You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cholesky.c 8.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283
  1. /*********************************************************************/
  2. /* Copyright 2009, 2010 The University of Texas at Austin. */
  3. /* All rights reserved. */
  4. /* */
  5. /* Redistribution and use in source and binary forms, with or */
  6. /* without modification, are permitted provided that the following */
  7. /* conditions are met: */
  8. /* */
  9. /* 1. Redistributions of source code must retain the above */
  10. /* copyright notice, this list of conditions and the following */
  11. /* disclaimer. */
  12. /* */
  13. /* 2. Redistributions in binary form must reproduce the above */
  14. /* copyright notice, this list of conditions and the following */
  15. /* disclaimer in the documentation and/or other materials */
  16. /* provided with the distribution. */
  17. /* */
  18. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  19. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  20. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  21. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  22. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  23. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  24. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  25. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  26. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  27. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  28. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  29. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  30. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  31. /* POSSIBILITY OF SUCH DAMAGE. */
  32. /* */
  33. /* The views and conclusions contained in the software and */
  34. /* documentation are those of the authors and should not be */
  35. /* interpreted as representing official policies, either expressed */
  36. /* or implied, of The University of Texas at Austin. */
  37. /*********************************************************************/
  38. #include <stdio.h>
  39. #include <stdlib.h>
  40. #ifdef __CYGWIN32__
  41. #include <sys/time.h>
  42. #endif
  43. #include "common.h"
  44. double fabs(double);
  45. #undef POTRF
  46. #ifndef COMPLEX
  47. #ifdef XDOUBLE
  48. #define POTRF BLASFUNC(qpotrf)
  49. #define SYRK BLASFUNC(qsyrk)
  50. #elif defined(DOUBLE)
  51. #define POTRF BLASFUNC(dpotrf)
  52. #define SYRK BLASFUNC(dsyrk)
  53. #else
  54. #define POTRF BLASFUNC(spotrf)
  55. #define SYRK BLASFUNC(ssyrk)
  56. #endif
  57. #else
  58. #ifdef XDOUBLE
  59. #define POTRF BLASFUNC(xpotrf)
  60. #define SYRK BLASFUNC(xherk)
  61. #elif defined(DOUBLE)
  62. #define POTRF BLASFUNC(zpotrf)
  63. #define SYRK BLASFUNC(zherk)
  64. #else
  65. #define POTRF BLASFUNC(cpotrf)
  66. #define SYRK BLASFUNC(cherk)
  67. #endif
  68. #endif
  69. #if defined(__WIN32__) || defined(__WIN64__)
  70. #ifndef DELTA_EPOCH_IN_MICROSECS
  71. #define DELTA_EPOCH_IN_MICROSECS 11644473600000000ULL
  72. #endif
  73. int gettimeofday(struct timeval *tv, void *tz){
  74. FILETIME ft;
  75. unsigned __int64 tmpres = 0;
  76. static int tzflag;
  77. if (NULL != tv)
  78. {
  79. GetSystemTimeAsFileTime(&ft);
  80. tmpres |= ft.dwHighDateTime;
  81. tmpres <<= 32;
  82. tmpres |= ft.dwLowDateTime;
  83. /*converting file time to unix epoch*/
  84. tmpres /= 10; /*convert into microseconds*/
  85. tmpres -= DELTA_EPOCH_IN_MICROSECS;
  86. tv->tv_sec = (long)(tmpres / 1000000UL);
  87. tv->tv_usec = (long)(tmpres % 1000000UL);
  88. }
  89. return 0;
  90. }
  91. #endif
  92. static __inline double getmflops(int ratio, int m, double secs){
  93. double mm = (double)m;
  94. double mulflops, addflops;
  95. if (secs==0.) return 0.;
  96. mulflops = mm * (1./3. + mm * (1./2. + mm * 1./6.));
  97. addflops = 1./6. * mm * (mm * mm - 1);
  98. if (ratio == 1) {
  99. return (mulflops + addflops) / secs * 1.e-6;
  100. } else {
  101. return (2. * mulflops + 6. * addflops) / secs * 1.e-6;
  102. }
  103. }
  104. int main(int argc, char *argv[]){
  105. #ifndef COMPLEX
  106. char *trans[] = {"T", "N"};
  107. #else
  108. char *trans[] = {"C", "N"};
  109. #endif
  110. char *uplo[] = {"U", "L"};
  111. FLOAT alpha[] = {1.0, 0.0};
  112. FLOAT beta [] = {0.0, 0.0};
  113. FLOAT *a, *b;
  114. blasint m, i, j, info, uplos;
  115. int from = 1;
  116. int to = 200;
  117. int step = 1;
  118. FLOAT maxerr;
  119. struct timeval start, stop;
  120. double time1;
  121. argc--;argv++;
  122. if (argc > 0) { from = atol(*argv); argc--; argv++;}
  123. if (argc > 0) { to = MAX(atol(*argv), from); argc--; argv++;}
  124. if (argc > 0) { step = atol(*argv); argc--; argv++;}
  125. fprintf(stderr, "From : %3d To : %3d Step = %3d\n", from, to, step);
  126. if (( a = (FLOAT *)malloc(sizeof(FLOAT) * to * to * COMPSIZE)) == NULL){
  127. fprintf(stderr,"Out of Memory!!\n");exit(1);
  128. }
  129. if (( b = (FLOAT *)malloc(sizeof(FLOAT) * to * to * COMPSIZE)) == NULL){
  130. fprintf(stderr,"Out of Memory!!\n");exit(1);
  131. }
  132. for(m = from; m <= to; m += step){
  133. fprintf(stderr, "M = %6d : ", (int)m);
  134. for (uplos = 0; uplos < 2; uplos ++) {
  135. #ifndef COMPLEX
  136. if (uplos & 1) {
  137. for (j = 0; j < m; j++) {
  138. for(i = 0; i < j; i++) a[i + j * m] = 0.;
  139. a[j + j * m] = ((double) rand() / (double) RAND_MAX) + 8.;
  140. for(i = j + 1; i < m; i++) a[i + j * m] = ((double) rand() / (double) RAND_MAX) - 0.5;
  141. }
  142. } else {
  143. for (j = 0; j < m; j++) {
  144. for(i = 0; i < j; i++) a[i + j * m] = ((double) rand() / (double) RAND_MAX) - 0.5;
  145. a[j + j * m] = ((double) rand() / (double) RAND_MAX) + 8.;
  146. for(i = j + 1; i < m; i++) a[i + j * m] = 0.;
  147. }
  148. }
  149. #else
  150. if (uplos & 1) {
  151. for (j = 0; j < m; j++) {
  152. for(i = 0; i < j; i++) {
  153. a[(i + j * m) * 2 + 0] = 0.;
  154. a[(i + j * m) * 2 + 1] = 0.;
  155. }
  156. a[(j + j * m) * 2 + 0] = ((double) rand() / (double) RAND_MAX) + 8.;
  157. a[(j + j * m) * 2 + 1] = 0.;
  158. for(i = j + 1; i < m; i++) {
  159. a[(i + j * m) * 2 + 0] = ((double) rand() / (double) RAND_MAX) - 0.5;
  160. a[(i + j * m) * 2 + 1] = ((double) rand() / (double) RAND_MAX) - 0.5;
  161. }
  162. }
  163. } else {
  164. for (j = 0; j < m; j++) {
  165. for(i = 0; i < j; i++) {
  166. a[(i + j * m) * 2 + 0] = ((double) rand() / (double) RAND_MAX) - 0.5;
  167. a[(i + j * m) * 2 + 1] = ((double) rand() / (double) RAND_MAX) - 0.5;
  168. }
  169. a[(j + j * m) * 2 + 0] = ((double) rand() / (double) RAND_MAX) + 8.;
  170. a[(j + j * m) * 2 + 1] = 0.;
  171. for(i = j + 1; i < m; i++) {
  172. a[(i + j * m) * 2 + 0] = 0.;
  173. a[(i + j * m) * 2 + 1] = 0.;
  174. }
  175. }
  176. }
  177. #endif
  178. SYRK(uplo[uplos], trans[uplos], &m, &m, alpha, a, &m, beta, b, &m);
  179. gettimeofday( &start, (struct timezone *)0);
  180. POTRF(uplo[uplos], &m, b, &m, &info);
  181. gettimeofday( &stop, (struct timezone *)0);
  182. if (info != 0) {
  183. fprintf(stderr, "Info = %d\n", info);
  184. exit(1);
  185. }
  186. time1 = (double)(stop.tv_sec - start.tv_sec) + (double)((stop.tv_usec - start.tv_usec)) * 1.e-6;
  187. maxerr = 0.;
  188. if (!(uplos & 1)) {
  189. for (j = 0; j < m; j++) {
  190. for(i = 0; i <= j; i++) {
  191. #ifndef COMPLEX
  192. if (maxerr < fabs(a[i + j * m] - b[i + j * m])) maxerr = fabs(a[i + j * m] - b[i + j * m]);
  193. #else
  194. if (maxerr < fabs(a[(i + j * m) * 2 + 0] - b[(i + j * m) * 2 + 0])) maxerr = fabs(a[(i + j * m) * 2 + 0] - b[(i + j * m) * 2 + 0]);
  195. if (maxerr < fabs(a[(i + j * m) * 2 + 1] - b[(i + j * m) * 2 + 1])) maxerr = fabs(a[(i + j * m) * 2 + 1] - b[(i + j * m) * 2 + 1]);
  196. #endif
  197. }
  198. }
  199. } else {
  200. for (j = 0; j < m; j++) {
  201. for(i = j; i < m; i++) {
  202. #ifndef COMPLEX
  203. if (maxerr < fabs(a[i + j * m] - b[i + j * m])) maxerr = fabs(a[i + j * m] - b[i + j * m]);
  204. #else
  205. if (maxerr < fabs(a[(i + j * m) * 2 + 0] - b[(i + j * m) * 2 + 0])) maxerr = fabs(a[(i + j * m) * 2 + 0] - b[(i + j * m) * 2 + 0]);
  206. if (maxerr < fabs(a[(i + j * m) * 2 + 1] - b[(i + j * m) * 2 + 1])) maxerr = fabs(a[(i + j * m) * 2 + 1] - b[(i + j * m) * 2 + 1]);
  207. #endif
  208. }
  209. }
  210. }
  211. fprintf(stderr,
  212. #ifdef XDOUBLE
  213. " %Le %10.3f MFlops", maxerr,
  214. #else
  215. " %e %10.3f MFlops", maxerr,
  216. #endif
  217. getmflops(COMPSIZE * COMPSIZE, m, time1));
  218. if (maxerr > 1.e-3) {
  219. fprintf(stderr, "Hmm, probably it has bug.\n");
  220. exit(1);
  221. }
  222. }
  223. fprintf(stderr, "\n");
  224. }
  225. return 0;
  226. }
  227. // void main(int argc, char *argv[]) __attribute__((weak, alias("MAIN__")));