@@ -225,10 +225,19 @@ SSYMV_U_KERNEL = symv_U_rvv.c | |||
SSYMV_L_KERNEL = symv_L_rvv.c | |||
DSYMV_U_KERNEL = symv_U_rvv.c | |||
DSYMV_L_KERNEL = symv_L_rvv.c | |||
CSYMV_U_KERNEL = ../generic/zsymv_k.c | |||
CSYMV_L_KERNEL = ../generic/zsymv_k.c | |||
ZSYMV_U_KERNEL = ../generic/zsymv_k.c | |||
ZSYMV_L_KERNEL = ../generic/zsymv_k.c | |||
CSYMV_U_KERNEL = zsymv_U_rvv.c | |||
CSYMV_L_KERNEL = zsymv_L_rvv.c | |||
ZSYMV_U_KERNEL = zsymv_U_rvv.c | |||
ZSYMV_L_KERNEL = zsymv_L_rvv.c | |||
CHEMV_L_KERNEL = zhemv_LM_rvv.c | |||
CHEMV_M_KERNEL = zhemv_LM_rvv.c | |||
CHEMV_U_KERNEL = zhemv_UV_rvv.c | |||
CHEMV_V_KERNEL = zhemv_UV_rvv.c | |||
ZHEMV_L_KERNEL = zhemv_LM_rvv.c | |||
ZHEMV_M_KERNEL = zhemv_LM_rvv.c | |||
ZHEMV_U_KERNEL = zhemv_UV_rvv.c | |||
ZHEMV_V_KERNEL = zhemv_UV_rvv.c | |||
ZHEMMLTCOPY_M = zhemm_ltcopy_rvv_v1.c | |||
ZHEMMUTCOPY_M = zhemm_utcopy_rvv_v1.c | |||
@@ -0,0 +1,198 @@ | |||
/*************************************************************************** | |||
Copyright (c) 2013, The OpenBLAS Project | |||
All rights reserved. | |||
Redistribution and use in source and binary forms, with or without | |||
modification, are permitted provided that the following conditions are | |||
met: | |||
1. Redistributions of source code must retain the above copyright | |||
notice, this list of conditions and the following disclaimer. | |||
2. Redistributions in binary form must reproduce the above copyright | |||
notice, this list of conditions and the following disclaimer in | |||
the documentation and/or other materials provided with the | |||
distribution. | |||
3. Neither the name of the OpenBLAS project nor the names of | |||
its contributors may be used to endorse or promote products | |||
derived from this software without specific prior written permission. | |||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |||
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE | |||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE | |||
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
*****************************************************************************/ | |||
#include "common.h" | |||
#if !defined(DOUBLE) | |||
#define VSETVL(n) __riscv_vsetvl_e32m4(n) | |||
#define VSETVL_MAX __riscv_vsetvlmax_e32m1() | |||
#define FLOAT_V_T vfloat32m4_t | |||
#define FLOAT_V_T_M1 vfloat32m1_t | |||
#define VFMVFS_FLOAT __riscv_vfmv_f_s_f32m1_f32 | |||
#define VLSEV_FLOAT __riscv_vlse32_v_f32m4 | |||
#define VSSEV_FLOAT __riscv_vsse32_v_f32m4 | |||
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f32m4_f32m1 | |||
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f32m4 | |||
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m4 | |||
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f32m4 | |||
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f32m1 | |||
#define VFMULVV_FLOAT __riscv_vfmul_vv_f32m4 | |||
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f32m4 | |||
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f32m4 | |||
#else | |||
#define VSETVL(n) __riscv_vsetvl_e64m4(n) | |||
#define VSETVL_MAX __riscv_vsetvlmax_e64m1() | |||
#define FLOAT_V_T vfloat64m4_t | |||
#define FLOAT_V_T_M1 vfloat64m1_t | |||
#define VFMVFS_FLOAT __riscv_vfmv_f_s_f64m1_f64 | |||
#define VLSEV_FLOAT __riscv_vlse64_v_f64m4 | |||
#define VSSEV_FLOAT __riscv_vsse64_v_f64m4 | |||
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f64m4_f64m1 | |||
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f64m4 | |||
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m4 | |||
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m4 | |||
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f64m1 | |||
#define VFMULVV_FLOAT __riscv_vfmul_vv_f64m4 | |||
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f64m4 | |||
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f64m4 | |||
#endif | |||
int CNAME(BLASLONG m, BLASLONG offset, FLOAT alpha_r, FLOAT alpha_i, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer){ | |||
BLASLONG i, j, k; | |||
BLASLONG ix, iy, ia; | |||
BLASLONG jx, jy, ja; | |||
FLOAT temp_r1, temp_i1; | |||
FLOAT temp_r2, temp_i2; | |||
FLOAT *a_ptr = a; | |||
unsigned int gvl = 0; | |||
FLOAT_V_T_M1 v_res, v_z0; | |||
gvl = VSETVL_MAX; | |||
v_res = VFMVVF_FLOAT_M1(0, gvl); | |||
v_z0 = VFMVVF_FLOAT_M1(0, gvl); | |||
FLOAT_V_T va0, va1, vx0, vx1, vy0, vy1, vr0, vr1; | |||
BLASLONG stride_x, stride_y, stride_a, inc_xv, inc_yv, inc_av, len, lda2; | |||
BLASLONG inc_x2 = incx * 2; | |||
BLASLONG inc_y2 = incy * 2; | |||
stride_x = inc_x2 * sizeof(FLOAT); | |||
stride_y = inc_y2 * sizeof(FLOAT); | |||
stride_a = 2 * sizeof(FLOAT); | |||
lda2 = lda * 2; | |||
jx = 0; | |||
jy = 0; | |||
ja = 0; | |||
for(j = 0; j < offset; j++){ | |||
temp_r1 = alpha_r * x[jx] - alpha_i * x[jx+1];; | |||
temp_i1 = alpha_r * x[jx+1] + alpha_i * x[jx]; | |||
temp_r2 = 0; | |||
temp_i2 = 0; | |||
y[jy] += temp_r1 * a_ptr[ja]; | |||
y[jy+1] += temp_i1 * a_ptr[ja]; | |||
ix = jx + inc_x2; | |||
iy = jy + inc_y2; | |||
ia = ja + 2; | |||
i = j + 1; | |||
len = m - i; | |||
if(len > 0){ | |||
gvl = VSETVL(len); | |||
inc_xv = incx * gvl * 2; | |||
inc_yv = incy * gvl * 2; | |||
inc_av = gvl * 2; | |||
vr0 = VFMVVF_FLOAT(0, gvl); | |||
vr1 = VFMVVF_FLOAT(0, gvl); | |||
for(k = 0; k < len / gvl; k++){ | |||
va0 = VLSEV_FLOAT(&a_ptr[ia], stride_a, gvl); | |||
va1 = VLSEV_FLOAT(&a_ptr[ia+1], stride_a, gvl); | |||
vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl); | |||
vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl); | |||
#ifndef HEMVREV | |||
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl); | |||
vy0 = VFNMSACVF_FLOAT(vy0, temp_i1, va1, gvl); | |||
vy1 = VFMACCVF_FLOAT(vy1, temp_r1, va1, gvl); | |||
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl); | |||
#else | |||
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl); | |||
vy0 = VFMACCVF_FLOAT(vy0, temp_i1, va1, gvl); | |||
vy1 = VFNMSACVF_FLOAT(vy1, temp_r1, va1, gvl); | |||
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl); | |||
#endif | |||
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl); | |||
VSSEV_FLOAT(&y[iy+1], stride_y, vy1, gvl); | |||
vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl); | |||
vx1 = VLSEV_FLOAT(&x[ix+1], stride_x, gvl); | |||
#ifndef HEMVREV | |||
vr0 = VFMACCVV_FLOAT(vr0, vx0, va0, gvl); | |||
vr0 = VFMACCVV_FLOAT(vr0, vx1, va1, gvl); | |||
vr1 = VFMACCVV_FLOAT(vr1, vx1, va0, gvl); | |||
vr1 = VFNMSACVV_FLOAT(vr1, vx0, va1, gvl); | |||
#else | |||
vr0 = VFMACCVV_FLOAT(vr0, vx0, va0, gvl); | |||
vr0 = VFNMSACVV_FLOAT(vr0, vx1, va1, gvl); | |||
vr1 = VFMACCVV_FLOAT(vr1, vx1, va0, gvl); | |||
vr1 = VFMACCVV_FLOAT(vr1, vx0, va1, gvl); | |||
#endif | |||
i += gvl; | |||
ix += inc_xv; | |||
iy += inc_yv; | |||
ia += inc_av; | |||
} | |||
v_res = VFREDSUM_FLOAT(vr0, v_z0, gvl); | |||
temp_r2 = VFMVFS_FLOAT(v_res); | |||
v_res = VFREDSUM_FLOAT(vr1, v_z0, gvl); | |||
temp_i2 = VFMVFS_FLOAT(v_res); | |||
if(i < m){ | |||
gvl = VSETVL(m-i); | |||
va0 = VLSEV_FLOAT(&a_ptr[ia], stride_a, gvl); | |||
va1 = VLSEV_FLOAT(&a_ptr[ia+1], stride_a, gvl); | |||
vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl); | |||
vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl); | |||
#ifndef HEMVREV | |||
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl); | |||
vy0 = VFNMSACVF_FLOAT(vy0, temp_i1, va1, gvl); | |||
vy1 = VFMACCVF_FLOAT(vy1, temp_r1, va1, gvl); | |||
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl); | |||
#else | |||
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl); | |||
vy0 = VFMACCVF_FLOAT(vy0, temp_i1, va1, gvl); | |||
vy1 = VFNMSACVF_FLOAT(vy1, temp_r1, va1, gvl); | |||
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl); | |||
#endif | |||
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl); | |||
VSSEV_FLOAT(&y[iy+1], stride_y, vy1, gvl); | |||
vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl); | |||
vx1 = VLSEV_FLOAT(&x[ix+1], stride_x, gvl); | |||
#ifndef HEMVREV | |||
vr0 = VFMULVV_FLOAT(vx0, va0, gvl); | |||
vr0 = VFMACCVV_FLOAT(vr0, vx1, va1, gvl); | |||
vr1 = VFMULVV_FLOAT(vx1, va0, gvl); | |||
vr1 = VFNMSACVV_FLOAT(vr1, vx0, va1, gvl); | |||
#else | |||
vr0 = VFMULVV_FLOAT(vx0, va0, gvl); | |||
vr0 = VFNMSACVV_FLOAT(vr0, vx1, va1, gvl); | |||
vr1 = VFMULVV_FLOAT(vx1, va0, gvl); | |||
vr1 = VFMACCVV_FLOAT(vr1, vx0, va1, gvl); | |||
#endif | |||
v_res = VFREDSUM_FLOAT(vr0, v_z0, gvl); | |||
temp_r2 += VFMVFS_FLOAT(v_res); | |||
v_res = VFREDSUM_FLOAT(vr1, v_z0, gvl); | |||
temp_i2 += VFMVFS_FLOAT(v_res); | |||
} | |||
} | |||
y[jy] += alpha_r * temp_r2 - alpha_i * temp_i2; | |||
y[jy+1] += alpha_r * temp_i2 + alpha_i * temp_r2; | |||
jx += inc_x2; | |||
jy += inc_y2; | |||
ja += 2; | |||
a_ptr += lda2; | |||
} | |||
return(0); | |||
} |
@@ -0,0 +1,199 @@ | |||
/*************************************************************************** | |||
Copyright (c) 2013, The OpenBLAS Project | |||
All rights reserved. | |||
Redistribution and use in source and binary forms, with or without | |||
modification, are permitted provided that the following conditions are | |||
met: | |||
1. Redistributions of source code must retain the above copyright | |||
notice, this list of conditions and the following disclaimer. | |||
2. Redistributions in binary form must reproduce the above copyright | |||
notice, this list of conditions and the following disclaimer in | |||
the documentation and/or other materials provided with the | |||
distribution. | |||
3. Neither the name of the OpenBLAS project nor the names of | |||
its contributors may be used to endorse or promote products | |||
derived from this software without specific prior written permission. | |||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |||
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE | |||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE | |||
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
*****************************************************************************/ | |||
#include "common.h" | |||
#if !defined(DOUBLE) | |||
#define VSETVL(n) __riscv_vsetvl_e32m4(n) | |||
#define VSETVL_MAX __riscv_vsetvlmax_e32m1() | |||
#define FLOAT_V_T vfloat32m4_t | |||
#define FLOAT_V_T_M1 vfloat32m1_t | |||
#define VFMVFS_FLOAT __riscv_vfmv_f_s_f32m1_f32 | |||
#define VLSEV_FLOAT __riscv_vlse32_v_f32m4 | |||
#define VSSEV_FLOAT __riscv_vsse32_v_f32m4 | |||
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f32m4_f32m1 | |||
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f32m4 | |||
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m4 | |||
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f32m4 | |||
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f32m1 | |||
#define VFMULVV_FLOAT __riscv_vfmul_vv_f32m4 | |||
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f32m4 | |||
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f32m4 | |||
#else | |||
#define VSETVL(n) __riscv_vsetvl_e64m4(n) | |||
#define VSETVL_MAX __riscv_vsetvlmax_e64m1() | |||
#define FLOAT_V_T vfloat64m4_t | |||
#define FLOAT_V_T_M1 vfloat64m1_t | |||
#define VFMVFS_FLOAT __riscv_vfmv_f_s_f64m1_f64 | |||
#define VLSEV_FLOAT __riscv_vlse64_v_f64m4 | |||
#define VSSEV_FLOAT __riscv_vsse64_v_f64m4 | |||
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f64m4_f64m1 | |||
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f64m4 | |||
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m4 | |||
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m4 | |||
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f64m1 | |||
#define VFMULVV_FLOAT __riscv_vfmul_vv_f64m4 | |||
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f64m4 | |||
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f64m4 | |||
#endif | |||
int CNAME(BLASLONG m, BLASLONG offset, FLOAT alpha_r, FLOAT alpha_i, FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG incx, FLOAT *y, BLASLONG incy, FLOAT *buffer){ | |||
BLASLONG i, j, k; | |||
BLASLONG ix, iy, ia; | |||
BLASLONG jx, jy, ja; | |||
FLOAT temp_r1, temp_i1; | |||
FLOAT temp_r2, temp_i2; | |||
FLOAT *a_ptr = a; | |||
unsigned int gvl = 0; | |||
FLOAT_V_T_M1 v_res, v_z0; | |||
gvl = VSETVL_MAX; | |||
v_res = VFMVVF_FLOAT_M1(0, gvl); | |||
v_z0 = VFMVVF_FLOAT_M1(0, gvl); | |||
FLOAT_V_T va0, va1, vx0, vx1, vy0, vy1, vr0, vr1; | |||
BLASLONG stride_x, stride_y, stride_a, inc_xv, inc_yv, inc_av, lda2; | |||
BLASLONG inc_x2 = incx * 2; | |||
BLASLONG inc_y2 = incy * 2; | |||
stride_x = inc_x2 * sizeof(FLOAT); | |||
stride_y = inc_y2 * sizeof(FLOAT); | |||
stride_a = 2 * sizeof(FLOAT); | |||
lda2 = lda * 2; | |||
BLASLONG m1 = m - offset; | |||
a_ptr = a + m1 * lda2; | |||
jx = m1 * inc_x2; | |||
jy = m1 * inc_y2; | |||
ja = m1 * 2; | |||
for(j = m1; j < m; j++){ | |||
temp_r1 = alpha_r * x[jx] - alpha_i * x[jx+1];; | |||
temp_i1 = alpha_r * x[jx+1] + alpha_i * x[jx]; | |||
temp_r2 = 0; | |||
temp_i2 = 0; | |||
ix = 0; | |||
iy = 0; | |||
ia = 0; | |||
i = 0; | |||
if(j > 0){ | |||
gvl = VSETVL(j); | |||
inc_xv = incx * gvl * 2; | |||
inc_yv = incy * gvl * 2; | |||
inc_av = gvl * 2; | |||
vr0 = VFMVVF_FLOAT(0, gvl); | |||
vr1 = VFMVVF_FLOAT(0, gvl); | |||
for(k = 0; k < j / gvl; k++){ | |||
va0 = VLSEV_FLOAT(&a_ptr[ia], stride_a, gvl); | |||
va1 = VLSEV_FLOAT(&a_ptr[ia+1], stride_a, gvl); | |||
vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl); | |||
vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl); | |||
#ifndef HEMVREV | |||
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl); | |||
vy0 = VFNMSACVF_FLOAT(vy0, temp_i1, va1, gvl); | |||
vy1 = VFMACCVF_FLOAT(vy1, temp_r1, va1, gvl); | |||
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl); | |||
#else | |||
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl); | |||
vy0 = VFMACCVF_FLOAT(vy0, temp_i1, va1, gvl); | |||
vy1 = VFNMSACVF_FLOAT(vy1, temp_r1, va1, gvl); | |||
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl); | |||
#endif | |||
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl); | |||
VSSEV_FLOAT(&y[iy+1], stride_y, vy1, gvl); | |||
vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl); | |||
vx1 = VLSEV_FLOAT(&x[ix+1], stride_x, gvl); | |||
#ifndef HEMVREV | |||
vr0 = VFMACCVV_FLOAT(vr0, vx0, va0, gvl); | |||
vr0 = VFMACCVV_FLOAT(vr0, vx1, va1, gvl); | |||
vr1 = VFMACCVV_FLOAT(vr1, vx1, va0, gvl); | |||
vr1 = VFNMSACVV_FLOAT(vr1, vx0, va1, gvl); | |||
#else | |||
vr0 = VFMACCVV_FLOAT(vr0, vx0, va0, gvl); | |||
vr0 = VFNMSACVV_FLOAT(vr0, vx1, va1, gvl); | |||
vr1 = VFMACCVV_FLOAT(vr1, vx1, va0, gvl); | |||
vr1 = VFMACCVV_FLOAT(vr1, vx0, va1, gvl); | |||
#endif | |||
i += gvl; | |||
ix += inc_xv; | |||
iy += inc_yv; | |||
ia += inc_av; | |||
} | |||
v_res = VFREDSUM_FLOAT(vr0, v_z0, gvl); | |||
temp_r2 = VFMVFS_FLOAT(v_res); | |||
v_res = VFREDSUM_FLOAT(vr1, v_z0, gvl); | |||
temp_i2 = VFMVFS_FLOAT(v_res); | |||
if(i < j){ | |||
gvl = VSETVL(j-i); | |||
va0 = VLSEV_FLOAT(&a_ptr[ia], stride_a, gvl); | |||
va1 = VLSEV_FLOAT(&a_ptr[ia+1], stride_a, gvl); | |||
vy0 = VLSEV_FLOAT(&y[iy], stride_y, gvl); | |||
vy1 = VLSEV_FLOAT(&y[iy+1], stride_y, gvl); | |||
#ifndef HEMVREV | |||
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl); | |||
vy0 = VFNMSACVF_FLOAT(vy0, temp_i1, va1, gvl); | |||
vy1 = VFMACCVF_FLOAT(vy1, temp_r1, va1, gvl); | |||
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl); | |||
#else | |||
vy0 = VFMACCVF_FLOAT(vy0, temp_r1, va0, gvl); | |||
vy0 = VFMACCVF_FLOAT(vy0, temp_i1, va1, gvl); | |||
vy1 = VFNMSACVF_FLOAT(vy1, temp_r1, va1, gvl); | |||
vy1 = VFMACCVF_FLOAT(vy1, temp_i1, va0, gvl); | |||
#endif | |||
VSSEV_FLOAT(&y[iy], stride_y, vy0, gvl); | |||
VSSEV_FLOAT(&y[iy+1], stride_y, vy1, gvl); | |||
vx0 = VLSEV_FLOAT(&x[ix], stride_x, gvl); | |||
vx1 = VLSEV_FLOAT(&x[ix+1], stride_x, gvl); | |||
#ifndef HEMVREV | |||
vr0 = VFMULVV_FLOAT(vx0, va0, gvl); | |||
vr0 = VFMACCVV_FLOAT(vr0, vx1, va1, gvl); | |||
vr1 = VFMULVV_FLOAT(vx1, va0, gvl); | |||
vr1 = VFNMSACVV_FLOAT(vr1, vx0, va1, gvl); | |||
#else | |||
vr0 = VFMULVV_FLOAT(vx0, va0, gvl); | |||
vr0 = VFNMSACVV_FLOAT(vr0, vx1, va1, gvl); | |||
vr1 = VFMULVV_FLOAT(vx1, va0, gvl); | |||
vr1 = VFMACCVV_FLOAT(vr1, vx0, va1, gvl); | |||
#endif | |||
v_res = VFREDSUM_FLOAT(vr0, v_z0, gvl); | |||
temp_r2 += VFMVFS_FLOAT(v_res); | |||
v_res = VFREDSUM_FLOAT(vr1, v_z0, gvl); | |||
temp_i2 += VFMVFS_FLOAT(v_res); | |||
} | |||
} | |||
y[jy] += temp_r1 * a_ptr[ja]; | |||
y[jy+1] += temp_i1 * a_ptr[ja]; | |||
y[jy] += alpha_r * temp_r2 - alpha_i * temp_i2; | |||
y[jy+1] += alpha_r * temp_i2 + alpha_i * temp_r2; | |||
jx += inc_x2; | |||
jy += inc_y2; | |||
ja += 2; | |||
a_ptr += lda2; | |||
} | |||
return(0); | |||
} |
@@ -0,0 +1,179 @@ | |||
/*************************************************************************** | |||
Copyright (c) 2020, The OpenBLAS Project | |||
All rights reserved. | |||
Redistribution and use in source and binary forms, with or without | |||
modification, are permitted provided that the following conditions are | |||
met: | |||
1. Redistributions of source code must retain the above copyright | |||
notice, this list of conditions and the following disclaimer. | |||
2. Redistributions in binary form must reproduce the above copyright | |||
notice, this list of conditions and the following disclaimer in | |||
the documentation and/or other materials provided with the | |||
distribution. | |||
3. Neither the name of the OpenBLAS project nor the names of | |||
its contributors may be used to endorse or promote products | |||
derived from this software without specific prior written permission. | |||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |||
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE | |||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE | |||
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
*****************************************************************************/ | |||
#include "common.h" | |||
#if !defined(DOUBLE) | |||
#define VSETVL(n) __riscv_vsetvl_e32m4(n) | |||
#define VSETVL_MAX __riscv_vsetvlmax_e32m1() | |||
#define FLOAT_V_T vfloat32m4_t | |||
#define FLOAT_V_T_M1 vfloat32m1_t | |||
#define VLEV_FLOAT __riscv_vle32_v_f32m4 | |||
#define VLSEV_FLOAT __riscv_vlse32_v_f32m4 | |||
#define VSEV_FLOAT __riscv_vse32_v_f32m4 | |||
#define VSSEV_FLOAT __riscv_vsse32_v_f32m4 | |||
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f32m4_f32m1 | |||
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f32m4 | |||
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f32m4 | |||
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m4 | |||
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f32m4 | |||
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f32m4 | |||
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f32m1 | |||
#define VFMULVV_FLOAT __riscv_vfmul_vv_f32m4 | |||
#define VFMVFS_FLOAT_M1 __riscv_vfmv_f_s_f32m1_f32 | |||
#define VFNEGV_FLOAT __riscv_vfneg_v_f32mf4 | |||
#else | |||
#define VSETVL(n) __riscv_vsetvl_e64m4(n) | |||
#define VSETVL_MAX __riscv_vsetvlmax_e64m1() | |||
#define FLOAT_V_T vfloat64m4_t | |||
#define FLOAT_V_T_M1 vfloat64m1_t | |||
#define VLEV_FLOAT __riscv_vle64_v_f64m4 | |||
#define VLSEV_FLOAT __riscv_vlse64_v_f64m4 | |||
#define VSEV_FLOAT __riscv_vse64_v_f64m4 | |||
#define VSSEV_FLOAT __riscv_vsse64_v_f64m4 | |||
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f64m4_f64m1 | |||
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f64m4 | |||
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f64m4 | |||
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m4 | |||
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f64m4 | |||
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m4 | |||
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f64m1 | |||
#define VFMULVV_FLOAT __riscv_vfmul_vv_f64m4 | |||
#define VFMVFS_FLOAT_M1 __riscv_vfmv_f_s_f64m1_f64 | |||
#define VFNEGV_FLOAT __riscv_vfneg_v_f64mf4 | |||
#endif | |||
int CNAME(BLASLONG m, BLASLONG offset, FLOAT alpha_r, FLOAT alpha_i, | |||
FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y, FLOAT *buffer) | |||
{ | |||
BLASLONG i, j, k; | |||
BLASLONG ix,iy; | |||
BLASLONG jx,jy; | |||
FLOAT temp1[2]; | |||
FLOAT temp2[2]; | |||
FLOAT *a_ptr = a; | |||
BLASLONG gvl = VSETVL_MAX; | |||
FLOAT_V_T_M1 v_res, v_z0; | |||
v_res = VFMVVF_FLOAT_M1(0, gvl); | |||
v_z0 = VFMVVF_FLOAT_M1(0, gvl); | |||
FLOAT_V_T va_r, va_i, vx_r, vx_i, vy_r, vy_i, vr_r, vr_i; | |||
BLASLONG stride_x, stride_y, inc_xv, inc_yv, len; | |||
stride_x = 2 * inc_x * sizeof(FLOAT); | |||
stride_y = 2 * inc_y * sizeof(FLOAT); | |||
jx = 0; | |||
jy = 0; | |||
for (j=0; j<offset; j++) | |||
{ | |||
temp1[0] = alpha_r * x[2 * jx] - alpha_i * x[2 * jx + 1]; | |||
temp1[1] = alpha_r * x[2 * jx + 1] + alpha_i * x[2 * jx]; | |||
temp2[0] = 0; | |||
temp2[1] = 0; | |||
y[2 * jy] += temp1[0] * a_ptr[j * 2] - temp1[1] * a_ptr[j * 2 + 1]; | |||
y[2 * jy + 1] += temp1[1] * a_ptr[j * 2] + temp1[0] * a_ptr[j * 2 + 1]; | |||
ix = jx + inc_x; | |||
iy = jy + inc_y; | |||
i = j + 1; | |||
len = m - i; | |||
if(len > 0){ | |||
gvl = VSETVL(len); | |||
inc_xv = inc_x * gvl; | |||
inc_yv = inc_y * gvl; | |||
vr_r = VFMVVF_FLOAT(0, gvl); | |||
vr_i = VFMVVF_FLOAT(0, gvl); | |||
for(k = 0; k < len / gvl; k++){ | |||
va_r = VLSEV_FLOAT(&a_ptr[2 * i], 2 * sizeof(FLOAT), gvl); | |||
va_i = VLSEV_FLOAT(&a_ptr[2 * i + 1], 2 * sizeof(FLOAT), gvl); | |||
vy_r = VLSEV_FLOAT(&y[2 * iy], stride_y, gvl); | |||
vy_i = VLSEV_FLOAT(&y[2 * iy + 1], stride_y, gvl); | |||
vy_r = VFMACCVF_FLOAT(vy_r, temp1[0], va_r, gvl); | |||
vy_r = VFNMSACVF_FLOAT(vy_r, temp1[1], va_i, gvl); | |||
vy_i = VFMACCVF_FLOAT(vy_i, temp1[0], va_i, gvl); | |||
vy_i = VFMACCVF_FLOAT(vy_i, temp1[1], va_r, gvl); | |||
VSSEV_FLOAT(&y[2 * iy], stride_y, vy_r, gvl); | |||
VSSEV_FLOAT(&y[2 * iy + 1], stride_y, vy_i, gvl); | |||
vx_r = VLSEV_FLOAT(&x[2 * ix], stride_x, gvl); | |||
vx_i = VLSEV_FLOAT(&x[2 * ix + 1], stride_x, gvl); | |||
vr_r = VFMACCVV_FLOAT(vr_r, vx_r, va_r, gvl); | |||
vr_r = VFNMSACVV_FLOAT(vr_r, vx_i, va_i, gvl); | |||
vr_i = VFMACCVV_FLOAT(vr_i, vx_r, va_i, gvl); | |||
vr_i = VFMACCVV_FLOAT(vr_i, vx_i, va_r, gvl); | |||
i += gvl; | |||
ix += inc_xv; | |||
iy += inc_yv; | |||
} | |||
v_res = VFREDSUM_FLOAT(vr_r, v_z0, gvl); | |||
temp2[0] = VFMVFS_FLOAT_M1(v_res); | |||
v_res = VFREDSUM_FLOAT(vr_i, v_z0, gvl); | |||
temp2[1] = VFMVFS_FLOAT_M1(v_res); | |||
if(i < m){ | |||
gvl = VSETVL(m-i); | |||
vy_r = VLSEV_FLOAT(&y[2 * iy], stride_y, gvl); | |||
vy_i = VLSEV_FLOAT(&y[2 * iy + 1], stride_y, gvl); | |||
va_r = VLSEV_FLOAT(&a_ptr[2 * i], 2 * sizeof(FLOAT), gvl); | |||
va_i = VLSEV_FLOAT(&a_ptr[2 * i + 1], 2 * sizeof(FLOAT), gvl); | |||
vy_r = VFMACCVF_FLOAT(vy_r, temp1[0], va_r, gvl); | |||
vy_r = VFNMSACVF_FLOAT(vy_r, temp1[1], va_i, gvl); | |||
vy_i = VFMACCVF_FLOAT(vy_i, temp1[0], va_i, gvl); | |||
vy_i = VFMACCVF_FLOAT(vy_i, temp1[1], va_r, gvl); | |||
VSSEV_FLOAT(&y[2 * iy], stride_y, vy_r, gvl); | |||
VSSEV_FLOAT(&y[2 * iy + 1], stride_y, vy_i, gvl); | |||
vx_r = VLSEV_FLOAT(&x[2 * ix], stride_x, gvl); | |||
vx_i = VLSEV_FLOAT(&x[2 * ix + 1], stride_x, gvl); | |||
vr_r = VFMULVV_FLOAT(vx_r, va_r, gvl); | |||
vr_r = VFNMSACVV_FLOAT(vr_r, vx_i, va_i, gvl); | |||
vr_i = VFMULVV_FLOAT(vx_r, va_i, gvl); | |||
vr_i = VFMACCVV_FLOAT(vr_i, vx_i, va_r, gvl); | |||
v_res = VFREDSUM_FLOAT(vr_r, v_z0, gvl); | |||
temp2[0] += VFMVFS_FLOAT_M1(v_res); | |||
v_res = VFREDSUM_FLOAT(vr_i, v_z0, gvl); | |||
temp2[1] += VFMVFS_FLOAT_M1(v_res); | |||
} | |||
} | |||
y[2 * jy] += alpha_r * temp2[0] - alpha_i * temp2[1]; | |||
y[2 * jy + 1] += alpha_r * temp2[1] + alpha_i * temp2[0]; | |||
jx += inc_x; | |||
jy += inc_y; | |||
a_ptr += 2 * lda; | |||
} | |||
return(0); | |||
} | |||
@@ -0,0 +1,177 @@ | |||
/*************************************************************************** | |||
Copyright (c) 2020, The OpenBLAS Project | |||
All rights reserved. | |||
Redistribution and use in source and binary forms, with or without | |||
modification, are permitted provided that the following conditions are | |||
met: | |||
1. Redistributions of source code must retain the above copyright | |||
notice, this list of conditions and the following disclaimer. | |||
2. Redistributions in binary form must reproduce the above copyright | |||
notice, this list of conditions and the following disclaimer in | |||
the documentation and/or other materials provided with the | |||
distribution. | |||
3. Neither the name of the OpenBLAS project nor the names of | |||
its contributors may be used to endorse or promote products | |||
derived from this software without specific prior written permission. | |||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | |||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |||
ARE DISCLAIMED. IN NO EVENT SHALL THE OPENBLAS PROJECT OR CONTRIBUTORS BE | |||
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | |||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | |||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | |||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE | |||
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |||
*****************************************************************************/ | |||
#include "common.h" | |||
#if !defined(DOUBLE) | |||
#define VSETVL(n) __riscv_vsetvl_e32m4(n) | |||
#define VSETVL_MAX __riscv_vsetvlmax_e32m1() | |||
#define FLOAT_V_T vfloat32m4_t | |||
#define FLOAT_V_T_M1 vfloat32m1_t | |||
#define VLEV_FLOAT __riscv_vle32_v_f32m4 | |||
#define VLSEV_FLOAT __riscv_vlse32_v_f32m4 | |||
#define VSEV_FLOAT __riscv_vse32_v_f32m4 | |||
#define VSSEV_FLOAT __riscv_vsse32_v_f32m4 | |||
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f32m4_f32m1 | |||
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f32m4 | |||
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f32m4 | |||
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f32m4 | |||
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f32m4 | |||
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f32m4 | |||
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f32m1 | |||
#define VFMULVV_FLOAT __riscv_vfmul_vv_f32m4 | |||
#define VFMVFS_FLOAT_M1 __riscv_vfmv_f_s_f32m1_f32 | |||
#else | |||
#define VSETVL(n) __riscv_vsetvl_e64m4(n) | |||
#define VSETVL_MAX __riscv_vsetvlmax_e64m1() | |||
#define FLOAT_V_T vfloat64m4_t | |||
#define FLOAT_V_T_M1 vfloat64m1_t | |||
#define VLEV_FLOAT __riscv_vle64_v_f64m4 | |||
#define VLSEV_FLOAT __riscv_vlse64_v_f64m4 | |||
#define VSEV_FLOAT __riscv_vse64_v_f64m4 | |||
#define VSSEV_FLOAT __riscv_vsse64_v_f64m4 | |||
#define VFREDSUM_FLOAT __riscv_vfredusum_vs_f64m4_f64m1 | |||
#define VFMACCVV_FLOAT __riscv_vfmacc_vv_f64m4 | |||
#define VFNMSACVV_FLOAT __riscv_vfnmsac_vv_f64m4 | |||
#define VFMACCVF_FLOAT __riscv_vfmacc_vf_f64m4 | |||
#define VFNMSACVF_FLOAT __riscv_vfnmsac_vf_f64m4 | |||
#define VFMVVF_FLOAT __riscv_vfmv_v_f_f64m4 | |||
#define VFMVVF_FLOAT_M1 __riscv_vfmv_v_f_f64m1 | |||
#define VFMULVV_FLOAT __riscv_vfmul_vv_f64m4 | |||
#define VFMVFS_FLOAT_M1 __riscv_vfmv_f_s_f64m1_f64 | |||
#endif | |||
int CNAME(BLASLONG m, BLASLONG offset, FLOAT alpha_r, FLOAT alpha_i, | |||
FLOAT *a, BLASLONG lda, FLOAT *x, BLASLONG inc_x, FLOAT *y, BLASLONG inc_y, FLOAT *buffer) | |||
{ | |||
BLASLONG i, j, k; | |||
BLASLONG ix,iy; | |||
BLASLONG jx,jy; | |||
FLOAT temp1[2]; | |||
FLOAT temp2[2]; | |||
FLOAT *a_ptr = a; | |||
BLASLONG gvl = VSETVL_MAX; | |||
FLOAT_V_T_M1 v_res, v_z0; | |||
v_res = VFMVVF_FLOAT_M1(0, gvl); | |||
v_z0 = VFMVVF_FLOAT_M1(0, gvl); | |||
FLOAT_V_T va_r, va_i, vx_r, vx_i, vy_r, vy_i, vr_r, vr_i; | |||
BLASLONG stride_x, stride_y, inc_xv, inc_yv; | |||
BLASLONG m1 = m - offset; | |||
jx = m1 * inc_x; | |||
jy = m1 * inc_y; | |||
a_ptr += m1 * lda; | |||
stride_x = 2 * inc_x * sizeof(FLOAT); | |||
stride_y = 2 * inc_y * sizeof(FLOAT); | |||
for (j=m1; j<m; j++) | |||
{ | |||
temp1[0] = alpha_r * x[2 * jx] - alpha_i * x[2 * jx + 1]; | |||
temp1[1] = alpha_r * x[2 * jx + 1] + alpha_i * x[2 * jx]; | |||
temp2[0] = 0; | |||
temp2[1] = 0; | |||
if(j > 0){ | |||
ix = 0; | |||
iy = 0; | |||
i = 0; | |||
gvl = VSETVL(j); | |||
inc_xv = inc_x * gvl; | |||
inc_yv = inc_y * gvl; | |||
vr_r = VFMVVF_FLOAT(0, gvl); | |||
vr_i = VFMVVF_FLOAT(0, gvl); | |||
for(k = 0; k < j / gvl; k++){ | |||
va_r = VLSEV_FLOAT(&a_ptr[2 * i], 2 * sizeof(FLOAT), gvl); | |||
va_i = VLSEV_FLOAT(&a_ptr[2 * i + 1], 2 * sizeof(FLOAT), gvl); | |||
vy_r = VLSEV_FLOAT(&y[2 * iy], stride_y, gvl); | |||
vy_i = VLSEV_FLOAT(&y[2 * iy + 1], stride_y, gvl); | |||
vy_r = VFMACCVF_FLOAT(vy_r, temp1[0], va_r, gvl); | |||
vy_r = VFNMSACVF_FLOAT(vy_r, temp1[1], va_i, gvl); | |||
vy_i = VFMACCVF_FLOAT(vy_i, temp1[0], va_i, gvl); | |||
vy_i = VFMACCVF_FLOAT(vy_i, temp1[1], va_r, gvl); | |||
VSSEV_FLOAT(&y[2 * iy], stride_y, vy_r, gvl); | |||
VSSEV_FLOAT(&y[2 * iy + 1], stride_y, vy_i, gvl); | |||
vx_r = VLSEV_FLOAT(&x[2 * ix], stride_x, gvl); | |||
vx_i = VLSEV_FLOAT(&x[2 * ix + 1], stride_x, gvl); | |||
vr_r = VFMACCVV_FLOAT(vr_r, vx_r, va_r, gvl); | |||
vr_r = VFNMSACVV_FLOAT(vr_r, vx_i, va_i, gvl); | |||
vr_i = VFMACCVV_FLOAT(vr_i, vx_r, va_i, gvl); | |||
vr_i = VFMACCVV_FLOAT(vr_i, vx_i, va_r, gvl); | |||
i += gvl; | |||
ix += inc_xv; | |||
iy += inc_yv; | |||
} | |||
v_res = VFREDSUM_FLOAT(vr_r, v_z0, gvl); | |||
temp2[0] = VFMVFS_FLOAT_M1(v_res); | |||
v_res = VFREDSUM_FLOAT(vr_i, v_z0, gvl); | |||
temp2[1] = VFMVFS_FLOAT_M1(v_res); | |||
if(i < j){ | |||
gvl = VSETVL(j-i); | |||
vy_r = VLSEV_FLOAT(&y[2 * iy], stride_y, gvl); | |||
vy_i = VLSEV_FLOAT(&y[2 * iy + 1], stride_y, gvl); | |||
va_r = VLSEV_FLOAT(&a_ptr[2 * i], 2 * sizeof(FLOAT), gvl); | |||
va_i = VLSEV_FLOAT(&a_ptr[2 * i + 1], 2 * sizeof(FLOAT), gvl); | |||
vy_r = VFMACCVF_FLOAT(vy_r, temp1[0], va_r, gvl); | |||
vy_r = VFNMSACVF_FLOAT(vy_r, temp1[1], va_i, gvl); | |||
vy_i = VFMACCVF_FLOAT(vy_i, temp1[0], va_i, gvl); | |||
vy_i = VFMACCVF_FLOAT(vy_i, temp1[1], va_r, gvl); | |||
VSSEV_FLOAT(&y[2 * iy], stride_y, vy_r, gvl); | |||
VSSEV_FLOAT(&y[2 * iy + 1], stride_y, vy_i, gvl); | |||
vx_r = VLSEV_FLOAT(&x[2 * ix], stride_x, gvl); | |||
vx_i = VLSEV_FLOAT(&x[2 * ix + 1], stride_x, gvl); | |||
vr_r = VFMULVV_FLOAT(vx_r, va_r, gvl); | |||
vr_r = VFNMSACVV_FLOAT(vr_r, vx_i, va_i, gvl); | |||
vr_i = VFMULVV_FLOAT(vx_r, va_i, gvl); | |||
vr_i = VFMACCVV_FLOAT(vr_i, vx_i, va_r, gvl); | |||
v_res = VFREDSUM_FLOAT(vr_r, v_z0, gvl); | |||
temp2[0] += VFMVFS_FLOAT_M1(v_res); | |||
v_res = VFREDSUM_FLOAT(vr_i, v_z0, gvl); | |||
temp2[1] += VFMVFS_FLOAT_M1(v_res); | |||
} | |||
} | |||
y[2 * jy] += temp1[0] * a_ptr[j * 2] - temp1[1] * a_ptr[j * 2 + 1] + alpha_r * temp2[0] - alpha_i * temp2[1]; | |||
y[2 * jy + 1] += temp1[1] * a_ptr[j * 2] + temp1[0] * a_ptr[j * 2 + 1] + alpha_r * temp2[1] + alpha_i * temp2[0]; | |||
a_ptr += 2 * lda; | |||
jx += inc_x; | |||
jy += inc_y; | |||
} | |||
return(0); | |||
} | |||