| @@ -278,7 +278,7 @@ | |||||
| $ CDOTU, CLADIV | $ CDOTU, CLADIV | ||||
| * .. | * .. | ||||
| * .. External Subroutines .. | * .. External Subroutines .. | ||||
| EXTERNAL CAXPY, CSSCAL, CTBSV, SLABAD, SSCAL, XERBLA | |||||
| EXTERNAL CAXPY, CSSCAL, CTBSV, SSCAL, XERBLA | |||||
| * .. | * .. | ||||
| * .. Intrinsic Functions .. | * .. Intrinsic Functions .. | ||||
| INTRINSIC ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL | INTRINSIC ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL | ||||
| @@ -324,17 +324,14 @@ | |||||
| * | * | ||||
| * Quick return if possible | * Quick return if possible | ||||
| * | * | ||||
| SCALE = ONE | |||||
| IF( N.EQ.0 ) | IF( N.EQ.0 ) | ||||
| $ RETURN | $ RETURN | ||||
| * | * | ||||
| * Determine machine dependent parameters to control overflow. | * Determine machine dependent parameters to control overflow. | ||||
| * | * | ||||
| SMLNUM = SLAMCH( 'Safe minimum' ) | |||||
| BIGNUM = ONE / SMLNUM | |||||
| CALL SLABAD( SMLNUM, BIGNUM ) | |||||
| SMLNUM = SMLNUM / SLAMCH( 'Precision' ) | |||||
| SMLNUM = SLAMCH( 'Safe minimum' ) / SLAMCH( 'Precision' ) | |||||
| BIGNUM = ONE / SMLNUM | BIGNUM = ONE / SMLNUM | ||||
| SCALE = ONE | |||||
| * | * | ||||
| IF( LSAME( NORMIN, 'N' ) ) THEN | IF( LSAME( NORMIN, 'N' ) ) THEN | ||||
| * | * | ||||
| @@ -274,7 +274,7 @@ | |||||
| $ CDOTU, CLADIV | $ CDOTU, CLADIV | ||||
| * .. | * .. | ||||
| * .. External Subroutines .. | * .. External Subroutines .. | ||||
| EXTERNAL CAXPY, CSSCAL, CTRSV, SLABAD, SSCAL, XERBLA | |||||
| EXTERNAL CAXPY, CSSCAL, CTRSV, SSCAL, XERBLA | |||||
| * .. | * .. | ||||
| * .. Intrinsic Functions .. | * .. Intrinsic Functions .. | ||||
| INTRINSIC ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL | INTRINSIC ABS, AIMAG, CMPLX, CONJG, MAX, MIN, REAL | ||||
| @@ -318,17 +318,14 @@ | |||||
| * | * | ||||
| * Quick return if possible | * Quick return if possible | ||||
| * | * | ||||
| SCALE = ONE | |||||
| IF( N.EQ.0 ) | IF( N.EQ.0 ) | ||||
| $ RETURN | $ RETURN | ||||
| * | * | ||||
| * Determine machine dependent parameters to control overflow. | * Determine machine dependent parameters to control overflow. | ||||
| * | * | ||||
| SMLNUM = SLAMCH( 'Safe minimum' ) | |||||
| BIGNUM = ONE / SMLNUM | |||||
| CALL SLABAD( SMLNUM, BIGNUM ) | |||||
| SMLNUM = SMLNUM / SLAMCH( 'Precision' ) | |||||
| SMLNUM = SLAMCH( 'Safe minimum' ) / SLAMCH( 'Precision' ) | |||||
| BIGNUM = ONE / SMLNUM | BIGNUM = ONE / SMLNUM | ||||
| SCALE = ONE | |||||
| * | * | ||||
| IF( LSAME( NORMIN, 'N' ) ) THEN | IF( LSAME( NORMIN, 'N' ) ) THEN | ||||
| * | * | ||||
| @@ -360,8 +357,74 @@ | |||||
| IF( TMAX.LE.BIGNUM*HALF ) THEN | IF( TMAX.LE.BIGNUM*HALF ) THEN | ||||
| TSCAL = ONE | TSCAL = ONE | ||||
| ELSE | ELSE | ||||
| TSCAL = HALF / ( SMLNUM*TMAX ) | |||||
| CALL SSCAL( N, TSCAL, CNORM, 1 ) | |||||
| * | |||||
| * Avoid NaN generation if entries in CNORM exceed the | |||||
| * overflow threshold | |||||
| * | |||||
| IF ( TMAX.LE.SLAMCH('Overflow') ) THEN | |||||
| * Case 1: All entries in CNORM are valid floating-point numbers | |||||
| TSCAL = HALF / ( SMLNUM*TMAX ) | |||||
| CALL SSCAL( N, TSCAL, CNORM, 1 ) | |||||
| ELSE | |||||
| * Case 2: At least one column norm of A cannot be | |||||
| * represented as a floating-point number. Find the | |||||
| * maximum offdiagonal absolute value | |||||
| * max( |Re(A(I,J))|, |Im(A(I,J)| ). If this entry is | |||||
| * not +/- Infinity, use this value as TSCAL. | |||||
| TMAX = ZERO | |||||
| IF( UPPER ) THEN | |||||
| * | |||||
| * A is upper triangular. | |||||
| * | |||||
| DO J = 2, N | |||||
| DO I = 1, J - 1 | |||||
| TMAX = MAX( TMAX, ABS( REAL( A( I, J ) ) ), | |||||
| $ ABS( AIMAG(A ( I, J ) ) ) ) | |||||
| END DO | |||||
| END DO | |||||
| ELSE | |||||
| * | |||||
| * A is lower triangular. | |||||
| * | |||||
| DO J = 1, N - 1 | |||||
| DO I = J + 1, N | |||||
| TMAX = MAX( TMAX, ABS( REAL( A( I, J ) ) ), | |||||
| $ ABS( AIMAG(A ( I, J ) ) ) ) | |||||
| END DO | |||||
| END DO | |||||
| END IF | |||||
| * | |||||
| IF( TMAX.LE.SLAMCH('Overflow') ) THEN | |||||
| TSCAL = ONE / ( SMLNUM*TMAX ) | |||||
| DO J = 1, N | |||||
| IF( CNORM( J ).LE.SLAMCH('Overflow') ) THEN | |||||
| CNORM( J ) = CNORM( J )*TSCAL | |||||
| ELSE | |||||
| * Recompute the 1-norm of each column without | |||||
| * introducing Infinity in the summation. | |||||
| TSCAL = TWO * TSCAL | |||||
| CNORM( J ) = ZERO | |||||
| IF( UPPER ) THEN | |||||
| DO I = 1, J - 1 | |||||
| CNORM( J ) = CNORM( J ) + | |||||
| $ TSCAL * CABS2( A( I, J ) ) | |||||
| END DO | |||||
| ELSE | |||||
| DO I = J + 1, N | |||||
| CNORM( J ) = CNORM( J ) + | |||||
| $ TSCAL * CABS2( A( I, J ) ) | |||||
| END DO | |||||
| END IF | |||||
| TSCAL = TSCAL * HALF | |||||
| END IF | |||||
| END DO | |||||
| ELSE | |||||
| * At least one entry of A is not a valid floating-point | |||||
| * entry. Rely on TRSV to propagate Inf and NaN. | |||||
| CALL CTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 ) | |||||
| RETURN | |||||
| END IF | |||||
| END IF | |||||
| END IF | END IF | ||||
| * | * | ||||
| * Compute a bound on the computed solution vector to see if the | * Compute a bound on the computed solution vector to see if the | ||||
| @@ -310,6 +310,7 @@ | |||||
| * | * | ||||
| * Quick return if possible | * Quick return if possible | ||||
| * | * | ||||
| SCALE = ONE | |||||
| IF( N.EQ.0 ) | IF( N.EQ.0 ) | ||||
| $ RETURN | $ RETURN | ||||
| * | * | ||||
| @@ -317,7 +318,6 @@ | |||||
| * | * | ||||
| SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' ) | SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' ) | ||||
| BIGNUM = ONE / SMLNUM | BIGNUM = ONE / SMLNUM | ||||
| SCALE = ONE | |||||
| * | * | ||||
| IF( LSAME( NORMIN, 'N' ) ) THEN | IF( LSAME( NORMIN, 'N' ) ) THEN | ||||
| * | * | ||||
| @@ -264,8 +264,8 @@ | |||||
| * .. External Functions .. | * .. External Functions .. | ||||
| LOGICAL LSAME | LOGICAL LSAME | ||||
| INTEGER IDAMAX | INTEGER IDAMAX | ||||
| DOUBLE PRECISION DASUM, DDOT, DLAMCH | |||||
| EXTERNAL LSAME, IDAMAX, DASUM, DDOT, DLAMCH | |||||
| DOUBLE PRECISION DASUM, DDOT, DLAMCH, DLANGE | |||||
| EXTERNAL LSAME, IDAMAX, DASUM, DDOT, DLAMCH, DLANGE | |||||
| * .. | * .. | ||||
| * .. External Subroutines .. | * .. External Subroutines .. | ||||
| EXTERNAL DAXPY, DSCAL, DTRSV, XERBLA | EXTERNAL DAXPY, DSCAL, DTRSV, XERBLA | ||||
| @@ -304,6 +304,7 @@ | |||||
| * | * | ||||
| * Quick return if possible | * Quick return if possible | ||||
| * | * | ||||
| SCALE = ONE | |||||
| IF( N.EQ.0 ) | IF( N.EQ.0 ) | ||||
| $ RETURN | $ RETURN | ||||
| * | * | ||||
| @@ -311,7 +312,6 @@ | |||||
| * | * | ||||
| SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' ) | SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' ) | ||||
| BIGNUM = ONE / SMLNUM | BIGNUM = ONE / SMLNUM | ||||
| SCALE = ONE | |||||
| * | * | ||||
| IF( LSAME( NORMIN, 'N' ) ) THEN | IF( LSAME( NORMIN, 'N' ) ) THEN | ||||
| * | * | ||||
| @@ -343,8 +343,67 @@ | |||||
| IF( TMAX.LE.BIGNUM ) THEN | IF( TMAX.LE.BIGNUM ) THEN | ||||
| TSCAL = ONE | TSCAL = ONE | ||||
| ELSE | ELSE | ||||
| TSCAL = ONE / ( SMLNUM*TMAX ) | |||||
| CALL DSCAL( N, TSCAL, CNORM, 1 ) | |||||
| * | |||||
| * Avoid NaN generation if entries in CNORM exceed the | |||||
| * overflow threshold | |||||
| * | |||||
| IF( TMAX.LE.DLAMCH('Overflow') ) THEN | |||||
| * Case 1: All entries in CNORM are valid floating-point numbers | |||||
| TSCAL = ONE / ( SMLNUM*TMAX ) | |||||
| CALL DSCAL( N, TSCAL, CNORM, 1 ) | |||||
| ELSE | |||||
| * Case 2: At least one column norm of A cannot be represented | |||||
| * as floating-point number. Find the offdiagonal entry A( I, J ) | |||||
| * with the largest absolute value. If this entry is not +/- Infinity, | |||||
| * use this value as TSCAL. | |||||
| TMAX = ZERO | |||||
| IF( UPPER ) THEN | |||||
| * | |||||
| * A is upper triangular. | |||||
| * | |||||
| DO J = 2, N | |||||
| TMAX = MAX( DLANGE( 'M', J-1, 1, A( 1, J ), 1, SUMJ ), | |||||
| $ TMAX ) | |||||
| END DO | |||||
| ELSE | |||||
| * | |||||
| * A is lower triangular. | |||||
| * | |||||
| DO J = 1, N - 1 | |||||
| TMAX = MAX( DLANGE( 'M', N-J, 1, A( J+1, J ), 1, | |||||
| $ SUMJ ), TMAX ) | |||||
| END DO | |||||
| END IF | |||||
| * | |||||
| IF( TMAX.LE.DLAMCH('Overflow') ) THEN | |||||
| TSCAL = ONE / ( SMLNUM*TMAX ) | |||||
| DO J = 1, N | |||||
| IF( CNORM( J ).LE.DLAMCH('Overflow') ) THEN | |||||
| CNORM( J ) = CNORM( J )*TSCAL | |||||
| ELSE | |||||
| * Recompute the 1-norm without introducing Infinity | |||||
| * in the summation | |||||
| CNORM( J ) = ZERO | |||||
| IF( UPPER ) THEN | |||||
| DO I = 1, J - 1 | |||||
| CNORM( J ) = CNORM( J ) + | |||||
| $ TSCAL * ABS( A( I, J ) ) | |||||
| END DO | |||||
| ELSE | |||||
| DO I = J + 1, N | |||||
| CNORM( J ) = CNORM( J ) + | |||||
| $ TSCAL * ABS( A( I, J ) ) | |||||
| END DO | |||||
| END IF | |||||
| END IF | |||||
| END DO | |||||
| ELSE | |||||
| * At least one entry of A is not a valid floating-point entry. | |||||
| * Rely on TRSV to propagate Inf and NaN. | |||||
| CALL DTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 ) | |||||
| RETURN | |||||
| END IF | |||||
| END IF | |||||
| END IF | END IF | ||||
| * | * | ||||
| * Compute a bound on the computed solution vector to see if the | * Compute a bound on the computed solution vector to see if the | ||||
| @@ -310,6 +310,7 @@ | |||||
| * | * | ||||
| * Quick return if possible | * Quick return if possible | ||||
| * | * | ||||
| SCALE = ONE | |||||
| IF( N.EQ.0 ) | IF( N.EQ.0 ) | ||||
| $ RETURN | $ RETURN | ||||
| * | * | ||||
| @@ -317,7 +318,6 @@ | |||||
| * | * | ||||
| SMLNUM = SLAMCH( 'Safe minimum' ) / SLAMCH( 'Precision' ) | SMLNUM = SLAMCH( 'Safe minimum' ) / SLAMCH( 'Precision' ) | ||||
| BIGNUM = ONE / SMLNUM | BIGNUM = ONE / SMLNUM | ||||
| SCALE = ONE | |||||
| * | * | ||||
| IF( LSAME( NORMIN, 'N' ) ) THEN | IF( LSAME( NORMIN, 'N' ) ) THEN | ||||
| * | * | ||||
| @@ -264,8 +264,8 @@ | |||||
| * .. External Functions .. | * .. External Functions .. | ||||
| LOGICAL LSAME | LOGICAL LSAME | ||||
| INTEGER ISAMAX | INTEGER ISAMAX | ||||
| REAL SASUM, SDOT, SLAMCH | |||||
| EXTERNAL LSAME, ISAMAX, SASUM, SDOT, SLAMCH | |||||
| REAL SASUM, SDOT, SLAMCH, SLANGE | |||||
| EXTERNAL LSAME, ISAMAX, SASUM, SDOT, SLAMCH, SLANGE | |||||
| * .. | * .. | ||||
| * .. External Subroutines .. | * .. External Subroutines .. | ||||
| EXTERNAL SAXPY, SSCAL, STRSV, XERBLA | EXTERNAL SAXPY, SSCAL, STRSV, XERBLA | ||||
| @@ -304,6 +304,7 @@ | |||||
| * | * | ||||
| * Quick return if possible | * Quick return if possible | ||||
| * | * | ||||
| SCALE = ONE | |||||
| IF( N.EQ.0 ) | IF( N.EQ.0 ) | ||||
| $ RETURN | $ RETURN | ||||
| * | * | ||||
| @@ -311,7 +312,6 @@ | |||||
| * | * | ||||
| SMLNUM = SLAMCH( 'Safe minimum' ) / SLAMCH( 'Precision' ) | SMLNUM = SLAMCH( 'Safe minimum' ) / SLAMCH( 'Precision' ) | ||||
| BIGNUM = ONE / SMLNUM | BIGNUM = ONE / SMLNUM | ||||
| SCALE = ONE | |||||
| * | * | ||||
| IF( LSAME( NORMIN, 'N' ) ) THEN | IF( LSAME( NORMIN, 'N' ) ) THEN | ||||
| * | * | ||||
| @@ -343,8 +343,67 @@ | |||||
| IF( TMAX.LE.BIGNUM ) THEN | IF( TMAX.LE.BIGNUM ) THEN | ||||
| TSCAL = ONE | TSCAL = ONE | ||||
| ELSE | ELSE | ||||
| TSCAL = ONE / ( SMLNUM*TMAX ) | |||||
| CALL SSCAL( N, TSCAL, CNORM, 1 ) | |||||
| * | |||||
| * Avoid NaN generation if entries in CNORM exceed the | |||||
| * overflow threshold | |||||
| * | |||||
| IF ( TMAX.LE.SLAMCH('Overflow') ) THEN | |||||
| * Case 1: All entries in CNORM are valid floating-point numbers | |||||
| TSCAL = ONE / ( SMLNUM*TMAX ) | |||||
| CALL SSCAL( N, TSCAL, CNORM, 1 ) | |||||
| ELSE | |||||
| * Case 2: At least one column norm of A cannot be represented | |||||
| * as floating-point number. Find the offdiagonal entry A( I, J ) | |||||
| * with the largest absolute value. If this entry is not +/- Infinity, | |||||
| * use this value as TSCAL. | |||||
| TMAX = ZERO | |||||
| IF( UPPER ) THEN | |||||
| * | |||||
| * A is upper triangular. | |||||
| * | |||||
| DO J = 2, N | |||||
| TMAX = MAX( SLANGE( 'M', J-1, 1, A( 1, J ), 1, SUMJ ), | |||||
| $ TMAX ) | |||||
| END DO | |||||
| ELSE | |||||
| * | |||||
| * A is lower triangular. | |||||
| * | |||||
| DO J = 1, N - 1 | |||||
| TMAX = MAX( SLANGE( 'M', N-J, 1, A( J+1, J ), 1, | |||||
| $ SUMJ ), TMAX ) | |||||
| END DO | |||||
| END IF | |||||
| * | |||||
| IF( TMAX.LE.SLAMCH('Overflow') ) THEN | |||||
| TSCAL = ONE / ( SMLNUM*TMAX ) | |||||
| DO J = 1, N | |||||
| IF( CNORM( J ).LE.SLAMCH('Overflow') ) THEN | |||||
| CNORM( J ) = CNORM( J )*TSCAL | |||||
| ELSE | |||||
| * Recompute the 1-norm without introducing Infinity | |||||
| * in the summation | |||||
| CNORM( J ) = ZERO | |||||
| IF( UPPER ) THEN | |||||
| DO I = 1, J - 1 | |||||
| CNORM( J ) = CNORM( J ) + | |||||
| $ TSCAL * ABS( A( I, J ) ) | |||||
| END DO | |||||
| ELSE | |||||
| DO I = J + 1, N | |||||
| CNORM( J ) = CNORM( J ) + | |||||
| $ TSCAL * ABS( A( I, J ) ) | |||||
| END DO | |||||
| END IF | |||||
| END IF | |||||
| END DO | |||||
| ELSE | |||||
| * At least one entry of A is not a valid floating-point entry. | |||||
| * Rely on TRSV to propagate Inf and NaN. | |||||
| CALL STRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 ) | |||||
| RETURN | |||||
| END IF | |||||
| END IF | |||||
| END IF | END IF | ||||
| * | * | ||||
| * Compute a bound on the computed solution vector to see if the | * Compute a bound on the computed solution vector to see if the | ||||
| @@ -278,7 +278,7 @@ | |||||
| $ ZDOTU, ZLADIV | $ ZDOTU, ZLADIV | ||||
| * .. | * .. | ||||
| * .. External Subroutines .. | * .. External Subroutines .. | ||||
| EXTERNAL DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTBSV, DLABAD | |||||
| EXTERNAL DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTBSV | |||||
| * .. | * .. | ||||
| * .. Intrinsic Functions .. | * .. Intrinsic Functions .. | ||||
| INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN | INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN | ||||
| @@ -324,17 +324,14 @@ | |||||
| * | * | ||||
| * Quick return if possible | * Quick return if possible | ||||
| * | * | ||||
| SCALE = ONE | |||||
| IF( N.EQ.0 ) | IF( N.EQ.0 ) | ||||
| $ RETURN | $ RETURN | ||||
| * | * | ||||
| * Determine machine dependent parameters to control overflow. | * Determine machine dependent parameters to control overflow. | ||||
| * | * | ||||
| SMLNUM = DLAMCH( 'Safe minimum' ) | |||||
| BIGNUM = ONE / SMLNUM | |||||
| CALL DLABAD( SMLNUM, BIGNUM ) | |||||
| SMLNUM = SMLNUM / DLAMCH( 'Precision' ) | |||||
| SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' ) | |||||
| BIGNUM = ONE / SMLNUM | BIGNUM = ONE / SMLNUM | ||||
| SCALE = ONE | |||||
| * | * | ||||
| IF( LSAME( NORMIN, 'N' ) ) THEN | IF( LSAME( NORMIN, 'N' ) ) THEN | ||||
| * | * | ||||
| @@ -274,7 +274,7 @@ | |||||
| $ ZDOTU, ZLADIV | $ ZDOTU, ZLADIV | ||||
| * .. | * .. | ||||
| * .. External Subroutines .. | * .. External Subroutines .. | ||||
| EXTERNAL DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTRSV, DLABAD | |||||
| EXTERNAL DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTRSV | |||||
| * .. | * .. | ||||
| * .. Intrinsic Functions .. | * .. Intrinsic Functions .. | ||||
| INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN | INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN | ||||
| @@ -318,17 +318,14 @@ | |||||
| * | * | ||||
| * Quick return if possible | * Quick return if possible | ||||
| * | * | ||||
| SCALE = ONE | |||||
| IF( N.EQ.0 ) | IF( N.EQ.0 ) | ||||
| $ RETURN | $ RETURN | ||||
| * | * | ||||
| * Determine machine dependent parameters to control overflow. | * Determine machine dependent parameters to control overflow. | ||||
| * | * | ||||
| SMLNUM = DLAMCH( 'Safe minimum' ) | |||||
| BIGNUM = ONE / SMLNUM | |||||
| CALL DLABAD( SMLNUM, BIGNUM ) | |||||
| SMLNUM = SMLNUM / DLAMCH( 'Precision' ) | |||||
| SMLNUM = DLAMCH( 'Safe minimum' ) / DLAMCH( 'Precision' ) | |||||
| BIGNUM = ONE / SMLNUM | BIGNUM = ONE / SMLNUM | ||||
| SCALE = ONE | |||||
| * | * | ||||
| IF( LSAME( NORMIN, 'N' ) ) THEN | IF( LSAME( NORMIN, 'N' ) ) THEN | ||||
| * | * | ||||
| @@ -360,8 +357,74 @@ | |||||
| IF( TMAX.LE.BIGNUM*HALF ) THEN | IF( TMAX.LE.BIGNUM*HALF ) THEN | ||||
| TSCAL = ONE | TSCAL = ONE | ||||
| ELSE | ELSE | ||||
| TSCAL = HALF / ( SMLNUM*TMAX ) | |||||
| CALL DSCAL( N, TSCAL, CNORM, 1 ) | |||||
| * | |||||
| * Avoid NaN generation if entries in CNORM exceed the | |||||
| * overflow threshold | |||||
| * | |||||
| IF ( TMAX.LE.DLAMCH('Overflow') ) THEN | |||||
| * Case 1: All entries in CNORM are valid floating-point numbers | |||||
| TSCAL = HALF / ( SMLNUM*TMAX ) | |||||
| CALL DSCAL( N, TSCAL, CNORM, 1 ) | |||||
| ELSE | |||||
| * Case 2: At least one column norm of A cannot be | |||||
| * represented as a floating-point number. Find the | |||||
| * maximum offdiagonal absolute value | |||||
| * max( |Re(A(I,J))|, |Im(A(I,J)| ). If this entry is | |||||
| * not +/- Infinity, use this value as TSCAL. | |||||
| TMAX = ZERO | |||||
| IF( UPPER ) THEN | |||||
| * | |||||
| * A is upper triangular. | |||||
| * | |||||
| DO J = 2, N | |||||
| DO I = 1, J - 1 | |||||
| TMAX = MAX( TMAX, ABS( DBLE( A( I, J ) ) ), | |||||
| $ ABS( DIMAG(A ( I, J ) ) ) ) | |||||
| END DO | |||||
| END DO | |||||
| ELSE | |||||
| * | |||||
| * A is lower triangular. | |||||
| * | |||||
| DO J = 1, N - 1 | |||||
| DO I = J + 1, N | |||||
| TMAX = MAX( TMAX, ABS( DBLE( A( I, J ) ) ), | |||||
| $ ABS( DIMAG(A ( I, J ) ) ) ) | |||||
| END DO | |||||
| END DO | |||||
| END IF | |||||
| * | |||||
| IF( TMAX.LE.DLAMCH('Overflow') ) THEN | |||||
| TSCAL = ONE / ( SMLNUM*TMAX ) | |||||
| DO J = 1, N | |||||
| IF( CNORM( J ).LE.DLAMCH('Overflow') ) THEN | |||||
| CNORM( J ) = CNORM( J )*TSCAL | |||||
| ELSE | |||||
| * Recompute the 1-norm of each column without | |||||
| * introducing Infinity in the summation. | |||||
| TSCAL = TWO * TSCAL | |||||
| CNORM( J ) = ZERO | |||||
| IF( UPPER ) THEN | |||||
| DO I = 1, J - 1 | |||||
| CNORM( J ) = CNORM( J ) + | |||||
| $ TSCAL * CABS2( A( I, J ) ) | |||||
| END DO | |||||
| ELSE | |||||
| DO I = J + 1, N | |||||
| CNORM( J ) = CNORM( J ) + | |||||
| $ TSCAL * CABS2( A( I, J ) ) | |||||
| END DO | |||||
| END IF | |||||
| TSCAL = TSCAL * HALF | |||||
| END IF | |||||
| END DO | |||||
| ELSE | |||||
| * At least one entry of A is not a valid floating-point | |||||
| * entry. Rely on TRSV to propagate Inf and NaN. | |||||
| CALL ZTRSV( UPLO, TRANS, DIAG, N, A, LDA, X, 1 ) | |||||
| RETURN | |||||
| END IF | |||||
| END IF | |||||
| END IF | END IF | ||||
| * | * | ||||
| * Compute a bound on the computed solution vector to see if the | * Compute a bound on the computed solution vector to see if the | ||||