You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ssygvx.f 15 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458
  1. *> \brief \b SSYGST
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SSYGVX + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssygvx.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssygvx.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssygvx.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
  22. * VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
  23. * LWORK, IWORK, IFAIL, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER JOBZ, RANGE, UPLO
  27. * INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
  28. * REAL ABSTOL, VL, VU
  29. * ..
  30. * .. Array Arguments ..
  31. * INTEGER IFAIL( * ), IWORK( * )
  32. * REAL A( LDA, * ), B( LDB, * ), W( * ), WORK( * ),
  33. * $ Z( LDZ, * )
  34. * ..
  35. *
  36. *
  37. *> \par Purpose:
  38. * =============
  39. *>
  40. *> \verbatim
  41. *>
  42. *> SSYGVX computes selected eigenvalues, and optionally, eigenvectors
  43. *> of a real generalized symmetric-definite eigenproblem, of the form
  44. *> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
  45. *> and B are assumed to be symmetric and B is also positive definite.
  46. *> Eigenvalues and eigenvectors can be selected by specifying either a
  47. *> range of values or a range of indices for the desired eigenvalues.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] ITYPE
  54. *> \verbatim
  55. *> ITYPE is INTEGER
  56. *> Specifies the problem type to be solved:
  57. *> = 1: A*x = (lambda)*B*x
  58. *> = 2: A*B*x = (lambda)*x
  59. *> = 3: B*A*x = (lambda)*x
  60. *> \endverbatim
  61. *>
  62. *> \param[in] JOBZ
  63. *> \verbatim
  64. *> JOBZ is CHARACTER*1
  65. *> = 'N': Compute eigenvalues only;
  66. *> = 'V': Compute eigenvalues and eigenvectors.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] RANGE
  70. *> \verbatim
  71. *> RANGE is CHARACTER*1
  72. *> = 'A': all eigenvalues will be found.
  73. *> = 'V': all eigenvalues in the half-open interval (VL,VU]
  74. *> will be found.
  75. *> = 'I': the IL-th through IU-th eigenvalues will be found.
  76. *> \endverbatim
  77. *>
  78. *> \param[in] UPLO
  79. *> \verbatim
  80. *> UPLO is CHARACTER*1
  81. *> = 'U': Upper triangle of A and B are stored;
  82. *> = 'L': Lower triangle of A and B are stored.
  83. *> \endverbatim
  84. *>
  85. *> \param[in] N
  86. *> \verbatim
  87. *> N is INTEGER
  88. *> The order of the matrix pencil (A,B). N >= 0.
  89. *> \endverbatim
  90. *>
  91. *> \param[in,out] A
  92. *> \verbatim
  93. *> A is REAL array, dimension (LDA, N)
  94. *> On entry, the symmetric matrix A. If UPLO = 'U', the
  95. *> leading N-by-N upper triangular part of A contains the
  96. *> upper triangular part of the matrix A. If UPLO = 'L',
  97. *> the leading N-by-N lower triangular part of A contains
  98. *> the lower triangular part of the matrix A.
  99. *>
  100. *> On exit, the lower triangle (if UPLO='L') or the upper
  101. *> triangle (if UPLO='U') of A, including the diagonal, is
  102. *> destroyed.
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LDA
  106. *> \verbatim
  107. *> LDA is INTEGER
  108. *> The leading dimension of the array A. LDA >= max(1,N).
  109. *> \endverbatim
  110. *>
  111. *> \param[in,out] B
  112. *> \verbatim
  113. *> B is REAL array, dimension (LDA, N)
  114. *> On entry, the symmetric matrix B. If UPLO = 'U', the
  115. *> leading N-by-N upper triangular part of B contains the
  116. *> upper triangular part of the matrix B. If UPLO = 'L',
  117. *> the leading N-by-N lower triangular part of B contains
  118. *> the lower triangular part of the matrix B.
  119. *>
  120. *> On exit, if INFO <= N, the part of B containing the matrix is
  121. *> overwritten by the triangular factor U or L from the Cholesky
  122. *> factorization B = U**T*U or B = L*L**T.
  123. *> \endverbatim
  124. *>
  125. *> \param[in] LDB
  126. *> \verbatim
  127. *> LDB is INTEGER
  128. *> The leading dimension of the array B. LDB >= max(1,N).
  129. *> \endverbatim
  130. *>
  131. *> \param[in] VL
  132. *> \verbatim
  133. *> VL is REAL
  134. *> \endverbatim
  135. *>
  136. *> \param[in] VU
  137. *> \verbatim
  138. *> VU is REAL
  139. *> If RANGE='V', the lower and upper bounds of the interval to
  140. *> be searched for eigenvalues. VL < VU.
  141. *> Not referenced if RANGE = 'A' or 'I'.
  142. *> \endverbatim
  143. *>
  144. *> \param[in] IL
  145. *> \verbatim
  146. *> IL is INTEGER
  147. *> \endverbatim
  148. *>
  149. *> \param[in] IU
  150. *> \verbatim
  151. *> IU is INTEGER
  152. *> If RANGE='I', the indices (in ascending order) of the
  153. *> smallest and largest eigenvalues to be returned.
  154. *> 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
  155. *> Not referenced if RANGE = 'A' or 'V'.
  156. *> \endverbatim
  157. *>
  158. *> \param[in] ABSTOL
  159. *> \verbatim
  160. *> ABSTOL is REAL
  161. *> The absolute error tolerance for the eigenvalues.
  162. *> An approximate eigenvalue is accepted as converged
  163. *> when it is determined to lie in an interval [a,b]
  164. *> of width less than or equal to
  165. *>
  166. *> ABSTOL + EPS * max( |a|,|b| ) ,
  167. *>
  168. *> where EPS is the machine precision. If ABSTOL is less than
  169. *> or equal to zero, then EPS*|T| will be used in its place,
  170. *> where |T| is the 1-norm of the tridiagonal matrix obtained
  171. *> by reducing C to tridiagonal form, where C is the symmetric
  172. *> matrix of the standard symmetric problem to which the
  173. *> generalized problem is transformed.
  174. *>
  175. *> Eigenvalues will be computed most accurately when ABSTOL is
  176. *> set to twice the underflow threshold 2*DLAMCH('S'), not zero.
  177. *> If this routine returns with INFO>0, indicating that some
  178. *> eigenvectors did not converge, try setting ABSTOL to
  179. *> 2*SLAMCH('S').
  180. *> \endverbatim
  181. *>
  182. *> \param[out] M
  183. *> \verbatim
  184. *> M is INTEGER
  185. *> The total number of eigenvalues found. 0 <= M <= N.
  186. *> If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
  187. *> \endverbatim
  188. *>
  189. *> \param[out] W
  190. *> \verbatim
  191. *> W is REAL array, dimension (N)
  192. *> On normal exit, the first M elements contain the selected
  193. *> eigenvalues in ascending order.
  194. *> \endverbatim
  195. *>
  196. *> \param[out] Z
  197. *> \verbatim
  198. *> Z is REAL array, dimension (LDZ, max(1,M))
  199. *> If JOBZ = 'N', then Z is not referenced.
  200. *> If JOBZ = 'V', then if INFO = 0, the first M columns of Z
  201. *> contain the orthonormal eigenvectors of the matrix A
  202. *> corresponding to the selected eigenvalues, with the i-th
  203. *> column of Z holding the eigenvector associated with W(i).
  204. *> The eigenvectors are normalized as follows:
  205. *> if ITYPE = 1 or 2, Z**T*B*Z = I;
  206. *> if ITYPE = 3, Z**T*inv(B)*Z = I.
  207. *>
  208. *> If an eigenvector fails to converge, then that column of Z
  209. *> contains the latest approximation to the eigenvector, and the
  210. *> index of the eigenvector is returned in IFAIL.
  211. *> Note: the user must ensure that at least max(1,M) columns are
  212. *> supplied in the array Z; if RANGE = 'V', the exact value of M
  213. *> is not known in advance and an upper bound must be used.
  214. *> \endverbatim
  215. *>
  216. *> \param[in] LDZ
  217. *> \verbatim
  218. *> LDZ is INTEGER
  219. *> The leading dimension of the array Z. LDZ >= 1, and if
  220. *> JOBZ = 'V', LDZ >= max(1,N).
  221. *> \endverbatim
  222. *>
  223. *> \param[out] WORK
  224. *> \verbatim
  225. *> WORK is REAL array, dimension (MAX(1,LWORK))
  226. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  227. *> \endverbatim
  228. *>
  229. *> \param[in] LWORK
  230. *> \verbatim
  231. *> LWORK is INTEGER
  232. *> The length of the array WORK. LWORK >= max(1,8*N).
  233. *> For optimal efficiency, LWORK >= (NB+3)*N,
  234. *> where NB is the blocksize for SSYTRD returned by ILAENV.
  235. *>
  236. *> If LWORK = -1, then a workspace query is assumed; the routine
  237. *> only calculates the optimal size of the WORK array, returns
  238. *> this value as the first entry of the WORK array, and no error
  239. *> message related to LWORK is issued by XERBLA.
  240. *> \endverbatim
  241. *>
  242. *> \param[out] IWORK
  243. *> \verbatim
  244. *> IWORK is INTEGER array, dimension (5*N)
  245. *> \endverbatim
  246. *>
  247. *> \param[out] IFAIL
  248. *> \verbatim
  249. *> IFAIL is INTEGER array, dimension (N)
  250. *> If JOBZ = 'V', then if INFO = 0, the first M elements of
  251. *> IFAIL are zero. If INFO > 0, then IFAIL contains the
  252. *> indices of the eigenvectors that failed to converge.
  253. *> If JOBZ = 'N', then IFAIL is not referenced.
  254. *> \endverbatim
  255. *>
  256. *> \param[out] INFO
  257. *> \verbatim
  258. *> INFO is INTEGER
  259. *> = 0: successful exit
  260. *> < 0: if INFO = -i, the i-th argument had an illegal value
  261. *> > 0: SPOTRF or SSYEVX returned an error code:
  262. *> <= N: if INFO = i, SSYEVX failed to converge;
  263. *> i eigenvectors failed to converge. Their indices
  264. *> are stored in array IFAIL.
  265. *> > N: if INFO = N + i, for 1 <= i <= N, then the leading
  266. *> minor of order i of B is not positive definite.
  267. *> The factorization of B could not be completed and
  268. *> no eigenvalues or eigenvectors were computed.
  269. *> \endverbatim
  270. *
  271. * Authors:
  272. * ========
  273. *
  274. *> \author Univ. of Tennessee
  275. *> \author Univ. of California Berkeley
  276. *> \author Univ. of Colorado Denver
  277. *> \author NAG Ltd.
  278. *
  279. *> \date November 2011
  280. *
  281. *> \ingroup realSYeigen
  282. *
  283. *> \par Contributors:
  284. * ==================
  285. *>
  286. *> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
  287. *
  288. * =====================================================================
  289. SUBROUTINE SSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB,
  290. $ VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK,
  291. $ LWORK, IWORK, IFAIL, INFO )
  292. *
  293. * -- LAPACK driver routine (version 3.4.0) --
  294. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  295. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  296. * November 2011
  297. *
  298. * .. Scalar Arguments ..
  299. CHARACTER JOBZ, RANGE, UPLO
  300. INTEGER IL, INFO, ITYPE, IU, LDA, LDB, LDZ, LWORK, M, N
  301. REAL ABSTOL, VL, VU
  302. * ..
  303. * .. Array Arguments ..
  304. INTEGER IFAIL( * ), IWORK( * )
  305. REAL A( LDA, * ), B( LDB, * ), W( * ), WORK( * ),
  306. $ Z( LDZ, * )
  307. * ..
  308. *
  309. * =====================================================================
  310. *
  311. * .. Parameters ..
  312. REAL ONE
  313. PARAMETER ( ONE = 1.0E+0 )
  314. * ..
  315. * .. Local Scalars ..
  316. LOGICAL ALLEIG, INDEIG, LQUERY, UPPER, VALEIG, WANTZ
  317. CHARACTER TRANS
  318. INTEGER LWKMIN, LWKOPT, NB
  319. * ..
  320. * .. External Functions ..
  321. LOGICAL LSAME
  322. INTEGER ILAENV
  323. EXTERNAL ILAENV, LSAME
  324. * ..
  325. * .. External Subroutines ..
  326. EXTERNAL SPOTRF, SSYEVX, SSYGST, STRMM, STRSM, XERBLA
  327. * ..
  328. * .. Intrinsic Functions ..
  329. INTRINSIC MAX, MIN
  330. * ..
  331. * .. Executable Statements ..
  332. *
  333. * Test the input parameters.
  334. *
  335. UPPER = LSAME( UPLO, 'U' )
  336. WANTZ = LSAME( JOBZ, 'V' )
  337. ALLEIG = LSAME( RANGE, 'A' )
  338. VALEIG = LSAME( RANGE, 'V' )
  339. INDEIG = LSAME( RANGE, 'I' )
  340. LQUERY = ( LWORK.EQ.-1 )
  341. *
  342. INFO = 0
  343. IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
  344. INFO = -1
  345. ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
  346. INFO = -2
  347. ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
  348. INFO = -3
  349. ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
  350. INFO = -4
  351. ELSE IF( N.LT.0 ) THEN
  352. INFO = -5
  353. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  354. INFO = -7
  355. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  356. INFO = -9
  357. ELSE
  358. IF( VALEIG ) THEN
  359. IF( N.GT.0 .AND. VU.LE.VL )
  360. $ INFO = -11
  361. ELSE IF( INDEIG ) THEN
  362. IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
  363. INFO = -12
  364. ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
  365. INFO = -13
  366. END IF
  367. END IF
  368. END IF
  369. IF (INFO.EQ.0) THEN
  370. IF (LDZ.LT.1 .OR. (WANTZ .AND. LDZ.LT.N)) THEN
  371. INFO = -18
  372. END IF
  373. END IF
  374. *
  375. IF( INFO.EQ.0 ) THEN
  376. LWKMIN = MAX( 1, 8*N )
  377. NB = ILAENV( 1, 'SSYTRD', UPLO, N, -1, -1, -1 )
  378. LWKOPT = MAX( LWKMIN, ( NB + 3 )*N )
  379. WORK( 1 ) = LWKOPT
  380. *
  381. IF( LWORK.LT.LWKMIN .AND. .NOT.LQUERY ) THEN
  382. INFO = -20
  383. END IF
  384. END IF
  385. *
  386. IF( INFO.NE.0 ) THEN
  387. CALL XERBLA( 'SSYGVX', -INFO )
  388. RETURN
  389. ELSE IF( LQUERY ) THEN
  390. RETURN
  391. END IF
  392. *
  393. * Quick return if possible
  394. *
  395. M = 0
  396. IF( N.EQ.0 ) THEN
  397. RETURN
  398. END IF
  399. *
  400. * Form a Cholesky factorization of B.
  401. *
  402. CALL SPOTRF( UPLO, N, B, LDB, INFO )
  403. IF( INFO.NE.0 ) THEN
  404. INFO = N + INFO
  405. RETURN
  406. END IF
  407. *
  408. * Transform problem to standard eigenvalue problem and solve.
  409. *
  410. CALL SSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
  411. CALL SSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL,
  412. $ M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL, INFO )
  413. *
  414. IF( WANTZ ) THEN
  415. *
  416. * Backtransform eigenvectors to the original problem.
  417. *
  418. IF( INFO.GT.0 )
  419. $ M = INFO - 1
  420. IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
  421. *
  422. * For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
  423. * backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
  424. *
  425. IF( UPPER ) THEN
  426. TRANS = 'N'
  427. ELSE
  428. TRANS = 'T'
  429. END IF
  430. *
  431. CALL STRSM( 'Left', UPLO, TRANS, 'Non-unit', N, M, ONE, B,
  432. $ LDB, Z, LDZ )
  433. *
  434. ELSE IF( ITYPE.EQ.3 ) THEN
  435. *
  436. * For B*A*x=(lambda)*x;
  437. * backtransform eigenvectors: x = L*y or U**T*y
  438. *
  439. IF( UPPER ) THEN
  440. TRANS = 'T'
  441. ELSE
  442. TRANS = 'N'
  443. END IF
  444. *
  445. CALL STRMM( 'Left', UPLO, TRANS, 'Non-unit', N, M, ONE, B,
  446. $ LDB, Z, LDZ )
  447. END IF
  448. END IF
  449. *
  450. * Set WORK(1) to optimal workspace size.
  451. *
  452. WORK( 1 ) = LWKOPT
  453. *
  454. RETURN
  455. *
  456. * End of SSYGVX
  457. *
  458. END