
| *> The estimated forward error bound for each solution vector | |||
| *> X(j) (the j-th column of the solution matrix X). | |||
| *> If XTRUE is the true solution corresponding to X(j), FERR(j) | |||
| *> is an estimated upper bound for the magnitude of the largest | |||
| *> element in (X(j) - XTRUE) divided by the magnitude of the | |||
| *> largest element in X(j). The estimate is as reliable as | |||
| *> the estimate for RCOND, and is almost always a slight | |||
| *> overestimate of the true error. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] BERR | |||
| *> \verbatim | |||
| *> BERR is REAL array, dimension (NRHS) | |||
| *> The componentwise relative backward error of each solution | |||
| *> vector X(j) (i.e., the smallest relative change in | |||
| *> any element of A or B that makes X(j) an exact solution). | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] WORK | |||
| *> \verbatim | |||
| *> WORK is COMPLEX array, dimension (2*N) | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] RWORK | |||
| *> \verbatim | |||
| *> RWORK is REAL array, dimension (MAX(1,2*N)) | |||
| *> On exit, RWORK(1) contains the reciprocal pivot growth | |||
| *> factor norm(A)/norm(U). The "max absolute element" norm is | |||
| *> used. If RWORK(1) is much less than 1, then the stability | |||
| *> of the LU factorization of the (equilibrated) matrix A | |||
| *> could be poor. This also means that the solution X, condition | |||
| *> estimator RCOND, and forward error bound FERR could be | |||
| *> unreliable. If factorization fails with 0<INFO<=N, then | |||
| *> RWORK(1) contains the reciprocal pivot growth factor for the | |||
| *> leading INFO columns of A. | |||
| *> \endverbatim | |||
| *> | |||
| *> \param[out] INFO | |||
| *> \verbatim | |||
| *> INFO is INTEGER | |||
| *> = 0: successful exit | |||
| *> < 0: if INFO = -i, the i-th argument had an illegal value | |||
| *> > 0: if INFO = i, and i is | |||
| *> <= N: U(i,i) is exactly zero. The factorization has | |||
| *> been completed, but the factor U is exactly | |||
| *> singular, so the solution and error bounds | |||
| *> could not be computed. RCOND = 0 is returned. | |||
| *> = N+1: U is nonsingular, but RCOND is less than machine | |||
| *> precision, meaning that the matrix is singular | |||
| *> to working precision. Nevertheless, the | |||
| *> solution and error bounds are computed because | |||
| *> there are a number of situations where the | |||
| *> computed solution can be more accurate than the | |||
| *> value of RCOND would suggest. | |||
| *> \endverbatim | |||
| * | |||
| * Authors: | |||
| * ======== | |||
| * | |||
| *> \author Univ. of Tennessee | |||
| *> \author Univ. of California Berkeley | |||
| *> \author Univ. of Colorado Denver | |||
| *> \author NAG Ltd. | |||
| * | |||
| *> \ingroup complexGEsolve | |||
| * | |||
| * ===================================================================== | |||
| SUBROUTINE CGESVX( FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, | |||
| $ EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, | |||
| $ WORK, RWORK, INFO ) | |||
| * | |||
| * -- LAPACK driver routine -- | |||
| * -- LAPACK is a software package provided by Univ. of Tennessee, -- | |||
| * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- | |||
| * | |||
| * .. Scalar Arguments .. | |||
| CHARACTER EQUED, FACT, TRANS | |||
| INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS | |||
| REAL RCOND | |||
| * .. | |||
| * .. Array Arguments .. | |||
| INTEGER IPIV( * ) | |||
| REAL BERR( * ), C( * ), FERR( * ), R( * ), | |||
| $ RWORK( * ) | |||
| COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ), | |||
| $ WORK( * ), X( LDX, * ) | |||
| * .. | |||
| * | |||
| * ===================================================================== | |||
| * | |||
| * .. Parameters .. | |||
| REAL ZERO, ONE | |||
| PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 ) | |||
| * .. | |||
| * .. Local Scalars .. | |||
| LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU | |||
| CHARACTER NORM | |||
| INTEGER I, INFEQU, J | |||
| REAL AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN, | |||
| $ ROWCND, RPVGRW, SMLNUM | |||
| * .. | |||
| * .. External Functions .. | |||
| LOGICAL LSAME | |||
| REAL CLANGE, CLANTR, SLAMCH | |||
| EXTERNAL LSAME, CLANGE, CLANTR, SLAMCH | |||
| * .. | |||
| * .. External Subroutines .. | |||
| EXTERNAL CGECON, CGEEQU, CGERFS, CGETRF, CGETRS, CLACPY, | |||
| $ CLAQGE, XERBLA | |||
| * .. | |||
| * .. Intrinsic Functions .. | |||
| INTRINSIC MAX, MIN | |||
| * .. | |||
| * .. Executable Statements .. | |||
| * | |||
| INFO = 0 | |||
| NOFACT = LSAME( FACT, 'N' ) | |||
| EQUIL = LSAME( FACT, 'E' ) | |||
| NOTRAN = LSAME( TRANS, 'N' ) | |||
| IF( NOFACT .OR. EQUIL ) THEN | |||
| EQUED = 'N' | |||
| ROWEQU = .FALSE. | |||
| COLEQU = .FALSE. | |||
| ELSE | |||
| ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) | |||
| COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) | |||
| SMLNUM = SLAMCH( 'Safe minimum' ) | |||
| BIGNUM = ONE / SMLNUM | |||
| END IF | |||
| * | |||
| * Test the input parameters. | |||
| * | |||
| IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) ) | |||
| $ THEN | |||
| INFO = -1 | |||
| ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT. | |||
| $ LSAME( TRANS, 'C' ) ) THEN | |||
| INFO = -2 | |||
| ELSE IF( N.LT.0 ) THEN | |||
| INFO = -3 | |||
| ELSE IF( NRHS.LT.0 ) THEN | |||
| INFO = -4 | |||
| ELSE IF( LDA.LT.MAX( 1, N ) ) THEN | |||
| INFO = -6 | |||
| ELSE IF( LDAF.LT.MAX( 1, N ) ) THEN | |||
| INFO = -8 | |||
| ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT. | |||
| $ ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN | |||
| INFO = -10 | |||
| ELSE | |||
| IF( ROWEQU ) THEN | |||
| RCMIN = BIGNUM | |||
| RCMAX = ZERO | |||
| DO 10 J = 1, N | |||
| RCMIN = MIN( RCMIN, R( J ) ) | |||
| RCMAX = MAX( RCMAX, R( J ) ) | |||
| 10 CONTINUE | |||
| IF( RCMIN.LE.ZERO ) THEN | |||
| INFO = -11 | |||
| ELSE IF( N.GT.0 ) THEN | |||
| ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) | |||
| ELSE | |||
| ROWCND = ONE | |||
| END IF | |||
| END IF | |||
| IF( COLEQU .AND. INFO.EQ.0 ) THEN | |||
| RCMIN = BIGNUM | |||
| RCMAX = ZERO | |||
| DO 20 J = 1, N | |||
| RCMIN = MIN( RCMIN, C( J ) ) | |||
| RCMAX = MAX( RCMAX, C( J ) ) | |||
| 20 CONTINUE | |||
| IF( RCMIN.LE.ZERO ) THEN | |||
| INFO = -12 | |||
| ELSE IF( N.GT.0 ) THEN | |||
| COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM ) | |||
| ELSE | |||
| COLCND = ONE | |||
| END IF | |||
| END IF | |||
| IF( INFO.EQ.0 ) THEN | |||
| IF( LDB.LT.MAX( 1, N ) ) THEN | |||
| INFO = -14 | |||
| ELSE IF( LDX.LT.MAX( 1, N ) ) THEN | |||
| INFO = -16 | |||
| END IF | |||
| END IF | |||
| END IF | |||
| * | |||
| IF( INFO.NE.0 ) THEN | |||
| CALL XERBLA( 'CGESVX', -INFO ) | |||
| RETURN | |||
| END IF | |||
| * | |||
| IF( EQUIL ) THEN | |||
| * | |||
| * Compute row and column scalings to equilibrate the matrix A. | |||
| * | |||
| CALL CGEEQU( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFEQU ) | |||
| IF( INFEQU.EQ.0 ) THEN | |||
| * | |||
| * Equilibrate the matrix. | |||
| * | |||
| CALL CLAQGE( N, N, A, LDA, R, C, ROWCND, COLCND, AMAX, | |||
| $ EQUED ) | |||
| ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' ) | |||
| COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' ) | |||
| END IF | |||
| END IF | |||
| * | |||
| * Scale the right hand side. | |||
| * | |||
| IF( NOTRAN ) THEN | |||
| IF( ROWEQU ) THEN | |||
| DO 40 J = 1, NRHS | |||
| DO 30 I = 1, N | |||
| B( I, J ) = R( I )*B( I, J ) | |||
| 30 CONTINUE | |||
| 40 CONTINUE | |||
| END IF | |||
| ELSE IF( COLEQU ) THEN | |||
| DO 60 J = 1, NRHS | |||
| DO 50 I = 1, N | |||
| B( I, J ) = C( I )*B( I, J ) | |||
| 50 CONTINUE | |||
| 60 CONTINUE | |||
| END IF | |||
| * | |||
| IF( NOFACT .OR. EQUIL ) THEN | |||
| * | |||
| * Compute the LU factorization of A. | |||
| * | |||
| CALL CLACPY( 'Full', N, N, A, LDA, AF, LDAF ) | |||
| CALL CGETRF( N, N, AF, LDAF, IPIV, INFO ) | |||
| * | |||
| * Return if INFO is non-zero. | |||
| * | |||
| IF( INFO.GT.0 ) THEN | |||
| * | |||
| * Compute the reciprocal pivot growth factor of the | |||
| * leading rank-deficient INFO columns of A. | |||
| * | |||
| RPVGRW = CLANTR( 'M', 'U', 'N', INFO, INFO, AF, LDAF, | |||
| $ RWORK ) | |||
| IF( RPVGRW.EQ.ZERO ) THEN | |||
| RPVGRW = ONE | |||
| ELSE | |||
| RPVGRW = CLANGE( 'M', N, INFO, A, LDA, RWORK ) / | |||
| $ RPVGRW | |||
| END IF | |||
| RWORK( 1 ) = RPVGRW | |||
| RCOND = ZERO | |||
| RETURN | |||
| END IF | |||
| END IF | |||
| * | |||
| * Compute the norm of the matrix A and the | |||
| * reciprocal pivot growth factor RPVGRW. | |||
| * | |||
| IF( NOTRAN ) THEN | |||
| NORM = '1' | |||
| ELSE | |||
| NORM = 'I' | |||
| END IF | |||
| ANORM = CLANGE( NORM, N, N, A, LDA, RWORK ) | |||
| RPVGRW = CLANTR( 'M', 'U', 'N', N, N, AF, LDAF, RWORK ) | |||
| IF( RPVGRW.EQ.ZERO ) THEN | |||
| RPVGRW = ONE | |||
| ELSE | |||
| RPVGRW = CLANGE( 'M', N, N, A, LDA, RWORK ) / RPVGRW | |||
| END IF | |||
| * | |||
| * Compute the reciprocal of the condition number of A. | |||
| * | |||
| CALL CGECON( NORM, N, AF, LDAF, ANORM, RCOND, WORK, RWORK, INFO ) | |||
| * | |||
| * Compute the solution matrix X. | |||
| * | |||
| CALL CLACPY( 'Full', N, NRHS, B, LDB, X, LDX ) | |||
| CALL CGETRS( TRANS, N, NRHS, AF, LDAF, IPIV, X, LDX, INFO ) | |||
| * | |||
| * Use iterative refinement to improve the computed solution and | |||
| * compute error bounds and backward error estimates for it. | |||
| * | |||
| CALL CGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, | |||
| $ LDX, FERR, BERR, WORK, RWORK, INFO ) | |||
| * | |||
| * Transform the solution matrix X to a solution of the original | |||
| * system. | |||
| * | |||
| IF( NOTRAN ) THEN | |||
| IF( COLEQU ) THEN | |||
| DO 80 J = 1, NRHS | |||
| DO 70 I = 1, N | |||
| X( I, J ) = C( I )*X( I, J ) | |||
| 70 CONTINUE | |||
| 80 CONTINUE | |||
| DO 90 J = 1, NRHS | |||
| FERR( J ) = FERR( J ) / COLCND | |||
| 90 CONTINUE | |||
| END IF | |||
| ELSE IF( ROWEQU ) THEN | |||
| DO 110 J = 1, NRHS | |||
| DO 100 I = 1, N | |||
| X( I, J ) = R( I )*X( I, J ) | |||
| 100 CONTINUE | |||
| 110 CONTINUE | |||
| DO 120 J = 1, NRHS | |||
| FERR( J ) = FERR( J ) / ROWCND | |||
| 120 CONTINUE | |||
| END IF | |||
| * | |||
| * Set INFO = N+1 if the matrix is singular to working precision. | |||
| * | |||
| IF( RCOND.LT.SLAMCH( 'Epsilon' ) ) | |||
| $ INFO = N + 1 | |||
| * | |||
| RWORK( 1 ) = RPVGRW | |||
| RETURN | |||
| * | |||
| * End of CGESVX | |||
| * | |||
| END | |||