You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlarfb.f 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769
  1. *> \brief \b ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLARFB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  22. * T, LDT, C, LDC, WORK, LDWORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIRECT, SIDE, STOREV, TRANS
  26. * INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * COMPLEX*16 C( LDC, * ), T( LDT, * ), V( LDV, * ),
  30. * $ WORK( LDWORK, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> ZLARFB applies a complex block reflector H or its transpose H**H to a
  40. *> complex M-by-N matrix C, from either the left or the right.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] SIDE
  47. *> \verbatim
  48. *> SIDE is CHARACTER*1
  49. *> = 'L': apply H or H**H from the Left
  50. *> = 'R': apply H or H**H from the Right
  51. *> \endverbatim
  52. *>
  53. *> \param[in] TRANS
  54. *> \verbatim
  55. *> TRANS is CHARACTER*1
  56. *> = 'N': apply H (No transpose)
  57. *> = 'C': apply H**H (Conjugate transpose)
  58. *> \endverbatim
  59. *>
  60. *> \param[in] DIRECT
  61. *> \verbatim
  62. *> DIRECT is CHARACTER*1
  63. *> Indicates how H is formed from a product of elementary
  64. *> reflectors
  65. *> = 'F': H = H(1) H(2) . . . H(k) (Forward)
  66. *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
  67. *> \endverbatim
  68. *>
  69. *> \param[in] STOREV
  70. *> \verbatim
  71. *> STOREV is CHARACTER*1
  72. *> Indicates how the vectors which define the elementary
  73. *> reflectors are stored:
  74. *> = 'C': Columnwise
  75. *> = 'R': Rowwise
  76. *> \endverbatim
  77. *>
  78. *> \param[in] M
  79. *> \verbatim
  80. *> M is INTEGER
  81. *> The number of rows of the matrix C.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] N
  85. *> \verbatim
  86. *> N is INTEGER
  87. *> The number of columns of the matrix C.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] K
  91. *> \verbatim
  92. *> K is INTEGER
  93. *> The order of the matrix T (= the number of elementary
  94. *> reflectors whose product defines the block reflector).
  95. *> \endverbatim
  96. *>
  97. *> \param[in] V
  98. *> \verbatim
  99. *> V is COMPLEX*16 array, dimension
  100. *> (LDV,K) if STOREV = 'C'
  101. *> (LDV,M) if STOREV = 'R' and SIDE = 'L'
  102. *> (LDV,N) if STOREV = 'R' and SIDE = 'R'
  103. *> See Further Details.
  104. *> \endverbatim
  105. *>
  106. *> \param[in] LDV
  107. *> \verbatim
  108. *> LDV is INTEGER
  109. *> The leading dimension of the array V.
  110. *> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
  111. *> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
  112. *> if STOREV = 'R', LDV >= K.
  113. *> \endverbatim
  114. *>
  115. *> \param[in] T
  116. *> \verbatim
  117. *> T is COMPLEX*16 array, dimension (LDT,K)
  118. *> The triangular K-by-K matrix T in the representation of the
  119. *> block reflector.
  120. *> \endverbatim
  121. *>
  122. *> \param[in] LDT
  123. *> \verbatim
  124. *> LDT is INTEGER
  125. *> The leading dimension of the array T. LDT >= K.
  126. *> \endverbatim
  127. *>
  128. *> \param[in,out] C
  129. *> \verbatim
  130. *> C is COMPLEX*16 array, dimension (LDC,N)
  131. *> On entry, the M-by-N matrix C.
  132. *> On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H.
  133. *> \endverbatim
  134. *>
  135. *> \param[in] LDC
  136. *> \verbatim
  137. *> LDC is INTEGER
  138. *> The leading dimension of the array C. LDC >= max(1,M).
  139. *> \endverbatim
  140. *>
  141. *> \param[out] WORK
  142. *> \verbatim
  143. *> WORK is COMPLEX*16 array, dimension (LDWORK,K)
  144. *> \endverbatim
  145. *>
  146. *> \param[in] LDWORK
  147. *> \verbatim
  148. *> LDWORK is INTEGER
  149. *> The leading dimension of the array WORK.
  150. *> If SIDE = 'L', LDWORK >= max(1,N);
  151. *> if SIDE = 'R', LDWORK >= max(1,M).
  152. *> \endverbatim
  153. *
  154. * Authors:
  155. * ========
  156. *
  157. *> \author Univ. of Tennessee
  158. *> \author Univ. of California Berkeley
  159. *> \author Univ. of Colorado Denver
  160. *> \author NAG Ltd.
  161. *
  162. *> \date September 2012
  163. *
  164. *> \ingroup complex16OTHERauxiliary
  165. *
  166. *> \par Further Details:
  167. * =====================
  168. *>
  169. *> \verbatim
  170. *>
  171. *> The shape of the matrix V and the storage of the vectors which define
  172. *> the H(i) is best illustrated by the following example with n = 5 and
  173. *> k = 3. The elements equal to 1 are not stored; the corresponding
  174. *> array elements are modified but restored on exit. The rest of the
  175. *> array is not used.
  176. *>
  177. *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
  178. *>
  179. *> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
  180. *> ( v1 1 ) ( 1 v2 v2 v2 )
  181. *> ( v1 v2 1 ) ( 1 v3 v3 )
  182. *> ( v1 v2 v3 )
  183. *> ( v1 v2 v3 )
  184. *>
  185. *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
  186. *>
  187. *> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
  188. *> ( v1 v2 v3 ) ( v2 v2 v2 1 )
  189. *> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
  190. *> ( 1 v3 )
  191. *> ( 1 )
  192. *> \endverbatim
  193. *>
  194. * =====================================================================
  195. SUBROUTINE ZLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  196. $ T, LDT, C, LDC, WORK, LDWORK )
  197. *
  198. * -- LAPACK auxiliary routine (version 3.4.2) --
  199. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  200. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  201. * September 2012
  202. *
  203. * .. Scalar Arguments ..
  204. CHARACTER DIRECT, SIDE, STOREV, TRANS
  205. INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  206. * ..
  207. * .. Array Arguments ..
  208. COMPLEX*16 C( LDC, * ), T( LDT, * ), V( LDV, * ),
  209. $ WORK( LDWORK, * )
  210. * ..
  211. *
  212. * =====================================================================
  213. *
  214. * .. Parameters ..
  215. COMPLEX*16 ONE
  216. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
  217. * ..
  218. * .. Local Scalars ..
  219. CHARACTER TRANST
  220. INTEGER I, J, LASTV, LASTC
  221. * ..
  222. * .. External Functions ..
  223. LOGICAL LSAME
  224. INTEGER ILAZLR, ILAZLC
  225. EXTERNAL LSAME, ILAZLR, ILAZLC
  226. * ..
  227. * .. External Subroutines ..
  228. EXTERNAL ZCOPY, ZGEMM, ZLACGV, ZTRMM
  229. * ..
  230. * .. Intrinsic Functions ..
  231. INTRINSIC DCONJG
  232. * ..
  233. * .. Executable Statements ..
  234. *
  235. * Quick return if possible
  236. *
  237. IF( M.LE.0 .OR. N.LE.0 )
  238. $ RETURN
  239. *
  240. IF( LSAME( TRANS, 'N' ) ) THEN
  241. TRANST = 'C'
  242. ELSE
  243. TRANST = 'N'
  244. END IF
  245. *
  246. IF( LSAME( STOREV, 'C' ) ) THEN
  247. *
  248. IF( LSAME( DIRECT, 'F' ) ) THEN
  249. *
  250. * Let V = ( V1 ) (first K rows)
  251. * ( V2 )
  252. * where V1 is unit lower triangular.
  253. *
  254. IF( LSAME( SIDE, 'L' ) ) THEN
  255. *
  256. * Form H * C or H**H * C where C = ( C1 )
  257. * ( C2 )
  258. *
  259. LASTV = MAX( K, ILAZLR( M, K, V, LDV ) )
  260. LASTC = ILAZLC( LASTV, N, C, LDC )
  261. *
  262. * W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK)
  263. *
  264. * W := C1**H
  265. *
  266. DO 10 J = 1, K
  267. CALL ZCOPY( LASTC, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  268. CALL ZLACGV( LASTC, WORK( 1, J ), 1 )
  269. 10 CONTINUE
  270. *
  271. * W := W * V1
  272. *
  273. CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit',
  274. $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
  275. IF( LASTV.GT.K ) THEN
  276. *
  277. * W := W + C2**H *V2
  278. *
  279. CALL ZGEMM( 'Conjugate transpose', 'No transpose',
  280. $ LASTC, K, LASTV-K, ONE, C( K+1, 1 ), LDC,
  281. $ V( K+1, 1 ), LDV, ONE, WORK, LDWORK )
  282. END IF
  283. *
  284. * W := W * T**H or W * T
  285. *
  286. CALL ZTRMM( 'Right', 'Upper', TRANST, 'Non-unit',
  287. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  288. *
  289. * C := C - V * W**H
  290. *
  291. IF( M.GT.K ) THEN
  292. *
  293. * C2 := C2 - V2 * W**H
  294. *
  295. CALL ZGEMM( 'No transpose', 'Conjugate transpose',
  296. $ LASTV-K, LASTC, K,
  297. $ -ONE, V( K+1, 1 ), LDV, WORK, LDWORK,
  298. $ ONE, C( K+1, 1 ), LDC )
  299. END IF
  300. *
  301. * W := W * V1**H
  302. *
  303. CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
  304. $ 'Unit', LASTC, K, ONE, V, LDV, WORK, LDWORK )
  305. *
  306. * C1 := C1 - W**H
  307. *
  308. DO 30 J = 1, K
  309. DO 20 I = 1, LASTC
  310. C( J, I ) = C( J, I ) - DCONJG( WORK( I, J ) )
  311. 20 CONTINUE
  312. 30 CONTINUE
  313. *
  314. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  315. *
  316. * Form C * H or C * H**H where C = ( C1 C2 )
  317. *
  318. LASTV = MAX( K, ILAZLR( N, K, V, LDV ) )
  319. LASTC = ILAZLR( M, LASTV, C, LDC )
  320. *
  321. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  322. *
  323. * W := C1
  324. *
  325. DO 40 J = 1, K
  326. CALL ZCOPY( LASTC, C( 1, J ), 1, WORK( 1, J ), 1 )
  327. 40 CONTINUE
  328. *
  329. * W := W * V1
  330. *
  331. CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit',
  332. $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
  333. IF( LASTV.GT.K ) THEN
  334. *
  335. * W := W + C2 * V2
  336. *
  337. CALL ZGEMM( 'No transpose', 'No transpose',
  338. $ LASTC, K, LASTV-K,
  339. $ ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV,
  340. $ ONE, WORK, LDWORK )
  341. END IF
  342. *
  343. * W := W * T or W * T**H
  344. *
  345. CALL ZTRMM( 'Right', 'Upper', TRANS, 'Non-unit',
  346. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  347. *
  348. * C := C - W * V**H
  349. *
  350. IF( LASTV.GT.K ) THEN
  351. *
  352. * C2 := C2 - W * V2**H
  353. *
  354. CALL ZGEMM( 'No transpose', 'Conjugate transpose',
  355. $ LASTC, LASTV-K, K,
  356. $ -ONE, WORK, LDWORK, V( K+1, 1 ), LDV,
  357. $ ONE, C( 1, K+1 ), LDC )
  358. END IF
  359. *
  360. * W := W * V1**H
  361. *
  362. CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
  363. $ 'Unit', LASTC, K, ONE, V, LDV, WORK, LDWORK )
  364. *
  365. * C1 := C1 - W
  366. *
  367. DO 60 J = 1, K
  368. DO 50 I = 1, LASTC
  369. C( I, J ) = C( I, J ) - WORK( I, J )
  370. 50 CONTINUE
  371. 60 CONTINUE
  372. END IF
  373. *
  374. ELSE
  375. *
  376. * Let V = ( V1 )
  377. * ( V2 ) (last K rows)
  378. * where V2 is unit upper triangular.
  379. *
  380. IF( LSAME( SIDE, 'L' ) ) THEN
  381. *
  382. * Form H * C or H**H * C where C = ( C1 )
  383. * ( C2 )
  384. *
  385. LASTC = ILAZLC( M, N, C, LDC )
  386. *
  387. * W := C**H * V = (C1**H * V1 + C2**H * V2) (stored in WORK)
  388. *
  389. * W := C2**H
  390. *
  391. DO 70 J = 1, K
  392. CALL ZCOPY( LASTC, C( M-K+J, 1 ), LDC,
  393. $ WORK( 1, J ), 1 )
  394. CALL ZLACGV( LASTC, WORK( 1, J ), 1 )
  395. 70 CONTINUE
  396. *
  397. * W := W * V2
  398. *
  399. CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit',
  400. $ LASTC, K, ONE, V( M-K+1, 1 ), LDV,
  401. $ WORK, LDWORK )
  402. IF( M.GT.K ) THEN
  403. *
  404. * W := W + C1**H*V1
  405. *
  406. CALL ZGEMM( 'Conjugate transpose', 'No transpose',
  407. $ LASTC, K, M-K,
  408. $ ONE, C, LDC, V, LDV,
  409. $ ONE, WORK, LDWORK )
  410. END IF
  411. *
  412. * W := W * T**H or W * T
  413. *
  414. CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non-unit',
  415. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  416. *
  417. * C := C - V * W**H
  418. *
  419. IF( M.GT.K ) THEN
  420. *
  421. * C1 := C1 - V1 * W**H
  422. *
  423. CALL ZGEMM( 'No transpose', 'Conjugate transpose',
  424. $ M-K, LASTC, K,
  425. $ -ONE, V, LDV, WORK, LDWORK,
  426. $ ONE, C, LDC )
  427. END IF
  428. *
  429. * W := W * V2**H
  430. *
  431. CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
  432. $ 'Unit', LASTC, K, ONE, V( M-K+1, 1 ), LDV,
  433. $ WORK, LDWORK )
  434. *
  435. * C2 := C2 - W**H
  436. *
  437. DO 90 J = 1, K
  438. DO 80 I = 1, LASTC
  439. C( M-K+J, I ) = C( M-K+J, I ) -
  440. $ DCONJG( WORK( I, J ) )
  441. 80 CONTINUE
  442. 90 CONTINUE
  443. *
  444. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  445. *
  446. * Form C * H or C * H**H where C = ( C1 C2 )
  447. *
  448. LASTC = ILAZLR( M, N, C, LDC )
  449. *
  450. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  451. *
  452. * W := C2
  453. *
  454. DO 100 J = 1, K
  455. CALL ZCOPY( LASTC, C( 1, N-K+J ), 1,
  456. $ WORK( 1, J ), 1 )
  457. 100 CONTINUE
  458. *
  459. * W := W * V2
  460. *
  461. CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit',
  462. $ LASTC, K, ONE, V( N-K+1, 1 ), LDV,
  463. $ WORK, LDWORK )
  464. IF( N.GT.K ) THEN
  465. *
  466. * W := W + C1 * V1
  467. *
  468. CALL ZGEMM( 'No transpose', 'No transpose',
  469. $ LASTC, K, N-K,
  470. $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
  471. END IF
  472. *
  473. * W := W * T or W * T**H
  474. *
  475. CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non-unit',
  476. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  477. *
  478. * C := C - W * V**H
  479. *
  480. IF( N.GT.K ) THEN
  481. *
  482. * C1 := C1 - W * V1**H
  483. *
  484. CALL ZGEMM( 'No transpose', 'Conjugate transpose',
  485. $ LASTC, N-K, K, -ONE, WORK, LDWORK, V, LDV,
  486. $ ONE, C, LDC )
  487. END IF
  488. *
  489. * W := W * V2**H
  490. *
  491. CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
  492. $ 'Unit', LASTC, K, ONE, V( N-K+1, 1 ), LDV,
  493. $ WORK, LDWORK )
  494. *
  495. * C2 := C2 - W
  496. *
  497. DO 120 J = 1, K
  498. DO 110 I = 1, LASTC
  499. C( I, N-K+J ) = C( I, N-K+J )
  500. $ - WORK( I, J )
  501. 110 CONTINUE
  502. 120 CONTINUE
  503. END IF
  504. END IF
  505. *
  506. ELSE IF( LSAME( STOREV, 'R' ) ) THEN
  507. *
  508. IF( LSAME( DIRECT, 'F' ) ) THEN
  509. *
  510. * Let V = ( V1 V2 ) (V1: first K columns)
  511. * where V1 is unit upper triangular.
  512. *
  513. IF( LSAME( SIDE, 'L' ) ) THEN
  514. *
  515. * Form H * C or H**H * C where C = ( C1 )
  516. * ( C2 )
  517. *
  518. LASTV = MAX( K, ILAZLC( K, M, V, LDV ) )
  519. LASTC = ILAZLC( LASTV, N, C, LDC )
  520. *
  521. * W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK)
  522. *
  523. * W := C1**H
  524. *
  525. DO 130 J = 1, K
  526. CALL ZCOPY( LASTC, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  527. CALL ZLACGV( LASTC, WORK( 1, J ), 1 )
  528. 130 CONTINUE
  529. *
  530. * W := W * V1**H
  531. *
  532. CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
  533. $ 'Unit', LASTC, K, ONE, V, LDV, WORK, LDWORK )
  534. IF( LASTV.GT.K ) THEN
  535. *
  536. * W := W + C2**H*V2**H
  537. *
  538. CALL ZGEMM( 'Conjugate transpose',
  539. $ 'Conjugate transpose', LASTC, K, LASTV-K,
  540. $ ONE, C( K+1, 1 ), LDC, V( 1, K+1 ), LDV,
  541. $ ONE, WORK, LDWORK )
  542. END IF
  543. *
  544. * W := W * T**H or W * T
  545. *
  546. CALL ZTRMM( 'Right', 'Upper', TRANST, 'Non-unit',
  547. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  548. *
  549. * C := C - V**H * W**H
  550. *
  551. IF( LASTV.GT.K ) THEN
  552. *
  553. * C2 := C2 - V2**H * W**H
  554. *
  555. CALL ZGEMM( 'Conjugate transpose',
  556. $ 'Conjugate transpose', LASTV-K, LASTC, K,
  557. $ -ONE, V( 1, K+1 ), LDV, WORK, LDWORK,
  558. $ ONE, C( K+1, 1 ), LDC )
  559. END IF
  560. *
  561. * W := W * V1
  562. *
  563. CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit',
  564. $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
  565. *
  566. * C1 := C1 - W**H
  567. *
  568. DO 150 J = 1, K
  569. DO 140 I = 1, LASTC
  570. C( J, I ) = C( J, I ) - DCONJG( WORK( I, J ) )
  571. 140 CONTINUE
  572. 150 CONTINUE
  573. *
  574. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  575. *
  576. * Form C * H or C * H**H where C = ( C1 C2 )
  577. *
  578. LASTV = MAX( K, ILAZLC( K, N, V, LDV ) )
  579. LASTC = ILAZLR( M, LASTV, C, LDC )
  580. *
  581. * W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK)
  582. *
  583. * W := C1
  584. *
  585. DO 160 J = 1, K
  586. CALL ZCOPY( LASTC, C( 1, J ), 1, WORK( 1, J ), 1 )
  587. 160 CONTINUE
  588. *
  589. * W := W * V1**H
  590. *
  591. CALL ZTRMM( 'Right', 'Upper', 'Conjugate transpose',
  592. $ 'Unit', LASTC, K, ONE, V, LDV, WORK, LDWORK )
  593. IF( LASTV.GT.K ) THEN
  594. *
  595. * W := W + C2 * V2**H
  596. *
  597. CALL ZGEMM( 'No transpose', 'Conjugate transpose',
  598. $ LASTC, K, LASTV-K, ONE, C( 1, K+1 ), LDC,
  599. $ V( 1, K+1 ), LDV, ONE, WORK, LDWORK )
  600. END IF
  601. *
  602. * W := W * T or W * T**H
  603. *
  604. CALL ZTRMM( 'Right', 'Upper', TRANS, 'Non-unit',
  605. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  606. *
  607. * C := C - W * V
  608. *
  609. IF( LASTV.GT.K ) THEN
  610. *
  611. * C2 := C2 - W * V2
  612. *
  613. CALL ZGEMM( 'No transpose', 'No transpose',
  614. $ LASTC, LASTV-K, K,
  615. $ -ONE, WORK, LDWORK, V( 1, K+1 ), LDV,
  616. $ ONE, C( 1, K+1 ), LDC )
  617. END IF
  618. *
  619. * W := W * V1
  620. *
  621. CALL ZTRMM( 'Right', 'Upper', 'No transpose', 'Unit',
  622. $ LASTC, K, ONE, V, LDV, WORK, LDWORK )
  623. *
  624. * C1 := C1 - W
  625. *
  626. DO 180 J = 1, K
  627. DO 170 I = 1, LASTC
  628. C( I, J ) = C( I, J ) - WORK( I, J )
  629. 170 CONTINUE
  630. 180 CONTINUE
  631. *
  632. END IF
  633. *
  634. ELSE
  635. *
  636. * Let V = ( V1 V2 ) (V2: last K columns)
  637. * where V2 is unit lower triangular.
  638. *
  639. IF( LSAME( SIDE, 'L' ) ) THEN
  640. *
  641. * Form H * C or H**H * C where C = ( C1 )
  642. * ( C2 )
  643. *
  644. LASTC = ILAZLC( M, N, C, LDC )
  645. *
  646. * W := C**H * V**H = (C1**H * V1**H + C2**H * V2**H) (stored in WORK)
  647. *
  648. * W := C2**H
  649. *
  650. DO 190 J = 1, K
  651. CALL ZCOPY( LASTC, C( M-K+J, 1 ), LDC,
  652. $ WORK( 1, J ), 1 )
  653. CALL ZLACGV( LASTC, WORK( 1, J ), 1 )
  654. 190 CONTINUE
  655. *
  656. * W := W * V2**H
  657. *
  658. CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
  659. $ 'Unit', LASTC, K, ONE, V( 1, M-K+1 ), LDV,
  660. $ WORK, LDWORK )
  661. IF( M.GT.K ) THEN
  662. *
  663. * W := W + C1**H * V1**H
  664. *
  665. CALL ZGEMM( 'Conjugate transpose',
  666. $ 'Conjugate transpose', LASTC, K, M-K,
  667. $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
  668. END IF
  669. *
  670. * W := W * T**H or W * T
  671. *
  672. CALL ZTRMM( 'Right', 'Lower', TRANST, 'Non-unit',
  673. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  674. *
  675. * C := C - V**H * W**H
  676. *
  677. IF( M.GT.K ) THEN
  678. *
  679. * C1 := C1 - V1**H * W**H
  680. *
  681. CALL ZGEMM( 'Conjugate transpose',
  682. $ 'Conjugate transpose', M-K, LASTC, K,
  683. $ -ONE, V, LDV, WORK, LDWORK, ONE, C, LDC )
  684. END IF
  685. *
  686. * W := W * V2
  687. *
  688. CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit',
  689. $ LASTC, K, ONE, V( 1, M-K+1 ), LDV,
  690. $ WORK, LDWORK )
  691. *
  692. * C2 := C2 - W**H
  693. *
  694. DO 210 J = 1, K
  695. DO 200 I = 1, LASTC
  696. C( M-K+J, I ) = C( M-K+J, I ) -
  697. $ DCONJG( WORK( I, J ) )
  698. 200 CONTINUE
  699. 210 CONTINUE
  700. *
  701. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  702. *
  703. * Form C * H or C * H**H where C = ( C1 C2 )
  704. *
  705. LASTC = ILAZLR( M, N, C, LDC )
  706. *
  707. * W := C * V**H = (C1*V1**H + C2*V2**H) (stored in WORK)
  708. *
  709. * W := C2
  710. *
  711. DO 220 J = 1, K
  712. CALL ZCOPY( LASTC, C( 1, N-K+J ), 1,
  713. $ WORK( 1, J ), 1 )
  714. 220 CONTINUE
  715. *
  716. * W := W * V2**H
  717. *
  718. CALL ZTRMM( 'Right', 'Lower', 'Conjugate transpose',
  719. $ 'Unit', LASTC, K, ONE, V( 1, N-K+1 ), LDV,
  720. $ WORK, LDWORK )
  721. IF( N.GT.K ) THEN
  722. *
  723. * W := W + C1 * V1**H
  724. *
  725. CALL ZGEMM( 'No transpose', 'Conjugate transpose',
  726. $ LASTC, K, N-K, ONE, C, LDC, V, LDV, ONE,
  727. $ WORK, LDWORK )
  728. END IF
  729. *
  730. * W := W * T or W * T**H
  731. *
  732. CALL ZTRMM( 'Right', 'Lower', TRANS, 'Non-unit',
  733. $ LASTC, K, ONE, T, LDT, WORK, LDWORK )
  734. *
  735. * C := C - W * V
  736. *
  737. IF( N.GT.K ) THEN
  738. *
  739. * C1 := C1 - W * V1
  740. *
  741. CALL ZGEMM( 'No transpose', 'No transpose',
  742. $ LASTC, N-K, K, -ONE, WORK, LDWORK, V, LDV,
  743. $ ONE, C, LDC )
  744. END IF
  745. *
  746. * W := W * V2
  747. *
  748. CALL ZTRMM( 'Right', 'Lower', 'No transpose', 'Unit',
  749. $ LASTC, K, ONE, V( 1, N-K+1 ), LDV,
  750. $ WORK, LDWORK )
  751. *
  752. * C1 := C1 - W
  753. *
  754. DO 240 J = 1, K
  755. DO 230 I = 1, LASTC
  756. C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  757. 230 CONTINUE
  758. 240 CONTINUE
  759. *
  760. END IF
  761. *
  762. END IF
  763. END IF
  764. *
  765. RETURN
  766. *
  767. * End of ZLARFB
  768. *
  769. END