You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlansp.f 8.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272
  1. *> \brief \b ZLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLANSP + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlansp.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlansp.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlansp.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * DOUBLE PRECISION FUNCTION ZLANSP( NORM, UPLO, N, AP, WORK )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER NORM, UPLO
  25. * INTEGER N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION WORK( * )
  29. * COMPLEX*16 AP( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> ZLANSP returns the value of the one norm, or the Frobenius norm, or
  39. *> the infinity norm, or the element of largest absolute value of a
  40. *> complex symmetric matrix A, supplied in packed form.
  41. *> \endverbatim
  42. *>
  43. *> \return ZLANSP
  44. *> \verbatim
  45. *>
  46. *> ZLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  47. *> (
  48. *> ( norm1(A), NORM = '1', 'O' or 'o'
  49. *> (
  50. *> ( normI(A), NORM = 'I' or 'i'
  51. *> (
  52. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  53. *>
  54. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  55. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  56. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  57. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \param[in] NORM
  64. *> \verbatim
  65. *> NORM is CHARACTER*1
  66. *> Specifies the value to be returned in ZLANSP as described
  67. *> above.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] UPLO
  71. *> \verbatim
  72. *> UPLO is CHARACTER*1
  73. *> Specifies whether the upper or lower triangular part of the
  74. *> symmetric matrix A is supplied.
  75. *> = 'U': Upper triangular part of A is supplied
  76. *> = 'L': Lower triangular part of A is supplied
  77. *> \endverbatim
  78. *>
  79. *> \param[in] N
  80. *> \verbatim
  81. *> N is INTEGER
  82. *> The order of the matrix A. N >= 0. When N = 0, ZLANSP is
  83. *> set to zero.
  84. *> \endverbatim
  85. *>
  86. *> \param[in] AP
  87. *> \verbatim
  88. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  89. *> The upper or lower triangle of the symmetric matrix A, packed
  90. *> columnwise in a linear array. The j-th column of A is stored
  91. *> in the array AP as follows:
  92. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  93. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  94. *> \endverbatim
  95. *>
  96. *> \param[out] WORK
  97. *> \verbatim
  98. *> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
  99. *> where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
  100. *> WORK is not referenced.
  101. *> \endverbatim
  102. *
  103. * Authors:
  104. * ========
  105. *
  106. *> \author Univ. of Tennessee
  107. *> \author Univ. of California Berkeley
  108. *> \author Univ. of Colorado Denver
  109. *> \author NAG Ltd.
  110. *
  111. *> \date September 2012
  112. *
  113. *> \ingroup complex16OTHERauxiliary
  114. *
  115. * =====================================================================
  116. DOUBLE PRECISION FUNCTION ZLANSP( NORM, UPLO, N, AP, WORK )
  117. *
  118. * -- LAPACK auxiliary routine (version 3.4.2) --
  119. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  120. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  121. * September 2012
  122. *
  123. * .. Scalar Arguments ..
  124. CHARACTER NORM, UPLO
  125. INTEGER N
  126. * ..
  127. * .. Array Arguments ..
  128. DOUBLE PRECISION WORK( * )
  129. COMPLEX*16 AP( * )
  130. * ..
  131. *
  132. * =====================================================================
  133. *
  134. * .. Parameters ..
  135. DOUBLE PRECISION ONE, ZERO
  136. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  137. * ..
  138. * .. Local Scalars ..
  139. INTEGER I, J, K
  140. DOUBLE PRECISION ABSA, SCALE, SUM, VALUE
  141. * ..
  142. * .. External Functions ..
  143. LOGICAL LSAME, DISNAN
  144. EXTERNAL LSAME, DISNAN
  145. * ..
  146. * .. External Subroutines ..
  147. EXTERNAL ZLASSQ
  148. * ..
  149. * .. Intrinsic Functions ..
  150. INTRINSIC ABS, DBLE, DIMAG, SQRT
  151. * ..
  152. * .. Executable Statements ..
  153. *
  154. IF( N.EQ.0 ) THEN
  155. VALUE = ZERO
  156. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  157. *
  158. * Find max(abs(A(i,j))).
  159. *
  160. VALUE = ZERO
  161. IF( LSAME( UPLO, 'U' ) ) THEN
  162. K = 1
  163. DO 20 J = 1, N
  164. DO 10 I = K, K + J - 1
  165. SUM = ABS( AP( I ) )
  166. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  167. 10 CONTINUE
  168. K = K + J
  169. 20 CONTINUE
  170. ELSE
  171. K = 1
  172. DO 40 J = 1, N
  173. DO 30 I = K, K + N - J
  174. SUM = ABS( AP( I ) )
  175. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  176. 30 CONTINUE
  177. K = K + N - J + 1
  178. 40 CONTINUE
  179. END IF
  180. ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
  181. $ ( NORM.EQ.'1' ) ) THEN
  182. *
  183. * Find normI(A) ( = norm1(A), since A is symmetric).
  184. *
  185. VALUE = ZERO
  186. K = 1
  187. IF( LSAME( UPLO, 'U' ) ) THEN
  188. DO 60 J = 1, N
  189. SUM = ZERO
  190. DO 50 I = 1, J - 1
  191. ABSA = ABS( AP( K ) )
  192. SUM = SUM + ABSA
  193. WORK( I ) = WORK( I ) + ABSA
  194. K = K + 1
  195. 50 CONTINUE
  196. WORK( J ) = SUM + ABS( AP( K ) )
  197. K = K + 1
  198. 60 CONTINUE
  199. DO 70 I = 1, N
  200. SUM = WORK( I )
  201. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  202. 70 CONTINUE
  203. ELSE
  204. DO 80 I = 1, N
  205. WORK( I ) = ZERO
  206. 80 CONTINUE
  207. DO 100 J = 1, N
  208. SUM = WORK( J ) + ABS( AP( K ) )
  209. K = K + 1
  210. DO 90 I = J + 1, N
  211. ABSA = ABS( AP( K ) )
  212. SUM = SUM + ABSA
  213. WORK( I ) = WORK( I ) + ABSA
  214. K = K + 1
  215. 90 CONTINUE
  216. IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  217. 100 CONTINUE
  218. END IF
  219. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  220. *
  221. * Find normF(A).
  222. *
  223. SCALE = ZERO
  224. SUM = ONE
  225. K = 2
  226. IF( LSAME( UPLO, 'U' ) ) THEN
  227. DO 110 J = 2, N
  228. CALL ZLASSQ( J-1, AP( K ), 1, SCALE, SUM )
  229. K = K + J
  230. 110 CONTINUE
  231. ELSE
  232. DO 120 J = 1, N - 1
  233. CALL ZLASSQ( N-J, AP( K ), 1, SCALE, SUM )
  234. K = K + N - J + 1
  235. 120 CONTINUE
  236. END IF
  237. SUM = 2*SUM
  238. K = 1
  239. DO 130 I = 1, N
  240. IF( DBLE( AP( K ) ).NE.ZERO ) THEN
  241. ABSA = ABS( DBLE( AP( K ) ) )
  242. IF( SCALE.LT.ABSA ) THEN
  243. SUM = ONE + SUM*( SCALE / ABSA )**2
  244. SCALE = ABSA
  245. ELSE
  246. SUM = SUM + ( ABSA / SCALE )**2
  247. END IF
  248. END IF
  249. IF( DIMAG( AP( K ) ).NE.ZERO ) THEN
  250. ABSA = ABS( DIMAG( AP( K ) ) )
  251. IF( SCALE.LT.ABSA ) THEN
  252. SUM = ONE + SUM*( SCALE / ABSA )**2
  253. SCALE = ABSA
  254. ELSE
  255. SUM = SUM + ( ABSA / SCALE )**2
  256. END IF
  257. END IF
  258. IF( LSAME( UPLO, 'U' ) ) THEN
  259. K = K + I + 1
  260. ELSE
  261. K = K + N - I + 1
  262. END IF
  263. 130 CONTINUE
  264. VALUE = SCALE*SQRT( SUM )
  265. END IF
  266. *
  267. ZLANSP = VALUE
  268. RETURN
  269. *
  270. * End of ZLANSP
  271. *
  272. END