You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlaev2.f 6.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235
  1. *> \brief \b DLAEV2 computes the eigenvalues and eigenvectors of a 2-by-2 symmetric/Hermitian matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DLAEV2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaev2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaev2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaev2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
  22. *
  23. * .. Scalar Arguments ..
  24. * DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1
  25. * ..
  26. *
  27. *
  28. *> \par Purpose:
  29. * =============
  30. *>
  31. *> \verbatim
  32. *>
  33. *> DLAEV2 computes the eigendecomposition of a 2-by-2 symmetric matrix
  34. *> [ A B ]
  35. *> [ B C ].
  36. *> On return, RT1 is the eigenvalue of larger absolute value, RT2 is the
  37. *> eigenvalue of smaller absolute value, and (CS1,SN1) is the unit right
  38. *> eigenvector for RT1, giving the decomposition
  39. *>
  40. *> [ CS1 SN1 ] [ A B ] [ CS1 -SN1 ] = [ RT1 0 ]
  41. *> [-SN1 CS1 ] [ B C ] [ SN1 CS1 ] [ 0 RT2 ].
  42. *> \endverbatim
  43. *
  44. * Arguments:
  45. * ==========
  46. *
  47. *> \param[in] A
  48. *> \verbatim
  49. *> A is DOUBLE PRECISION
  50. *> The (1,1) element of the 2-by-2 matrix.
  51. *> \endverbatim
  52. *>
  53. *> \param[in] B
  54. *> \verbatim
  55. *> B is DOUBLE PRECISION
  56. *> The (1,2) element and the conjugate of the (2,1) element of
  57. *> the 2-by-2 matrix.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] C
  61. *> \verbatim
  62. *> C is DOUBLE PRECISION
  63. *> The (2,2) element of the 2-by-2 matrix.
  64. *> \endverbatim
  65. *>
  66. *> \param[out] RT1
  67. *> \verbatim
  68. *> RT1 is DOUBLE PRECISION
  69. *> The eigenvalue of larger absolute value.
  70. *> \endverbatim
  71. *>
  72. *> \param[out] RT2
  73. *> \verbatim
  74. *> RT2 is DOUBLE PRECISION
  75. *> The eigenvalue of smaller absolute value.
  76. *> \endverbatim
  77. *>
  78. *> \param[out] CS1
  79. *> \verbatim
  80. *> CS1 is DOUBLE PRECISION
  81. *> \endverbatim
  82. *>
  83. *> \param[out] SN1
  84. *> \verbatim
  85. *> SN1 is DOUBLE PRECISION
  86. *> The vector (CS1, SN1) is a unit right eigenvector for RT1.
  87. *> \endverbatim
  88. *
  89. * Authors:
  90. * ========
  91. *
  92. *> \author Univ. of Tennessee
  93. *> \author Univ. of California Berkeley
  94. *> \author Univ. of Colorado Denver
  95. *> \author NAG Ltd.
  96. *
  97. *> \ingroup OTHERauxiliary
  98. *
  99. *> \par Further Details:
  100. * =====================
  101. *>
  102. *> \verbatim
  103. *>
  104. *> RT1 is accurate to a few ulps barring over/underflow.
  105. *>
  106. *> RT2 may be inaccurate if there is massive cancellation in the
  107. *> determinant A*C-B*B; higher precision or correctly rounded or
  108. *> correctly truncated arithmetic would be needed to compute RT2
  109. *> accurately in all cases.
  110. *>
  111. *> CS1 and SN1 are accurate to a few ulps barring over/underflow.
  112. *>
  113. *> Overflow is possible only if RT1 is within a factor of 5 of overflow.
  114. *> Underflow is harmless if the input data is 0 or exceeds
  115. *> underflow_threshold / macheps.
  116. *> \endverbatim
  117. *>
  118. * =====================================================================
  119. SUBROUTINE DLAEV2( A, B, C, RT1, RT2, CS1, SN1 )
  120. *
  121. * -- LAPACK auxiliary routine --
  122. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  123. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  124. *
  125. * .. Scalar Arguments ..
  126. DOUBLE PRECISION A, B, C, CS1, RT1, RT2, SN1
  127. * ..
  128. *
  129. * =====================================================================
  130. *
  131. * .. Parameters ..
  132. DOUBLE PRECISION ONE
  133. PARAMETER ( ONE = 1.0D0 )
  134. DOUBLE PRECISION TWO
  135. PARAMETER ( TWO = 2.0D0 )
  136. DOUBLE PRECISION ZERO
  137. PARAMETER ( ZERO = 0.0D0 )
  138. DOUBLE PRECISION HALF
  139. PARAMETER ( HALF = 0.5D0 )
  140. * ..
  141. * .. Local Scalars ..
  142. INTEGER SGN1, SGN2
  143. DOUBLE PRECISION AB, ACMN, ACMX, ACS, ADF, CS, CT, DF, RT, SM,
  144. $ TB, TN
  145. * ..
  146. * .. Intrinsic Functions ..
  147. INTRINSIC ABS, SQRT
  148. * ..
  149. * .. Executable Statements ..
  150. *
  151. * Compute the eigenvalues
  152. *
  153. SM = A + C
  154. DF = A - C
  155. ADF = ABS( DF )
  156. TB = B + B
  157. AB = ABS( TB )
  158. IF( ABS( A ).GT.ABS( C ) ) THEN
  159. ACMX = A
  160. ACMN = C
  161. ELSE
  162. ACMX = C
  163. ACMN = A
  164. END IF
  165. IF( ADF.GT.AB ) THEN
  166. RT = ADF*SQRT( ONE+( AB / ADF )**2 )
  167. ELSE IF( ADF.LT.AB ) THEN
  168. RT = AB*SQRT( ONE+( ADF / AB )**2 )
  169. ELSE
  170. *
  171. * Includes case AB=ADF=0
  172. *
  173. RT = AB*SQRT( TWO )
  174. END IF
  175. IF( SM.LT.ZERO ) THEN
  176. RT1 = HALF*( SM-RT )
  177. SGN1 = -1
  178. *
  179. * Order of execution important.
  180. * To get fully accurate smaller eigenvalue,
  181. * next line needs to be executed in higher precision.
  182. *
  183. RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
  184. ELSE IF( SM.GT.ZERO ) THEN
  185. RT1 = HALF*( SM+RT )
  186. SGN1 = 1
  187. *
  188. * Order of execution important.
  189. * To get fully accurate smaller eigenvalue,
  190. * next line needs to be executed in higher precision.
  191. *
  192. RT2 = ( ACMX / RT1 )*ACMN - ( B / RT1 )*B
  193. ELSE
  194. *
  195. * Includes case RT1 = RT2 = 0
  196. *
  197. RT1 = HALF*RT
  198. RT2 = -HALF*RT
  199. SGN1 = 1
  200. END IF
  201. *
  202. * Compute the eigenvector
  203. *
  204. IF( DF.GE.ZERO ) THEN
  205. CS = DF + RT
  206. SGN2 = 1
  207. ELSE
  208. CS = DF - RT
  209. SGN2 = -1
  210. END IF
  211. ACS = ABS( CS )
  212. IF( ACS.GT.AB ) THEN
  213. CT = -TB / CS
  214. SN1 = ONE / SQRT( ONE+CT*CT )
  215. CS1 = CT*SN1
  216. ELSE
  217. IF( AB.EQ.ZERO ) THEN
  218. CS1 = ONE
  219. SN1 = ZERO
  220. ELSE
  221. TN = -CS / TB
  222. CS1 = ONE / SQRT( ONE+TN*TN )
  223. SN1 = TN*CS1
  224. END IF
  225. END IF
  226. IF( SGN1.EQ.SGN2 ) THEN
  227. TN = CS1
  228. CS1 = -SN1
  229. SN1 = TN
  230. END IF
  231. RETURN
  232. *
  233. * End of DLAEV2
  234. *
  235. END