You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552
  1. *> \brief \b ZHFRK performs a Hermitian rank-k operation for matrix in RFP format.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZHFRK + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhfrk.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhfrk.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhfrk.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
  22. * C )
  23. *
  24. * .. Scalar Arguments ..
  25. * DOUBLE PRECISION ALPHA, BETA
  26. * INTEGER K, LDA, N
  27. * CHARACTER TRANS, TRANSR, UPLO
  28. * ..
  29. * .. Array Arguments ..
  30. * COMPLEX*16 A( LDA, * ), C( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> Level 3 BLAS like routine for C in RFP Format.
  40. *>
  41. *> ZHFRK performs one of the Hermitian rank--k operations
  42. *>
  43. *> C := alpha*A*A**H + beta*C,
  44. *>
  45. *> or
  46. *>
  47. *> C := alpha*A**H*A + beta*C,
  48. *>
  49. *> where alpha and beta are real scalars, C is an n--by--n Hermitian
  50. *> matrix and A is an n--by--k matrix in the first case and a k--by--n
  51. *> matrix in the second case.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] TRANSR
  58. *> \verbatim
  59. *> TRANSR is CHARACTER*1
  60. *> = 'N': The Normal Form of RFP A is stored;
  61. *> = 'C': The Conjugate-transpose Form of RFP A is stored.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] UPLO
  65. *> \verbatim
  66. *> UPLO is CHARACTER*1
  67. *> On entry, UPLO specifies whether the upper or lower
  68. *> triangular part of the array C is to be referenced as
  69. *> follows:
  70. *>
  71. *> UPLO = 'U' or 'u' Only the upper triangular part of C
  72. *> is to be referenced.
  73. *>
  74. *> UPLO = 'L' or 'l' Only the lower triangular part of C
  75. *> is to be referenced.
  76. *>
  77. *> Unchanged on exit.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] TRANS
  81. *> \verbatim
  82. *> TRANS is CHARACTER*1
  83. *> On entry, TRANS specifies the operation to be performed as
  84. *> follows:
  85. *>
  86. *> TRANS = 'N' or 'n' C := alpha*A*A**H + beta*C.
  87. *>
  88. *> TRANS = 'C' or 'c' C := alpha*A**H*A + beta*C.
  89. *>
  90. *> Unchanged on exit.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] N
  94. *> \verbatim
  95. *> N is INTEGER
  96. *> On entry, N specifies the order of the matrix C. N must be
  97. *> at least zero.
  98. *> Unchanged on exit.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] K
  102. *> \verbatim
  103. *> K is INTEGER
  104. *> On entry with TRANS = 'N' or 'n', K specifies the number
  105. *> of columns of the matrix A, and on entry with
  106. *> TRANS = 'C' or 'c', K specifies the number of rows of the
  107. *> matrix A. K must be at least zero.
  108. *> Unchanged on exit.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] ALPHA
  112. *> \verbatim
  113. *> ALPHA is DOUBLE PRECISION
  114. *> On entry, ALPHA specifies the scalar alpha.
  115. *> Unchanged on exit.
  116. *> \endverbatim
  117. *>
  118. *> \param[in] A
  119. *> \verbatim
  120. *> A is COMPLEX*16 array of DIMENSION (LDA,ka)
  121. *> where KA
  122. *> is K when TRANS = 'N' or 'n', and is N otherwise. Before
  123. *> entry with TRANS = 'N' or 'n', the leading N--by--K part of
  124. *> the array A must contain the matrix A, otherwise the leading
  125. *> K--by--N part of the array A must contain the matrix A.
  126. *> Unchanged on exit.
  127. *> \endverbatim
  128. *>
  129. *> \param[in] LDA
  130. *> \verbatim
  131. *> LDA is INTEGER
  132. *> On entry, LDA specifies the first dimension of A as declared
  133. *> in the calling (sub) program. When TRANS = 'N' or 'n'
  134. *> then LDA must be at least max( 1, n ), otherwise LDA must
  135. *> be at least max( 1, k ).
  136. *> Unchanged on exit.
  137. *> \endverbatim
  138. *>
  139. *> \param[in] BETA
  140. *> \verbatim
  141. *> BETA is DOUBLE PRECISION
  142. *> On entry, BETA specifies the scalar beta.
  143. *> Unchanged on exit.
  144. *> \endverbatim
  145. *>
  146. *> \param[in,out] C
  147. *> \verbatim
  148. *> C is COMPLEX*16 array, dimension (N*(N+1)/2)
  149. *> On entry, the matrix A in RFP Format. RFP Format is
  150. *> described by TRANSR, UPLO and N. Note that the imaginary
  151. *> parts of the diagonal elements need not be set, they are
  152. *> assumed to be zero, and on exit they are set to zero.
  153. *> \endverbatim
  154. *
  155. * Authors:
  156. * ========
  157. *
  158. *> \author Univ. of Tennessee
  159. *> \author Univ. of California Berkeley
  160. *> \author Univ. of Colorado Denver
  161. *> \author NAG Ltd.
  162. *
  163. *> \date September 2012
  164. *
  165. *> \ingroup complex16OTHERcomputational
  166. *
  167. * =====================================================================
  168. SUBROUTINE ZHFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
  169. $ C )
  170. *
  171. * -- LAPACK computational routine (version 3.4.2) --
  172. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  173. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  174. * September 2012
  175. *
  176. * .. Scalar Arguments ..
  177. DOUBLE PRECISION ALPHA, BETA
  178. INTEGER K, LDA, N
  179. CHARACTER TRANS, TRANSR, UPLO
  180. * ..
  181. * .. Array Arguments ..
  182. COMPLEX*16 A( LDA, * ), C( * )
  183. * ..
  184. *
  185. * =====================================================================
  186. *
  187. * .. Parameters ..
  188. DOUBLE PRECISION ONE, ZERO
  189. COMPLEX*16 CZERO
  190. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  191. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
  192. * ..
  193. * .. Local Scalars ..
  194. LOGICAL LOWER, NORMALTRANSR, NISODD, NOTRANS
  195. INTEGER INFO, NROWA, J, NK, N1, N2
  196. COMPLEX*16 CALPHA, CBETA
  197. * ..
  198. * .. External Functions ..
  199. LOGICAL LSAME
  200. EXTERNAL LSAME
  201. * ..
  202. * .. External Subroutines ..
  203. EXTERNAL XERBLA, ZGEMM, ZHERK
  204. * ..
  205. * .. Intrinsic Functions ..
  206. INTRINSIC MAX, DCMPLX
  207. * ..
  208. * .. Executable Statements ..
  209. *
  210. *
  211. * Test the input parameters.
  212. *
  213. INFO = 0
  214. NORMALTRANSR = LSAME( TRANSR, 'N' )
  215. LOWER = LSAME( UPLO, 'L' )
  216. NOTRANS = LSAME( TRANS, 'N' )
  217. *
  218. IF( NOTRANS ) THEN
  219. NROWA = N
  220. ELSE
  221. NROWA = K
  222. END IF
  223. *
  224. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  225. INFO = -1
  226. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  227. INFO = -2
  228. ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'C' ) ) THEN
  229. INFO = -3
  230. ELSE IF( N.LT.0 ) THEN
  231. INFO = -4
  232. ELSE IF( K.LT.0 ) THEN
  233. INFO = -5
  234. ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
  235. INFO = -8
  236. END IF
  237. IF( INFO.NE.0 ) THEN
  238. CALL XERBLA( 'ZHFRK ', -INFO )
  239. RETURN
  240. END IF
  241. *
  242. * Quick return if possible.
  243. *
  244. * The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not
  245. * done (it is in ZHERK for example) and left in the general case.
  246. *
  247. IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND.
  248. $ ( BETA.EQ.ONE ) ) )RETURN
  249. *
  250. IF( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ZERO ) ) THEN
  251. DO J = 1, ( ( N*( N+1 ) ) / 2 )
  252. C( J ) = CZERO
  253. END DO
  254. RETURN
  255. END IF
  256. *
  257. CALPHA = DCMPLX( ALPHA, ZERO )
  258. CBETA = DCMPLX( BETA, ZERO )
  259. *
  260. * C is N-by-N.
  261. * If N is odd, set NISODD = .TRUE., and N1 and N2.
  262. * If N is even, NISODD = .FALSE., and NK.
  263. *
  264. IF( MOD( N, 2 ).EQ.0 ) THEN
  265. NISODD = .FALSE.
  266. NK = N / 2
  267. ELSE
  268. NISODD = .TRUE.
  269. IF( LOWER ) THEN
  270. N2 = N / 2
  271. N1 = N - N2
  272. ELSE
  273. N1 = N / 2
  274. N2 = N - N1
  275. END IF
  276. END IF
  277. *
  278. IF( NISODD ) THEN
  279. *
  280. * N is odd
  281. *
  282. IF( NORMALTRANSR ) THEN
  283. *
  284. * N is odd and TRANSR = 'N'
  285. *
  286. IF( LOWER ) THEN
  287. *
  288. * N is odd, TRANSR = 'N', and UPLO = 'L'
  289. *
  290. IF( NOTRANS ) THEN
  291. *
  292. * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  293. *
  294. CALL ZHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  295. $ BETA, C( 1 ), N )
  296. CALL ZHERK( 'U', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  297. $ BETA, C( N+1 ), N )
  298. CALL ZGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
  299. $ LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
  300. *
  301. ELSE
  302. *
  303. * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
  304. *
  305. CALL ZHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  306. $ BETA, C( 1 ), N )
  307. CALL ZHERK( 'U', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  308. $ BETA, C( N+1 ), N )
  309. CALL ZGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
  310. $ LDA, A( 1, 1 ), LDA, CBETA, C( N1+1 ), N )
  311. *
  312. END IF
  313. *
  314. ELSE
  315. *
  316. * N is odd, TRANSR = 'N', and UPLO = 'U'
  317. *
  318. IF( NOTRANS ) THEN
  319. *
  320. * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  321. *
  322. CALL ZHERK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  323. $ BETA, C( N2+1 ), N )
  324. CALL ZHERK( 'U', 'N', N2, K, ALPHA, A( N2, 1 ), LDA,
  325. $ BETA, C( N1+1 ), N )
  326. CALL ZGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
  327. $ LDA, A( N2, 1 ), LDA, CBETA, C( 1 ), N )
  328. *
  329. ELSE
  330. *
  331. * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
  332. *
  333. CALL ZHERK( 'L', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  334. $ BETA, C( N2+1 ), N )
  335. CALL ZHERK( 'U', 'C', N2, K, ALPHA, A( 1, N2 ), LDA,
  336. $ BETA, C( N1+1 ), N )
  337. CALL ZGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
  338. $ LDA, A( 1, N2 ), LDA, CBETA, C( 1 ), N )
  339. *
  340. END IF
  341. *
  342. END IF
  343. *
  344. ELSE
  345. *
  346. * N is odd, and TRANSR = 'C'
  347. *
  348. IF( LOWER ) THEN
  349. *
  350. * N is odd, TRANSR = 'C', and UPLO = 'L'
  351. *
  352. IF( NOTRANS ) THEN
  353. *
  354. * N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
  355. *
  356. CALL ZHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  357. $ BETA, C( 1 ), N1 )
  358. CALL ZHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  359. $ BETA, C( 2 ), N1 )
  360. CALL ZGEMM( 'N', 'C', N1, N2, K, CALPHA, A( 1, 1 ),
  361. $ LDA, A( N1+1, 1 ), LDA, CBETA,
  362. $ C( N1*N1+1 ), N1 )
  363. *
  364. ELSE
  365. *
  366. * N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
  367. *
  368. CALL ZHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  369. $ BETA, C( 1 ), N1 )
  370. CALL ZHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  371. $ BETA, C( 2 ), N1 )
  372. CALL ZGEMM( 'C', 'N', N1, N2, K, CALPHA, A( 1, 1 ),
  373. $ LDA, A( 1, N1+1 ), LDA, CBETA,
  374. $ C( N1*N1+1 ), N1 )
  375. *
  376. END IF
  377. *
  378. ELSE
  379. *
  380. * N is odd, TRANSR = 'C', and UPLO = 'U'
  381. *
  382. IF( NOTRANS ) THEN
  383. *
  384. * N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
  385. *
  386. CALL ZHERK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  387. $ BETA, C( N2*N2+1 ), N2 )
  388. CALL ZHERK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  389. $ BETA, C( N1*N2+1 ), N2 )
  390. CALL ZGEMM( 'N', 'C', N2, N1, K, CALPHA, A( N1+1, 1 ),
  391. $ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
  392. *
  393. ELSE
  394. *
  395. * N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
  396. *
  397. CALL ZHERK( 'U', 'C', N1, K, ALPHA, A( 1, 1 ), LDA,
  398. $ BETA, C( N2*N2+1 ), N2 )
  399. CALL ZHERK( 'L', 'C', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  400. $ BETA, C( N1*N2+1 ), N2 )
  401. CALL ZGEMM( 'C', 'N', N2, N1, K, CALPHA, A( 1, N1+1 ),
  402. $ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), N2 )
  403. *
  404. END IF
  405. *
  406. END IF
  407. *
  408. END IF
  409. *
  410. ELSE
  411. *
  412. * N is even
  413. *
  414. IF( NORMALTRANSR ) THEN
  415. *
  416. * N is even and TRANSR = 'N'
  417. *
  418. IF( LOWER ) THEN
  419. *
  420. * N is even, TRANSR = 'N', and UPLO = 'L'
  421. *
  422. IF( NOTRANS ) THEN
  423. *
  424. * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  425. *
  426. CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  427. $ BETA, C( 2 ), N+1 )
  428. CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  429. $ BETA, C( 1 ), N+1 )
  430. CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
  431. $ LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
  432. $ N+1 )
  433. *
  434. ELSE
  435. *
  436. * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'C'
  437. *
  438. CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  439. $ BETA, C( 2 ), N+1 )
  440. CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  441. $ BETA, C( 1 ), N+1 )
  442. CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
  443. $ LDA, A( 1, 1 ), LDA, CBETA, C( NK+2 ),
  444. $ N+1 )
  445. *
  446. END IF
  447. *
  448. ELSE
  449. *
  450. * N is even, TRANSR = 'N', and UPLO = 'U'
  451. *
  452. IF( NOTRANS ) THEN
  453. *
  454. * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  455. *
  456. CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  457. $ BETA, C( NK+2 ), N+1 )
  458. CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  459. $ BETA, C( NK+1 ), N+1 )
  460. CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
  461. $ LDA, A( NK+1, 1 ), LDA, CBETA, C( 1 ),
  462. $ N+1 )
  463. *
  464. ELSE
  465. *
  466. * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'C'
  467. *
  468. CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  469. $ BETA, C( NK+2 ), N+1 )
  470. CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  471. $ BETA, C( NK+1 ), N+1 )
  472. CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
  473. $ LDA, A( 1, NK+1 ), LDA, CBETA, C( 1 ),
  474. $ N+1 )
  475. *
  476. END IF
  477. *
  478. END IF
  479. *
  480. ELSE
  481. *
  482. * N is even, and TRANSR = 'C'
  483. *
  484. IF( LOWER ) THEN
  485. *
  486. * N is even, TRANSR = 'C', and UPLO = 'L'
  487. *
  488. IF( NOTRANS ) THEN
  489. *
  490. * N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'N'
  491. *
  492. CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  493. $ BETA, C( NK+1 ), NK )
  494. CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  495. $ BETA, C( 1 ), NK )
  496. CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( 1, 1 ),
  497. $ LDA, A( NK+1, 1 ), LDA, CBETA,
  498. $ C( ( ( NK+1 )*NK )+1 ), NK )
  499. *
  500. ELSE
  501. *
  502. * N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'C'
  503. *
  504. CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  505. $ BETA, C( NK+1 ), NK )
  506. CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  507. $ BETA, C( 1 ), NK )
  508. CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, 1 ),
  509. $ LDA, A( 1, NK+1 ), LDA, CBETA,
  510. $ C( ( ( NK+1 )*NK )+1 ), NK )
  511. *
  512. END IF
  513. *
  514. ELSE
  515. *
  516. * N is even, TRANSR = 'C', and UPLO = 'U'
  517. *
  518. IF( NOTRANS ) THEN
  519. *
  520. * N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'N'
  521. *
  522. CALL ZHERK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  523. $ BETA, C( NK*( NK+1 )+1 ), NK )
  524. CALL ZHERK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  525. $ BETA, C( NK*NK+1 ), NK )
  526. CALL ZGEMM( 'N', 'C', NK, NK, K, CALPHA, A( NK+1, 1 ),
  527. $ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
  528. *
  529. ELSE
  530. *
  531. * N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'C'
  532. *
  533. CALL ZHERK( 'U', 'C', NK, K, ALPHA, A( 1, 1 ), LDA,
  534. $ BETA, C( NK*( NK+1 )+1 ), NK )
  535. CALL ZHERK( 'L', 'C', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  536. $ BETA, C( NK*NK+1 ), NK )
  537. CALL ZGEMM( 'C', 'N', NK, NK, K, CALPHA, A( 1, NK+1 ),
  538. $ LDA, A( 1, 1 ), LDA, CBETA, C( 1 ), NK )
  539. *
  540. END IF
  541. *
  542. END IF
  543. *
  544. END IF
  545. *
  546. END IF
  547. *
  548. RETURN
  549. *
  550. * End of ZHFRK
  551. *
  552. END