You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

Makefile.arm64 6.6 kB

Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
Simplifying ARMv8 build parameters ARMv8 builds were a bit mixed up, with ThunderX2 code in ARMv8 mode (which is not right because TX2 is ARMv8.1) as well as requiring a few redundancies in the defines, making it harder to maintain and understand what core has what. A few other minor issues were also fixed. Tests were made on the following cores: A53, A57, A72, Falkor, ThunderX, ThunderX2, and XGene. Tests were: OpenBLAS/test, OpenBLAS/benchmark, BLAS-Tester. A summary: * Removed TX2 code from ARMv8 build, to make sure it is compatible with all ARMv8 cores, not just v8.1. Also, the TX2 code has actually harmed performance on big cores. * Commoned up ARMv8 architectures' defines in params.h, to make sure that all will benefit from ARMv8 settings, in addition to their own. * Adding a few more cores, using ARMv8's include strategy, to benefit from compiler optimisations using mtune. Also updated cache information from the manuals, making sure we set good conservative values by default. Removed Vulcan, as it's an alias to TX2. * Auto-detecting most of those cores, but also updating the forced compilation in getarch.c, to make sure the parameters are the same whether compiled natively or forced arch. Benefits: * ARMv8 build is now guaranteed to work on all ARMv8 cores * Improved performance for ARMv8 builds on some cores (A72, Falkor, ThunderX1 and 2: up to 11%) over current develop * Improved performance for *all* cores comparing to develop branch before TX2's patch (9% ~ 36%) * ThunderX1 builds are 14% faster than ARMv8 on TX1, 9% faster than current develop's branch and 8% faster than deveop before tx2 patches Issues: * Regression from current develop branch for A53 (-12%) and A57 (-3%) with ARMv8 builds, but still faster than before TX2's commit (+15% and +24% respectively). This can be improved with a simplification of TX2's code, to be done in future patches. At least the code is guaranteed to be ARMv8.0 now. Comments: * CortexA57 builds are unchanged on A57 hardware from develop's branch, which makes sense, as it's untouched. * CortexA72 builds improve over A57 on A72 hardware, even if they're using the same includes due to new compiler tunning in the makefile.
6 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281
  1. ifneq ($(C_COMPILER), PGI)
  2. ifeq ($(C_COMPILER), CLANG)
  3. ISCLANG=1
  4. endif
  5. ifeq ($(C_COMPILER), FUJITSU)
  6. ISCLANG=1
  7. endif
  8. ifneq (1, $(filter 1,$(GCCVERSIONGT4) $(ISCLANG)))
  9. CCOMMON_OPT += -march=armv8-a
  10. ifneq ($(F_COMPILER), NAG)
  11. FCOMMON_OPT += -march=armv8-a
  12. endif
  13. else
  14. ifeq ($(CORE), ARMV8)
  15. CCOMMON_OPT += -march=armv8-a
  16. ifneq ($(F_COMPILER), NAG)
  17. FCOMMON_OPT += -march=armv8-a
  18. endif
  19. endif
  20. ifeq ($(CORE), ARMV8SVE)
  21. CCOMMON_OPT += -march=armv8-a+sve
  22. ifneq ($(F_COMPILER), NAG)
  23. FCOMMON_OPT += -march=armv8-a+sve
  24. endif
  25. endif
  26. ifeq ($(CORE), CORTEXA53)
  27. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a53
  28. ifneq ($(F_COMPILER), NAG)
  29. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a53
  30. endif
  31. endif
  32. ifeq ($(CORE), CORTEXA57)
  33. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a57
  34. ifneq ($(F_COMPILER), NAG)
  35. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a57
  36. endif
  37. endif
  38. ifeq ($(CORE), CORTEXA72)
  39. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  40. ifneq ($(F_COMPILER), NAG)
  41. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  42. endif
  43. endif
  44. ifeq ($(CORE), CORTEXA73)
  45. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a73
  46. ifneq ($(F_COMPILER), NAG)
  47. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a73
  48. endif
  49. endif
  50. ifeq ($(CORE), FT2000)
  51. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  52. ifneq ($(F_COMPILER), NAG)
  53. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  54. endif
  55. endif
  56. # Use a72 tunings because Neoverse-N1 is only available
  57. # in GCC>=9
  58. ifeq ($(CORE), NEOVERSEN1)
  59. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ7) $(ISCLANG)))
  60. ifeq ($(GCCVERSIONGTEQ9), 1)
  61. CCOMMON_OPT += -march=armv8.2-a -mtune=neoverse-n1
  62. ifneq ($(F_COMPILER), NAG)
  63. FCOMMON_OPT += -march=armv8.2-a -mtune=neoverse-n1
  64. endif
  65. else
  66. CCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a72
  67. ifneq ($(F_COMPILER), NAG)
  68. FCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a72
  69. endif
  70. endif
  71. else
  72. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  73. ifneq ($(F_COMPILER), NAG)
  74. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  75. endif
  76. endif
  77. endif
  78. # Use a72 tunings because Neoverse-V1 is only available
  79. # in GCC>=9.4
  80. ifeq ($(CORE), NEOVERSEV1)
  81. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ7) $(ISCLANG)))
  82. ifeq ($(GCCVERSIONGTEQ9), 1)
  83. ifeq (1, $(filter 1,$(GCCMINORVERSIONGTEQ4) $(GCCVERSIONGTEQ10)))
  84. CCOMMON_OPT += -march=armv8.4-a -mtune=neoverse-v1
  85. ifneq ($(F_COMPILER), NAG)
  86. FCOMMON_OPT += -march=armv8.4-a -mtune=neoverse-v1
  87. endif
  88. else
  89. CCOMMON_OPT += -march=armv8.4-a -mtune=native
  90. ifneq ($(F_COMPILER), NAG)
  91. FCOMMON_OPT += -march=armv8.4-a -mtune=native
  92. endif
  93. endif
  94. else
  95. CCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a72
  96. ifneq ($(F_COMPILER), NAG)
  97. FCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a72
  98. endif
  99. endif
  100. else
  101. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  102. ifneq ($(F_COMPILER), NAG)
  103. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  104. endif
  105. endif
  106. endif
  107. # Use a72 tunings because Neoverse-N2 is only available
  108. # in GCC>=9.4
  109. ifeq ($(CORE), NEOVERSEN2)
  110. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ7) $(ISCLANG)))
  111. ifeq ($(GCCVERSIONGTEQ9), 1)
  112. ifeq (1, $(filter 1,$(GCCMINORVERSIONGTEQ4) $(GCCVERSIONGTEQ10)))
  113. CCOMMON_OPT += -march=armv8.5-a+sve+sve2+bf16 -mtune=neoverse-n2
  114. ifneq ($(F_COMPILER), NAG)
  115. FCOMMON_OPT += -march=armv8.5-a+sve+sve2+bf16 -mtune=neoverse-n2
  116. endif
  117. else
  118. CCOMMON_OPT += -march=armv8.5-a -mtune=native
  119. ifneq ($(F_COMPILER), NAG)
  120. FCOMMON_OPT += -march=armv8.5-a -mtune=native
  121. endif
  122. endif
  123. else
  124. CCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a72
  125. ifneq ($(F_COMPILER), NAG)
  126. FCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a72
  127. endif
  128. endif
  129. else
  130. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  131. ifneq ($(F_COMPILER), NAG)
  132. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a72
  133. endif
  134. endif
  135. endif
  136. # Use a53 tunings because a55 is only available in GCC>=8.1
  137. ifeq ($(CORE), CORTEXA55)
  138. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ7) $(ISCLANG)))
  139. ifeq ($(GCCVERSIONGTEQ8), 1)
  140. CCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a55
  141. ifneq ($(F_COMPILER), NAG)
  142. FCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a55
  143. endif
  144. else
  145. CCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a53
  146. ifneq ($(F_COMPILER), NAG)
  147. FCOMMON_OPT += -march=armv8.2-a -mtune=cortex-a53
  148. endif
  149. endif
  150. else
  151. CCOMMON_OPT += -march=armv8-a -mtune=cortex-a53
  152. ifneq ($(F_COMPILER), NAG)
  153. FCOMMON_OPT += -march=armv8-a -mtune=cortex-a53
  154. endif
  155. endif
  156. endif
  157. ifeq ($(CORE), THUNDERX)
  158. CCOMMON_OPT += -march=armv8-a -mtune=thunderx
  159. ifneq ($(F_COMPILER), NAG)
  160. FCOMMON_OPT += -march=armv8-a -mtune=thunderx
  161. endif
  162. endif
  163. ifeq ($(CORE), FALKOR)
  164. CCOMMON_OPT += -march=armv8-a -mtune=falkor
  165. ifneq ($(F_COMPILER), NAG)
  166. FCOMMON_OPT += -march=armv8-a -mtune=falkor
  167. endif
  168. endif
  169. ifeq ($(CORE), THUNDERX2T99)
  170. CCOMMON_OPT += -march=armv8.1-a -mtune=thunderx2t99
  171. ifneq ($(F_COMPILER), NAG)
  172. FCOMMON_OPT += -march=armv8.1-a -mtune=thunderx2t99
  173. endif
  174. endif
  175. ifeq ($(CORE), THUNDERX3T110)
  176. ifeq ($(GCCVERSIONGTEQ10), 1)
  177. CCOMMON_OPT += -march=armv8.3-a -mtune=thunderx3t110
  178. ifneq ($(F_COMPILER), NAG)
  179. FCOMMON_OPT += -march=armv8.3-a -mtune=thunderx3t110
  180. endif
  181. else
  182. CCOMMON_OPT += -march=armv8.1-a -mtune=thunderx2t99
  183. ifneq ($(F_COMPILER), NAG)
  184. FCOMMON_OPT += -march=armv8.1-a -mtune=thunderx2t99
  185. endif
  186. endif
  187. endif
  188. ifeq ($(CORE), VORTEX)
  189. CCOMMON_OPT += -march=armv8.3-a
  190. ifneq ($(F_COMPILER), NAG)
  191. FCOMMON_OPT += -march=armv8.3-a
  192. endif
  193. endif
  194. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ9) $(ISCLANG)))
  195. ifeq ($(CORE), TSV110)
  196. CCOMMON_OPT += -march=armv8.2-a -mtune=tsv110
  197. ifneq ($(F_COMPILER), NAG)
  198. FCOMMON_OPT += -march=armv8.2-a -mtune=tsv110
  199. endif
  200. endif
  201. endif
  202. ifeq ($(GCCVERSIONGTEQ9), 1)
  203. ifeq ($(CORE), EMAG8180)
  204. CCOMMON_OPT += -march=armv8-a -mtune=emag
  205. ifneq ($(F_COMPILER), NAG)
  206. FCOMMON_OPT += -march=armv8-a -mtune=emag
  207. endif
  208. endif
  209. endif
  210. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ11) $(ISCLANG)))
  211. ifeq ($(CORE), A64FX)
  212. CCOMMON_OPT += -march=armv8.2-a+sve -mtune=a64fx
  213. ifneq ($(F_COMPILER), NAG)
  214. FCOMMON_OPT += -march=armv8.2-a+sve -mtune=a64fx
  215. endif
  216. endif
  217. endif
  218. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ11) $(ISCLANG)))
  219. ifeq ($(CORE), CORTEXX1)
  220. CCOMMON_OPT += -march=armv8.2-a -mtune=cortexa72
  221. ifneq ($(F_COMPILER), NAG)
  222. FCOMMON_OPT += -march=armv8.2-a -mtune=cortexa72
  223. endif
  224. endif
  225. endif
  226. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ11) $(ISCLANG)))
  227. ifeq ($(CORE), CORTEXX2)
  228. CCOMMON_OPT += -march=armv8.4-a+sve
  229. ifneq ($(F_COMPILER), NAG)
  230. FCOMMON_OPT += -march=armv8.4-a+sve
  231. endif
  232. endif
  233. endif
  234. #ifeq (1, $(filter 1,$(ISCLANG)))
  235. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ11) $(ISCLANG)))
  236. ifeq ($(CORE), CORTEXA510)
  237. CCOMMON_OPT += -march=armv8.4-a+sve
  238. ifneq ($(F_COMPILER), NAG)
  239. FCOMMON_OPT += -march=armv8.4-a+sve
  240. endif
  241. endif
  242. endif
  243. ifeq (1, $(filter 1,$(GCCVERSIONGTEQ11) $(ISCLANG)))
  244. ifeq ($(CORE), CORTEXA710)
  245. CCOMMON_OPT += -march=armv8.4-a+sve
  246. ifneq ($(F_COMPILER), NAG)
  247. FCOMMON_OPT += -march=armv8.4-a+sve
  248. endif
  249. endif
  250. endif
  251. endif
  252. endif