You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

Makefile.arm64 6.7 kB

Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285
  1. ifneq ($(C_COMPILER), PGI)
  2. ifeq ($(C_COMPILER), CLANG)
  3. ISCLANG=1
  4. endif
  5. ifeq ($(C_COMPILER), FUJITSU)
  6. ISCLANG=1
  7. endif
  8. ifneq (1, $(filter 1,$(GCCVERSIONGT4) $(ISCLANG)))
  9. CCOMMON_OPT += -march=armv8-a
  10. ifneq ($(F_COMPILER), NAG)
  11. FCOMMON_OPT += -march=armv8-a
  12. endif
  13. else
  14. ifeq ($(CORE), ARMV8)
  15. CCOMMON_OPT += -march=armv8-a
  16. ifneq ($(F_COMPILER), NAG)
  17. FCOMMON_OPT += -march=armv8-a
  18. endif
  19. endif
  20. ifeq ($(CORE), ARMV8SVE)
  21. CCOMMON_OPT += -march=armv8-a+sve
  22. ifneq ($(F_COMPILER), NAG)
  23. FCOMMON_OPT += -march=armv8-a+sve
  24. endif
  25. endif
  26. ifeq ($(CORE), CORTEXA53)
  27. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a53
  28. ifneq ($(F_COMPILER), NAG)
  29. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a53
  30. endif
  31. endif
  32. ifeq ($(CORE), CORTEXA57)
  33. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a57
  34. ifneq ($(F_COMPILER), NAG)
  35. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a57
  36. endif
  37. endif
  38. ifeq ($(CORE), CORTEXA72)
  39. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  40. ifneq ($(F_COMPILER), NAG)
  41. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  42. endif
  43. endif
  44. ifeq ($(CORE), CORTEXA73)
  45. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a73
  46. ifneq ($(F_COMPILER), NAG)
  47. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a73
  48. endif
  49. endif
  50. ifeq ($(CORE), FT2000)
  51. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  52. ifneq ($(F_COMPILER), NAG)
  53. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  54. endif
  55. endif
  56. # Use a72 tunings because Neoverse-N1 is only available
  57. # in GCC>=9
  58. ifeq ($(CORE), NEOVERSEN1)
  59. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ7) $(ISCLANG)))
  60. ifeq ($(GCCVERSIONGTEQ9), 1)
  61. CCOMMON_OPT += -march=armv8.2-a -mtune=neoverse-n1
  62. ifneq ($(F_COMPILER), NAG)
  63. FCOMMON_OPT += -march=armv8.2-a -mtune=neoverse-n1
  64. endif
  65. else
  66. CCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a72
  67. ifneq ($(F_COMPILER), NAG)
  68. FCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a72
  69. endif
  70. endif
  71. else
  72. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  73. ifneq ($(F_COMPILER), NAG)
  74. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  75. endif
  76. endif
  77. endif
  78. # Use a72 tunings because Neoverse-V1 is only available
  79. # in GCC>=10.4
  80. ifeq ($(CORE), NEOVERSEV1)
  81. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ7) $(ISCLANG)))
  82. ifeq ($(GCCVERSIONGTEQ10), 1)
  83. ifeq (1, $(filter 1,$(GCCMINORVERSIONGTEQ4) $(GCCVERSIONGTEQ11)))
  84. CCOMMON_OPT += -march=armv8.4-a+sve -mtune=neoverse-v1
  85. ifneq ($(F_COMPILER), NAG)
  86. FCOMMON_OPT += -march=armv8.4-a -mtune=neoverse-v1
  87. endif
  88. else
  89. CCOMMON_OPT += -march=armv8.4-a+sve -mtune=native
  90. ifneq ($(F_COMPILER), NAG)
  91. FCOMMON_OPT += -march=armv8.4-a -mtune=native
  92. endif
  93. endif
  94. else
  95. CCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a72
  96. ifneq ($(F_COMPILER), NAG)
  97. FCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a72
  98. endif
  99. endif
  100. else
  101. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  102. ifneq ($(F_COMPILER), NAG)
  103. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  104. endif
  105. endif
  106. endif
  107. # Use a72 tunings because Neoverse-N2 is only available
  108. # in GCC>=10.4
  109. ifeq ($(CORE), NEOVERSEN2)
  110. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ7) $(ISCLANG)))
  111. ifeq ($(GCCVERSIONGTEQ10), 1)
  112. ifeq (1, $(filter 1,$(GCCMINORVERSIONGTEQ4) $(GCCVERSIONGTEQ11)))
  113. ifneq ($(OSNAME), Darwin)
  114. CCOMMON_OPT += -march=armv8.5-a+sve+sve2+bf16 -mtune=neoverse-n2
  115. else
  116. CCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a72
  117. endif
  118. ifneq ($(F_COMPILER), NAG)
  119. FCOMMON_OPT += -march=armv8.5-a+sve+sve2+bf16 -mtune=neoverse-n2
  120. endif
  121. else
  122. CCOMMON_OPT += -march=armv8.5-a+sve -mtune=native
  123. ifneq ($(F_COMPILER), NAG)
  124. FCOMMON_OPT += -march=armv8.5-a -mtune=native
  125. endif
  126. endif
  127. else
  128. CCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a72
  129. ifneq ($(F_COMPILER), NAG)
  130. FCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a72
  131. endif
  132. endif
  133. else
  134. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  135. ifneq ($(F_COMPILER), NAG)
  136. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  137. endif
  138. endif
  139. endif
  140. # Use a53 tunings because a55 is only available in GCC>=8.1
  141. ifeq ($(CORE), CORTEXA55)
  142. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ7) $(ISCLANG)))
  143. ifeq ($(GCCVERSIONGTEQ8), 1)
  144. CCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a55
  145. ifneq ($(F_COMPILER), NAG)
  146. FCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a55
  147. endif
  148. else
  149. CCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a53
  150. ifneq ($(F_COMPILER), NAG)
  151. FCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a53
  152. endif
  153. endif
  154. else
  155. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a53
  156. ifneq ($(F_COMPILER), NAG)
  157. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a53
  158. endif
  159. endif
  160. endif
  161. ifeq ($(CORE), THUNDERX)
  162. CCOMMON_OPT += -march=armv8-a -mtune=thunderx
  163. ifneq ($(F_COMPILER), NAG)
  164. FCOMMON_OPT += -march=armv8-a -mtune=thunderx
  165. endif
  166. endif
  167. ifeq ($(CORE), FALKOR)
  168. CCOMMON_OPT += -march=armv8-a -mtune=falkor
  169. ifneq ($(F_COMPILER), NAG)
  170. FCOMMON_OPT += -march=armv8-a -mtune=falkor
  171. endif
  172. endif
  173. ifeq ($(CORE), THUNDERX2T99)
  174. CCOMMON_OPT += -march=armv8.1-a -mtune=thunderx2t99
  175. ifneq ($(F_COMPILER), NAG)
  176. FCOMMON_OPT += -march=armv8.1-a -mtune=thunderx2t99
  177. endif
  178. endif
  179. ifeq ($(CORE), THUNDERX3T110)
  180. ifeq ($(GCCVERSIONGTEQ10), 1)
  181. CCOMMON_OPT += -march=armv8.3-a -mtune=thunderx3t110
  182. ifneq ($(F_COMPILER), NAG)
  183. FCOMMON_OPT += -march=armv8.3-a -mtune=thunderx3t110
  184. endif
  185. else
  186. CCOMMON_OPT += -march=armv8.1-a -mtune=thunderx2t99
  187. ifneq ($(F_COMPILER), NAG)
  188. FCOMMON_OPT += -march=armv8.1-a -mtune=thunderx2t99
  189. endif
  190. endif
  191. endif
  192. ifeq ($(CORE), VORTEX)
  193. CCOMMON_OPT += -march=armv8.3-a
  194. ifneq ($(F_COMPILER), NAG)
  195. FCOMMON_OPT += -march=armv8.3-a
  196. endif
  197. endif
  198. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ9) $(ISCLANG)))
  199. ifeq ($(CORE), TSV110)
  200. CCOMMON_OPT += -march=armv8.2-a -mtune=tsv110
  201. ifneq ($(F_COMPILER), NAG)
  202. FCOMMON_OPT += -march=armv8.2-a -mtune=tsv110
  203. endif
  204. endif
  205. endif
  206. ifeq ($(GCCVERSIONGTEQ9), 1)
  207. ifeq ($(CORE), EMAG8180)
  208. CCOMMON_OPT += -march=armv8-a -mtune=emag
  209. ifneq ($(F_COMPILER), NAG)
  210. FCOMMON_OPT += -march=armv8-a -mtune=emag
  211. endif
  212. endif
  213. endif
  214. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ11) $(ISCLANG)))
  215. ifeq ($(CORE), A64FX)
  216. CCOMMON_OPT += -march=armv8.2-a+sve -mtune=a64fx
  217. ifneq ($(F_COMPILER), NAG)
  218. FCOMMON_OPT += -march=armv8.2-a+sve -mtune=a64fx
  219. endif
  220. endif
  221. endif
  222. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ11) $(ISCLANG)))
  223. ifeq ($(CORE), CORTEXX1)
  224. CCOMMON_OPT += -march=armv8.2-a -mtune=cortexa72
  225. ifneq ($(F_COMPILER), NAG)
  226. FCOMMON_OPT += -march=armv8.2-a -mtune=cortexa72
  227. endif
  228. endif
  229. endif
  230. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ11) $(ISCLANG)))
  231. ifeq ($(CORE), CORTEXX2)
  232. CCOMMON_OPT += -march=armv8.4-a+sve
  233. ifneq ($(F_COMPILER), NAG)
  234. FCOMMON_OPT += -march=armv8.4-a+sve
  235. endif
  236. endif
  237. endif
  238. #ifeq (1, $(filter 1,$(ISCLANG)))
  239. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ11) $(ISCLANG)))
  240. ifeq ($(CORE), CORTEXA510)
  241. CCOMMON_OPT += -march=armv8.4-a+sve
  242. ifneq ($(F_COMPILER), NAG)
  243. FCOMMON_OPT += -march=armv8.4-a+sve
  244. endif
  245. endif
  246. endif
  247. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ11) $(ISCLANG)))
  248. ifeq ($(CORE), CORTEXA710)
  249. CCOMMON_OPT += -march=armv8.4-a+sve
  250. ifneq ($(F_COMPILER), NAG)
  251. FCOMMON_OPT += -march=armv8.4-a+sve
  252. endif
  253. endif
  254. endif
  255. endif
  256. endif