You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slantb.f 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361
  1. *> \brief \b SLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLANTB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slantb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slantb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slantb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION SLANTB( NORM, UPLO, DIAG, N, K, AB,
  22. * LDAB, WORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORM, UPLO
  26. * INTEGER K, LDAB, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL AB( LDAB, * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> SLANTB returns the value of the one norm, or the Frobenius norm, or
  39. *> the infinity norm, or the element of largest absolute value of an
  40. *> n by n triangular band matrix A, with ( k + 1 ) diagonals.
  41. *> \endverbatim
  42. *>
  43. *> \return SLANTB
  44. *> \verbatim
  45. *>
  46. *> SLANTB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  47. *> (
  48. *> ( norm1(A), NORM = '1', 'O' or 'o'
  49. *> (
  50. *> ( normI(A), NORM = 'I' or 'i'
  51. *> (
  52. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  53. *>
  54. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  55. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  56. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  57. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  58. *> \endverbatim
  59. *
  60. * Arguments:
  61. * ==========
  62. *
  63. *> \param[in] NORM
  64. *> \verbatim
  65. *> NORM is CHARACTER*1
  66. *> Specifies the value to be returned in SLANTB as described
  67. *> above.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] UPLO
  71. *> \verbatim
  72. *> UPLO is CHARACTER*1
  73. *> Specifies whether the matrix A is upper or lower triangular.
  74. *> = 'U': Upper triangular
  75. *> = 'L': Lower triangular
  76. *> \endverbatim
  77. *>
  78. *> \param[in] DIAG
  79. *> \verbatim
  80. *> DIAG is CHARACTER*1
  81. *> Specifies whether or not the matrix A is unit triangular.
  82. *> = 'N': Non-unit triangular
  83. *> = 'U': Unit triangular
  84. *> \endverbatim
  85. *>
  86. *> \param[in] N
  87. *> \verbatim
  88. *> N is INTEGER
  89. *> The order of the matrix A. N >= 0. When N = 0, SLANTB is
  90. *> set to zero.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] K
  94. *> \verbatim
  95. *> K is INTEGER
  96. *> The number of super-diagonals of the matrix A if UPLO = 'U',
  97. *> or the number of sub-diagonals of the matrix A if UPLO = 'L'.
  98. *> K >= 0.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] AB
  102. *> \verbatim
  103. *> AB is REAL array, dimension (LDAB,N)
  104. *> The upper or lower triangular band matrix A, stored in the
  105. *> first k+1 rows of AB. The j-th column of A is stored
  106. *> in the j-th column of the array AB as follows:
  107. *> if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
  108. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+k).
  109. *> Note that when DIAG = 'U', the elements of the array AB
  110. *> corresponding to the diagonal elements of the matrix A are
  111. *> not referenced, but are assumed to be one.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] LDAB
  115. *> \verbatim
  116. *> LDAB is INTEGER
  117. *> The leading dimension of the array AB. LDAB >= K+1.
  118. *> \endverbatim
  119. *>
  120. *> \param[out] WORK
  121. *> \verbatim
  122. *> WORK is REAL array, dimension (MAX(1,LWORK)),
  123. *> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
  124. *> referenced.
  125. *> \endverbatim
  126. *
  127. * Authors:
  128. * ========
  129. *
  130. *> \author Univ. of Tennessee
  131. *> \author Univ. of California Berkeley
  132. *> \author Univ. of Colorado Denver
  133. *> \author NAG Ltd.
  134. *
  135. *> \date September 2012
  136. *
  137. *> \ingroup realOTHERauxiliary
  138. *
  139. * =====================================================================
  140. REAL FUNCTION SLANTB( NORM, UPLO, DIAG, N, K, AB,
  141. $ LDAB, WORK )
  142. *
  143. * -- LAPACK auxiliary routine (version 3.4.2) --
  144. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  145. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146. * September 2012
  147. *
  148. * .. Scalar Arguments ..
  149. CHARACTER DIAG, NORM, UPLO
  150. INTEGER K, LDAB, N
  151. * ..
  152. * .. Array Arguments ..
  153. REAL AB( LDAB, * ), WORK( * )
  154. * ..
  155. *
  156. * =====================================================================
  157. *
  158. * .. Parameters ..
  159. REAL ONE, ZERO
  160. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  161. * ..
  162. * .. Local Scalars ..
  163. LOGICAL UDIAG
  164. INTEGER I, J, L
  165. REAL SCALE, SUM, VALUE
  166. * ..
  167. * .. External Subroutines ..
  168. EXTERNAL SLASSQ
  169. * ..
  170. * .. External Functions ..
  171. LOGICAL LSAME, SISNAN
  172. EXTERNAL LSAME, SISNAN
  173. * ..
  174. * .. Intrinsic Functions ..
  175. INTRINSIC ABS, MAX, MIN, SQRT
  176. * ..
  177. * .. Executable Statements ..
  178. *
  179. IF( N.EQ.0 ) THEN
  180. VALUE = ZERO
  181. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  182. *
  183. * Find max(abs(A(i,j))).
  184. *
  185. IF( LSAME( DIAG, 'U' ) ) THEN
  186. VALUE = ONE
  187. IF( LSAME( UPLO, 'U' ) ) THEN
  188. DO 20 J = 1, N
  189. DO 10 I = MAX( K+2-J, 1 ), K
  190. SUM = ABS( AB( I, J ) )
  191. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  192. 10 CONTINUE
  193. 20 CONTINUE
  194. ELSE
  195. DO 40 J = 1, N
  196. DO 30 I = 2, MIN( N+1-J, K+1 )
  197. SUM = ABS( AB( I, J ) )
  198. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  199. 30 CONTINUE
  200. 40 CONTINUE
  201. END IF
  202. ELSE
  203. VALUE = ZERO
  204. IF( LSAME( UPLO, 'U' ) ) THEN
  205. DO 60 J = 1, N
  206. DO 50 I = MAX( K+2-J, 1 ), K + 1
  207. SUM = ABS( AB( I, J ) )
  208. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  209. 50 CONTINUE
  210. 60 CONTINUE
  211. ELSE
  212. DO 80 J = 1, N
  213. DO 70 I = 1, MIN( N+1-J, K+1 )
  214. SUM = ABS( AB( I, J ) )
  215. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  216. 70 CONTINUE
  217. 80 CONTINUE
  218. END IF
  219. END IF
  220. ELSE IF( ( LSAME( NORM, 'O' ) ) .OR. ( NORM.EQ.'1' ) ) THEN
  221. *
  222. * Find norm1(A).
  223. *
  224. VALUE = ZERO
  225. UDIAG = LSAME( DIAG, 'U' )
  226. IF( LSAME( UPLO, 'U' ) ) THEN
  227. DO 110 J = 1, N
  228. IF( UDIAG ) THEN
  229. SUM = ONE
  230. DO 90 I = MAX( K+2-J, 1 ), K
  231. SUM = SUM + ABS( AB( I, J ) )
  232. 90 CONTINUE
  233. ELSE
  234. SUM = ZERO
  235. DO 100 I = MAX( K+2-J, 1 ), K + 1
  236. SUM = SUM + ABS( AB( I, J ) )
  237. 100 CONTINUE
  238. END IF
  239. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  240. 110 CONTINUE
  241. ELSE
  242. DO 140 J = 1, N
  243. IF( UDIAG ) THEN
  244. SUM = ONE
  245. DO 120 I = 2, MIN( N+1-J, K+1 )
  246. SUM = SUM + ABS( AB( I, J ) )
  247. 120 CONTINUE
  248. ELSE
  249. SUM = ZERO
  250. DO 130 I = 1, MIN( N+1-J, K+1 )
  251. SUM = SUM + ABS( AB( I, J ) )
  252. 130 CONTINUE
  253. END IF
  254. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  255. 140 CONTINUE
  256. END IF
  257. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  258. *
  259. * Find normI(A).
  260. *
  261. VALUE = ZERO
  262. IF( LSAME( UPLO, 'U' ) ) THEN
  263. IF( LSAME( DIAG, 'U' ) ) THEN
  264. DO 150 I = 1, N
  265. WORK( I ) = ONE
  266. 150 CONTINUE
  267. DO 170 J = 1, N
  268. L = K + 1 - J
  269. DO 160 I = MAX( 1, J-K ), J - 1
  270. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  271. 160 CONTINUE
  272. 170 CONTINUE
  273. ELSE
  274. DO 180 I = 1, N
  275. WORK( I ) = ZERO
  276. 180 CONTINUE
  277. DO 200 J = 1, N
  278. L = K + 1 - J
  279. DO 190 I = MAX( 1, J-K ), J
  280. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  281. 190 CONTINUE
  282. 200 CONTINUE
  283. END IF
  284. ELSE
  285. IF( LSAME( DIAG, 'U' ) ) THEN
  286. DO 210 I = 1, N
  287. WORK( I ) = ONE
  288. 210 CONTINUE
  289. DO 230 J = 1, N
  290. L = 1 - J
  291. DO 220 I = J + 1, MIN( N, J+K )
  292. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  293. 220 CONTINUE
  294. 230 CONTINUE
  295. ELSE
  296. DO 240 I = 1, N
  297. WORK( I ) = ZERO
  298. 240 CONTINUE
  299. DO 260 J = 1, N
  300. L = 1 - J
  301. DO 250 I = J, MIN( N, J+K )
  302. WORK( I ) = WORK( I ) + ABS( AB( L+I, J ) )
  303. 250 CONTINUE
  304. 260 CONTINUE
  305. END IF
  306. END IF
  307. DO 270 I = 1, N
  308. SUM = WORK( I )
  309. IF( VALUE .LT. SUM .OR. SISNAN( SUM ) ) VALUE = SUM
  310. 270 CONTINUE
  311. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  312. *
  313. * Find normF(A).
  314. *
  315. IF( LSAME( UPLO, 'U' ) ) THEN
  316. IF( LSAME( DIAG, 'U' ) ) THEN
  317. SCALE = ONE
  318. SUM = N
  319. IF( K.GT.0 ) THEN
  320. DO 280 J = 2, N
  321. CALL SLASSQ( MIN( J-1, K ),
  322. $ AB( MAX( K+2-J, 1 ), J ), 1, SCALE,
  323. $ SUM )
  324. 280 CONTINUE
  325. END IF
  326. ELSE
  327. SCALE = ZERO
  328. SUM = ONE
  329. DO 290 J = 1, N
  330. CALL SLASSQ( MIN( J, K+1 ), AB( MAX( K+2-J, 1 ), J ),
  331. $ 1, SCALE, SUM )
  332. 290 CONTINUE
  333. END IF
  334. ELSE
  335. IF( LSAME( DIAG, 'U' ) ) THEN
  336. SCALE = ONE
  337. SUM = N
  338. IF( K.GT.0 ) THEN
  339. DO 300 J = 1, N - 1
  340. CALL SLASSQ( MIN( N-J, K ), AB( 2, J ), 1, SCALE,
  341. $ SUM )
  342. 300 CONTINUE
  343. END IF
  344. ELSE
  345. SCALE = ZERO
  346. SUM = ONE
  347. DO 310 J = 1, N
  348. CALL SLASSQ( MIN( N-J+1, K+1 ), AB( 1, J ), 1, SCALE,
  349. $ SUM )
  350. 310 CONTINUE
  351. END IF
  352. END IF
  353. VALUE = SCALE*SQRT( SUM )
  354. END IF
  355. *
  356. SLANTB = VALUE
  357. RETURN
  358. *
  359. * End of SLANTB
  360. *
  361. END