You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlasyf.f 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676
  1. *> \brief \b ZLASYF computes a partial factorization of a complex symmetric matrix, using the diagonal pivoting method.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLASYF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlasyf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlasyf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlasyf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, KB, LDA, LDW, N, NB
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * COMPLEX*16 A( LDA, * ), W( LDW, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZLASYF computes a partial factorization of a complex symmetric matrix
  39. *> A using the Bunch-Kaufman diagonal pivoting method. The partial
  40. *> factorization has the form:
  41. *>
  42. *> A = ( I U12 ) ( A11 0 ) ( I 0 ) if UPLO = 'U', or:
  43. *> ( 0 U22 ) ( 0 D ) ( U12**T U22**T )
  44. *>
  45. *> A = ( L11 0 ) ( D 0 ) ( L11**T L21**T ) if UPLO = 'L'
  46. *> ( L21 I ) ( 0 A22 ) ( 0 I )
  47. *>
  48. *> where the order of D is at most NB. The actual order is returned in
  49. *> the argument KB, and is either NB or NB-1, or N if N <= NB.
  50. *> Note that U**T denotes the transpose of U.
  51. *>
  52. *> ZLASYF is an auxiliary routine called by ZSYTRF. It uses blocked code
  53. *> (calling Level 3 BLAS) to update the submatrix A11 (if UPLO = 'U') or
  54. *> A22 (if UPLO = 'L').
  55. *> \endverbatim
  56. *
  57. * Arguments:
  58. * ==========
  59. *
  60. *> \param[in] UPLO
  61. *> \verbatim
  62. *> UPLO is CHARACTER*1
  63. *> Specifies whether the upper or lower triangular part of the
  64. *> symmetric matrix A is stored:
  65. *> = 'U': Upper triangular
  66. *> = 'L': Lower triangular
  67. *> \endverbatim
  68. *>
  69. *> \param[in] N
  70. *> \verbatim
  71. *> N is INTEGER
  72. *> The order of the matrix A. N >= 0.
  73. *> \endverbatim
  74. *>
  75. *> \param[in] NB
  76. *> \verbatim
  77. *> NB is INTEGER
  78. *> The maximum number of columns of the matrix A that should be
  79. *> factored. NB should be at least 2 to allow for 2-by-2 pivot
  80. *> blocks.
  81. *> \endverbatim
  82. *>
  83. *> \param[out] KB
  84. *> \verbatim
  85. *> KB is INTEGER
  86. *> The number of columns of A that were actually factored.
  87. *> KB is either NB-1 or NB, or N if N <= NB.
  88. *> \endverbatim
  89. *>
  90. *> \param[in,out] A
  91. *> \verbatim
  92. *> A is COMPLEX*16 array, dimension (LDA,N)
  93. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  94. *> n-by-n upper triangular part of A contains the upper
  95. *> triangular part of the matrix A, and the strictly lower
  96. *> triangular part of A is not referenced. If UPLO = 'L', the
  97. *> leading n-by-n lower triangular part of A contains the lower
  98. *> triangular part of the matrix A, and the strictly upper
  99. *> triangular part of A is not referenced.
  100. *> On exit, A contains details of the partial factorization.
  101. *> \endverbatim
  102. *>
  103. *> \param[in] LDA
  104. *> \verbatim
  105. *> LDA is INTEGER
  106. *> The leading dimension of the array A. LDA >= max(1,N).
  107. *> \endverbatim
  108. *>
  109. *> \param[out] IPIV
  110. *> \verbatim
  111. *> IPIV is INTEGER array, dimension (N)
  112. *> Details of the interchanges and the block structure of D.
  113. *> If UPLO = 'U', only the last KB elements of IPIV are set;
  114. *> if UPLO = 'L', only the first KB elements are set.
  115. *>
  116. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  117. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  118. *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
  119. *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  120. *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
  121. *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
  122. *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  123. *> \endverbatim
  124. *>
  125. *> \param[out] W
  126. *> \verbatim
  127. *> W is COMPLEX*16 array, dimension (LDW,NB)
  128. *> \endverbatim
  129. *>
  130. *> \param[in] LDW
  131. *> \verbatim
  132. *> LDW is INTEGER
  133. *> The leading dimension of the array W. LDW >= max(1,N).
  134. *> \endverbatim
  135. *>
  136. *> \param[out] INFO
  137. *> \verbatim
  138. *> INFO is INTEGER
  139. *> = 0: successful exit
  140. *> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
  141. *> has been completed, but the block diagonal matrix D is
  142. *> exactly singular.
  143. *> \endverbatim
  144. *
  145. * Authors:
  146. * ========
  147. *
  148. *> \author Univ. of Tennessee
  149. *> \author Univ. of California Berkeley
  150. *> \author Univ. of Colorado Denver
  151. *> \author NAG Ltd.
  152. *
  153. *> \date September 2012
  154. *
  155. *> \ingroup complex16SYcomputational
  156. *
  157. * =====================================================================
  158. SUBROUTINE ZLASYF( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO )
  159. *
  160. * -- LAPACK computational routine (version 3.4.2) --
  161. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  162. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  163. * September 2012
  164. *
  165. * .. Scalar Arguments ..
  166. CHARACTER UPLO
  167. INTEGER INFO, KB, LDA, LDW, N, NB
  168. * ..
  169. * .. Array Arguments ..
  170. INTEGER IPIV( * )
  171. COMPLEX*16 A( LDA, * ), W( LDW, * )
  172. * ..
  173. *
  174. * =====================================================================
  175. *
  176. * .. Parameters ..
  177. DOUBLE PRECISION ZERO, ONE
  178. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  179. DOUBLE PRECISION EIGHT, SEVTEN
  180. PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  181. COMPLEX*16 CONE
  182. PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
  183. * ..
  184. * .. Local Scalars ..
  185. INTEGER IMAX, J, JB, JJ, JMAX, JP, K, KK, KKW, KP,
  186. $ KSTEP, KW
  187. DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, ROWMAX
  188. COMPLEX*16 D11, D21, D22, R1, T, Z
  189. * ..
  190. * .. External Functions ..
  191. LOGICAL LSAME
  192. INTEGER IZAMAX
  193. EXTERNAL LSAME, IZAMAX
  194. * ..
  195. * .. External Subroutines ..
  196. EXTERNAL ZCOPY, ZGEMM, ZGEMV, ZSCAL, ZSWAP
  197. * ..
  198. * .. Intrinsic Functions ..
  199. INTRINSIC ABS, DBLE, DIMAG, MAX, MIN, SQRT
  200. * ..
  201. * .. Statement Functions ..
  202. DOUBLE PRECISION CABS1
  203. * ..
  204. * .. Statement Function definitions ..
  205. CABS1( Z ) = ABS( DBLE( Z ) ) + ABS( DIMAG( Z ) )
  206. * ..
  207. * .. Executable Statements ..
  208. *
  209. INFO = 0
  210. *
  211. * Initialize ALPHA for use in choosing pivot block size.
  212. *
  213. ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  214. *
  215. IF( LSAME( UPLO, 'U' ) ) THEN
  216. *
  217. * Factorize the trailing columns of A using the upper triangle
  218. * of A and working backwards, and compute the matrix W = U12*D
  219. * for use in updating A11
  220. *
  221. * K is the main loop index, decreasing from N in steps of 1 or 2
  222. *
  223. * KW is the column of W which corresponds to column K of A
  224. *
  225. K = N
  226. 10 CONTINUE
  227. KW = NB + K - N
  228. *
  229. * Exit from loop
  230. *
  231. IF( ( K.LE.N-NB+1 .AND. NB.LT.N ) .OR. K.LT.1 )
  232. $ GO TO 30
  233. *
  234. * Copy column K of A to column KW of W and update it
  235. *
  236. CALL ZCOPY( K, A( 1, K ), 1, W( 1, KW ), 1 )
  237. IF( K.LT.N )
  238. $ CALL ZGEMV( 'No transpose', K, N-K, -CONE, A( 1, K+1 ), LDA,
  239. $ W( K, KW+1 ), LDW, CONE, W( 1, KW ), 1 )
  240. *
  241. KSTEP = 1
  242. *
  243. * Determine rows and columns to be interchanged and whether
  244. * a 1-by-1 or 2-by-2 pivot block will be used
  245. *
  246. ABSAKK = CABS1( W( K, KW ) )
  247. *
  248. * IMAX is the row-index of the largest off-diagonal element in
  249. * column K, and COLMAX is its absolute value
  250. *
  251. IF( K.GT.1 ) THEN
  252. IMAX = IZAMAX( K-1, W( 1, KW ), 1 )
  253. COLMAX = CABS1( W( IMAX, KW ) )
  254. ELSE
  255. COLMAX = ZERO
  256. END IF
  257. *
  258. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  259. *
  260. * Column K is zero: set INFO and continue
  261. *
  262. IF( INFO.EQ.0 )
  263. $ INFO = K
  264. KP = K
  265. ELSE
  266. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  267. *
  268. * no interchange, use 1-by-1 pivot block
  269. *
  270. KP = K
  271. ELSE
  272. *
  273. * Copy column IMAX to column KW-1 of W and update it
  274. *
  275. CALL ZCOPY( IMAX, A( 1, IMAX ), 1, W( 1, KW-1 ), 1 )
  276. CALL ZCOPY( K-IMAX, A( IMAX, IMAX+1 ), LDA,
  277. $ W( IMAX+1, KW-1 ), 1 )
  278. IF( K.LT.N )
  279. $ CALL ZGEMV( 'No transpose', K, N-K, -CONE,
  280. $ A( 1, K+1 ), LDA, W( IMAX, KW+1 ), LDW,
  281. $ CONE, W( 1, KW-1 ), 1 )
  282. *
  283. * JMAX is the column-index of the largest off-diagonal
  284. * element in row IMAX, and ROWMAX is its absolute value
  285. *
  286. JMAX = IMAX + IZAMAX( K-IMAX, W( IMAX+1, KW-1 ), 1 )
  287. ROWMAX = CABS1( W( JMAX, KW-1 ) )
  288. IF( IMAX.GT.1 ) THEN
  289. JMAX = IZAMAX( IMAX-1, W( 1, KW-1 ), 1 )
  290. ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, KW-1 ) ) )
  291. END IF
  292. *
  293. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  294. *
  295. * no interchange, use 1-by-1 pivot block
  296. *
  297. KP = K
  298. ELSE IF( CABS1( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX ) THEN
  299. *
  300. * interchange rows and columns K and IMAX, use 1-by-1
  301. * pivot block
  302. *
  303. KP = IMAX
  304. *
  305. * copy column KW-1 of W to column KW
  306. *
  307. CALL ZCOPY( K, W( 1, KW-1 ), 1, W( 1, KW ), 1 )
  308. ELSE
  309. *
  310. * interchange rows and columns K-1 and IMAX, use 2-by-2
  311. * pivot block
  312. *
  313. KP = IMAX
  314. KSTEP = 2
  315. END IF
  316. END IF
  317. *
  318. KK = K - KSTEP + 1
  319. KKW = NB + KK - N
  320. *
  321. * Updated column KP is already stored in column KKW of W
  322. *
  323. IF( KP.NE.KK ) THEN
  324. *
  325. * Copy non-updated column KK to column KP
  326. *
  327. A( KP, K ) = A( KK, K )
  328. CALL ZCOPY( K-1-KP, A( KP+1, KK ), 1, A( KP, KP+1 ),
  329. $ LDA )
  330. CALL ZCOPY( KP, A( 1, KK ), 1, A( 1, KP ), 1 )
  331. *
  332. * Interchange rows KK and KP in last KK columns of A and W
  333. *
  334. CALL ZSWAP( N-KK+1, A( KK, KK ), LDA, A( KP, KK ), LDA )
  335. CALL ZSWAP( N-KK+1, W( KK, KKW ), LDW, W( KP, KKW ),
  336. $ LDW )
  337. END IF
  338. *
  339. IF( KSTEP.EQ.1 ) THEN
  340. *
  341. * 1-by-1 pivot block D(k): column KW of W now holds
  342. *
  343. * W(k) = U(k)*D(k)
  344. *
  345. * where U(k) is the k-th column of U
  346. *
  347. * Store U(k) in column k of A
  348. *
  349. CALL ZCOPY( K, W( 1, KW ), 1, A( 1, K ), 1 )
  350. R1 = CONE / A( K, K )
  351. CALL ZSCAL( K-1, R1, A( 1, K ), 1 )
  352. ELSE
  353. *
  354. * 2-by-2 pivot block D(k): columns KW and KW-1 of W now
  355. * hold
  356. *
  357. * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  358. *
  359. * where U(k) and U(k-1) are the k-th and (k-1)-th columns
  360. * of U
  361. *
  362. IF( K.GT.2 ) THEN
  363. *
  364. * Store U(k) and U(k-1) in columns k and k-1 of A
  365. *
  366. D21 = W( K-1, KW )
  367. D11 = W( K, KW ) / D21
  368. D22 = W( K-1, KW-1 ) / D21
  369. T = CONE / ( D11*D22-CONE )
  370. D21 = T / D21
  371. DO 20 J = 1, K - 2
  372. A( J, K-1 ) = D21*( D11*W( J, KW-1 )-W( J, KW ) )
  373. A( J, K ) = D21*( D22*W( J, KW )-W( J, KW-1 ) )
  374. 20 CONTINUE
  375. END IF
  376. *
  377. * Copy D(k) to A
  378. *
  379. A( K-1, K-1 ) = W( K-1, KW-1 )
  380. A( K-1, K ) = W( K-1, KW )
  381. A( K, K ) = W( K, KW )
  382. END IF
  383. END IF
  384. *
  385. * Store details of the interchanges in IPIV
  386. *
  387. IF( KSTEP.EQ.1 ) THEN
  388. IPIV( K ) = KP
  389. ELSE
  390. IPIV( K ) = -KP
  391. IPIV( K-1 ) = -KP
  392. END IF
  393. *
  394. * Decrease K and return to the start of the main loop
  395. *
  396. K = K - KSTEP
  397. GO TO 10
  398. *
  399. 30 CONTINUE
  400. *
  401. * Update the upper triangle of A11 (= A(1:k,1:k)) as
  402. *
  403. * A11 := A11 - U12*D*U12**T = A11 - U12*W**T
  404. *
  405. * computing blocks of NB columns at a time
  406. *
  407. DO 50 J = ( ( K-1 ) / NB )*NB + 1, 1, -NB
  408. JB = MIN( NB, K-J+1 )
  409. *
  410. * Update the upper triangle of the diagonal block
  411. *
  412. DO 40 JJ = J, J + JB - 1
  413. CALL ZGEMV( 'No transpose', JJ-J+1, N-K, -CONE,
  414. $ A( J, K+1 ), LDA, W( JJ, KW+1 ), LDW, CONE,
  415. $ A( J, JJ ), 1 )
  416. 40 CONTINUE
  417. *
  418. * Update the rectangular superdiagonal block
  419. *
  420. CALL ZGEMM( 'No transpose', 'Transpose', J-1, JB, N-K,
  421. $ -CONE, A( 1, K+1 ), LDA, W( J, KW+1 ), LDW,
  422. $ CONE, A( 1, J ), LDA )
  423. 50 CONTINUE
  424. *
  425. * Put U12 in standard form by partially undoing the interchanges
  426. * in columns k+1:n
  427. *
  428. J = K + 1
  429. 60 CONTINUE
  430. JJ = J
  431. JP = IPIV( J )
  432. IF( JP.LT.0 ) THEN
  433. JP = -JP
  434. J = J + 1
  435. END IF
  436. J = J + 1
  437. IF( JP.NE.JJ .AND. J.LE.N )
  438. $ CALL ZSWAP( N-J+1, A( JP, J ), LDA, A( JJ, J ), LDA )
  439. IF( J.LE.N )
  440. $ GO TO 60
  441. *
  442. * Set KB to the number of columns factorized
  443. *
  444. KB = N - K
  445. *
  446. ELSE
  447. *
  448. * Factorize the leading columns of A using the lower triangle
  449. * of A and working forwards, and compute the matrix W = L21*D
  450. * for use in updating A22
  451. *
  452. * K is the main loop index, increasing from 1 in steps of 1 or 2
  453. *
  454. K = 1
  455. 70 CONTINUE
  456. *
  457. * Exit from loop
  458. *
  459. IF( ( K.GE.NB .AND. NB.LT.N ) .OR. K.GT.N )
  460. $ GO TO 90
  461. *
  462. * Copy column K of A to column K of W and update it
  463. *
  464. CALL ZCOPY( N-K+1, A( K, K ), 1, W( K, K ), 1 )
  465. CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ), LDA,
  466. $ W( K, 1 ), LDW, CONE, W( K, K ), 1 )
  467. *
  468. KSTEP = 1
  469. *
  470. * Determine rows and columns to be interchanged and whether
  471. * a 1-by-1 or 2-by-2 pivot block will be used
  472. *
  473. ABSAKK = CABS1( W( K, K ) )
  474. *
  475. * IMAX is the row-index of the largest off-diagonal element in
  476. * column K, and COLMAX is its absolute value
  477. *
  478. IF( K.LT.N ) THEN
  479. IMAX = K + IZAMAX( N-K, W( K+1, K ), 1 )
  480. COLMAX = CABS1( W( IMAX, K ) )
  481. ELSE
  482. COLMAX = ZERO
  483. END IF
  484. *
  485. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  486. *
  487. * Column K is zero: set INFO and continue
  488. *
  489. IF( INFO.EQ.0 )
  490. $ INFO = K
  491. KP = K
  492. ELSE
  493. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  494. *
  495. * no interchange, use 1-by-1 pivot block
  496. *
  497. KP = K
  498. ELSE
  499. *
  500. * Copy column IMAX to column K+1 of W and update it
  501. *
  502. CALL ZCOPY( IMAX-K, A( IMAX, K ), LDA, W( K, K+1 ), 1 )
  503. CALL ZCOPY( N-IMAX+1, A( IMAX, IMAX ), 1, W( IMAX, K+1 ),
  504. $ 1 )
  505. CALL ZGEMV( 'No transpose', N-K+1, K-1, -CONE, A( K, 1 ),
  506. $ LDA, W( IMAX, 1 ), LDW, CONE, W( K, K+1 ),
  507. $ 1 )
  508. *
  509. * JMAX is the column-index of the largest off-diagonal
  510. * element in row IMAX, and ROWMAX is its absolute value
  511. *
  512. JMAX = K - 1 + IZAMAX( IMAX-K, W( K, K+1 ), 1 )
  513. ROWMAX = CABS1( W( JMAX, K+1 ) )
  514. IF( IMAX.LT.N ) THEN
  515. JMAX = IMAX + IZAMAX( N-IMAX, W( IMAX+1, K+1 ), 1 )
  516. ROWMAX = MAX( ROWMAX, CABS1( W( JMAX, K+1 ) ) )
  517. END IF
  518. *
  519. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  520. *
  521. * no interchange, use 1-by-1 pivot block
  522. *
  523. KP = K
  524. ELSE IF( CABS1( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX ) THEN
  525. *
  526. * interchange rows and columns K and IMAX, use 1-by-1
  527. * pivot block
  528. *
  529. KP = IMAX
  530. *
  531. * copy column K+1 of W to column K
  532. *
  533. CALL ZCOPY( N-K+1, W( K, K+1 ), 1, W( K, K ), 1 )
  534. ELSE
  535. *
  536. * interchange rows and columns K+1 and IMAX, use 2-by-2
  537. * pivot block
  538. *
  539. KP = IMAX
  540. KSTEP = 2
  541. END IF
  542. END IF
  543. *
  544. KK = K + KSTEP - 1
  545. *
  546. * Updated column KP is already stored in column KK of W
  547. *
  548. IF( KP.NE.KK ) THEN
  549. *
  550. * Copy non-updated column KK to column KP
  551. *
  552. A( KP, K ) = A( KK, K )
  553. CALL ZCOPY( KP-K-1, A( K+1, KK ), 1, A( KP, K+1 ), LDA )
  554. CALL ZCOPY( N-KP+1, A( KP, KK ), 1, A( KP, KP ), 1 )
  555. *
  556. * Interchange rows KK and KP in first KK columns of A and W
  557. *
  558. CALL ZSWAP( KK, A( KK, 1 ), LDA, A( KP, 1 ), LDA )
  559. CALL ZSWAP( KK, W( KK, 1 ), LDW, W( KP, 1 ), LDW )
  560. END IF
  561. *
  562. IF( KSTEP.EQ.1 ) THEN
  563. *
  564. * 1-by-1 pivot block D(k): column k of W now holds
  565. *
  566. * W(k) = L(k)*D(k)
  567. *
  568. * where L(k) is the k-th column of L
  569. *
  570. * Store L(k) in column k of A
  571. *
  572. CALL ZCOPY( N-K+1, W( K, K ), 1, A( K, K ), 1 )
  573. IF( K.LT.N ) THEN
  574. R1 = CONE / A( K, K )
  575. CALL ZSCAL( N-K, R1, A( K+1, K ), 1 )
  576. END IF
  577. ELSE
  578. *
  579. * 2-by-2 pivot block D(k): columns k and k+1 of W now hold
  580. *
  581. * ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  582. *
  583. * where L(k) and L(k+1) are the k-th and (k+1)-th columns
  584. * of L
  585. *
  586. IF( K.LT.N-1 ) THEN
  587. *
  588. * Store L(k) and L(k+1) in columns k and k+1 of A
  589. *
  590. D21 = W( K+1, K )
  591. D11 = W( K+1, K+1 ) / D21
  592. D22 = W( K, K ) / D21
  593. T = CONE / ( D11*D22-CONE )
  594. D21 = T / D21
  595. DO 80 J = K + 2, N
  596. A( J, K ) = D21*( D11*W( J, K )-W( J, K+1 ) )
  597. A( J, K+1 ) = D21*( D22*W( J, K+1 )-W( J, K ) )
  598. 80 CONTINUE
  599. END IF
  600. *
  601. * Copy D(k) to A
  602. *
  603. A( K, K ) = W( K, K )
  604. A( K+1, K ) = W( K+1, K )
  605. A( K+1, K+1 ) = W( K+1, K+1 )
  606. END IF
  607. END IF
  608. *
  609. * Store details of the interchanges in IPIV
  610. *
  611. IF( KSTEP.EQ.1 ) THEN
  612. IPIV( K ) = KP
  613. ELSE
  614. IPIV( K ) = -KP
  615. IPIV( K+1 ) = -KP
  616. END IF
  617. *
  618. * Increase K and return to the start of the main loop
  619. *
  620. K = K + KSTEP
  621. GO TO 70
  622. *
  623. 90 CONTINUE
  624. *
  625. * Update the lower triangle of A22 (= A(k:n,k:n)) as
  626. *
  627. * A22 := A22 - L21*D*L21**T = A22 - L21*W**T
  628. *
  629. * computing blocks of NB columns at a time
  630. *
  631. DO 110 J = K, N, NB
  632. JB = MIN( NB, N-J+1 )
  633. *
  634. * Update the lower triangle of the diagonal block
  635. *
  636. DO 100 JJ = J, J + JB - 1
  637. CALL ZGEMV( 'No transpose', J+JB-JJ, K-1, -CONE,
  638. $ A( JJ, 1 ), LDA, W( JJ, 1 ), LDW, CONE,
  639. $ A( JJ, JJ ), 1 )
  640. 100 CONTINUE
  641. *
  642. * Update the rectangular subdiagonal block
  643. *
  644. IF( J+JB.LE.N )
  645. $ CALL ZGEMM( 'No transpose', 'Transpose', N-J-JB+1, JB,
  646. $ K-1, -CONE, A( J+JB, 1 ), LDA, W( J, 1 ),
  647. $ LDW, CONE, A( J+JB, J ), LDA )
  648. 110 CONTINUE
  649. *
  650. * Put L21 in standard form by partially undoing the interchanges
  651. * in columns 1:k-1
  652. *
  653. J = K - 1
  654. 120 CONTINUE
  655. JJ = J
  656. JP = IPIV( J )
  657. IF( JP.LT.0 ) THEN
  658. JP = -JP
  659. J = J - 1
  660. END IF
  661. J = J - 1
  662. IF( JP.NE.JJ .AND. J.GE.1 )
  663. $ CALL ZSWAP( J, A( JP, 1 ), LDA, A( JJ, 1 ), LDA )
  664. IF( J.GE.1 )
  665. $ GO TO 120
  666. *
  667. * Set KB to the number of columns factorized
  668. *
  669. KB = K - 1
  670. *
  671. END IF
  672. RETURN
  673. *
  674. * End of ZLASYF
  675. *
  676. END