You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slagtf.f 8.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266
  1. *> \brief \b SLAGTF computes an LU factorization of a matrix T-λI, where T is a general tridiagonal matrix, and λ a scalar, using partial pivoting with row interchanges.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLAGTF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slagtf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slagtf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slagtf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, N
  25. * REAL LAMBDA, TOL
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IN( * )
  29. * REAL A( * ), B( * ), C( * ), D( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> SLAGTF factorizes the matrix (T - lambda*I), where T is an n by n
  39. *> tridiagonal matrix and lambda is a scalar, as
  40. *>
  41. *> T - lambda*I = PLU,
  42. *>
  43. *> where P is a permutation matrix, L is a unit lower tridiagonal matrix
  44. *> with at most one non-zero sub-diagonal elements per column and U is
  45. *> an upper triangular matrix with at most two non-zero super-diagonal
  46. *> elements per column.
  47. *>
  48. *> The factorization is obtained by Gaussian elimination with partial
  49. *> pivoting and implicit row scaling.
  50. *>
  51. *> The parameter LAMBDA is included in the routine so that SLAGTF may
  52. *> be used, in conjunction with SLAGTS, to obtain eigenvectors of T by
  53. *> inverse iteration.
  54. *> \endverbatim
  55. *
  56. * Arguments:
  57. * ==========
  58. *
  59. *> \param[in] N
  60. *> \verbatim
  61. *> N is INTEGER
  62. *> The order of the matrix T.
  63. *> \endverbatim
  64. *>
  65. *> \param[in,out] A
  66. *> \verbatim
  67. *> A is REAL array, dimension (N)
  68. *> On entry, A must contain the diagonal elements of T.
  69. *>
  70. *> On exit, A is overwritten by the n diagonal elements of the
  71. *> upper triangular matrix U of the factorization of T.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] LAMBDA
  75. *> \verbatim
  76. *> LAMBDA is REAL
  77. *> On entry, the scalar lambda.
  78. *> \endverbatim
  79. *>
  80. *> \param[in,out] B
  81. *> \verbatim
  82. *> B is REAL array, dimension (N-1)
  83. *> On entry, B must contain the (n-1) super-diagonal elements of
  84. *> T.
  85. *>
  86. *> On exit, B is overwritten by the (n-1) super-diagonal
  87. *> elements of the matrix U of the factorization of T.
  88. *> \endverbatim
  89. *>
  90. *> \param[in,out] C
  91. *> \verbatim
  92. *> C is REAL array, dimension (N-1)
  93. *> On entry, C must contain the (n-1) sub-diagonal elements of
  94. *> T.
  95. *>
  96. *> On exit, C is overwritten by the (n-1) sub-diagonal elements
  97. *> of the matrix L of the factorization of T.
  98. *> \endverbatim
  99. *>
  100. *> \param[in] TOL
  101. *> \verbatim
  102. *> TOL is REAL
  103. *> On entry, a relative tolerance used to indicate whether or
  104. *> not the matrix (T - lambda*I) is nearly singular. TOL should
  105. *> normally be chose as approximately the largest relative error
  106. *> in the elements of T. For example, if the elements of T are
  107. *> correct to about 4 significant figures, then TOL should be
  108. *> set to about 5*10**(-4). If TOL is supplied as less than eps,
  109. *> where eps is the relative machine precision, then the value
  110. *> eps is used in place of TOL.
  111. *> \endverbatim
  112. *>
  113. *> \param[out] D
  114. *> \verbatim
  115. *> D is REAL array, dimension (N-2)
  116. *> On exit, D is overwritten by the (n-2) second super-diagonal
  117. *> elements of the matrix U of the factorization of T.
  118. *> \endverbatim
  119. *>
  120. *> \param[out] IN
  121. *> \verbatim
  122. *> IN is INTEGER array, dimension (N)
  123. *> On exit, IN contains details of the permutation matrix P. If
  124. *> an interchange occurred at the kth step of the elimination,
  125. *> then IN(k) = 1, otherwise IN(k) = 0. The element IN(n)
  126. *> returns the smallest positive integer j such that
  127. *>
  128. *> abs( u(j,j) ).le. norm( (T - lambda*I)(j) )*TOL,
  129. *>
  130. *> where norm( A(j) ) denotes the sum of the absolute values of
  131. *> the jth row of the matrix A. If no such j exists then IN(n)
  132. *> is returned as zero. If IN(n) is returned as positive, then a
  133. *> diagonal element of U is small, indicating that
  134. *> (T - lambda*I) is singular or nearly singular,
  135. *> \endverbatim
  136. *>
  137. *> \param[out] INFO
  138. *> \verbatim
  139. *> INFO is INTEGER
  140. *> = 0 : successful exit
  141. *> .lt. 0: if INFO = -k, the kth argument had an illegal value
  142. *> \endverbatim
  143. *
  144. * Authors:
  145. * ========
  146. *
  147. *> \author Univ. of Tennessee
  148. *> \author Univ. of California Berkeley
  149. *> \author Univ. of Colorado Denver
  150. *> \author NAG Ltd.
  151. *
  152. *> \date September 2012
  153. *
  154. *> \ingroup auxOTHERcomputational
  155. *
  156. * =====================================================================
  157. SUBROUTINE SLAGTF( N, A, LAMBDA, B, C, TOL, D, IN, INFO )
  158. *
  159. * -- LAPACK computational routine (version 3.4.2) --
  160. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  161. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  162. * September 2012
  163. *
  164. * .. Scalar Arguments ..
  165. INTEGER INFO, N
  166. REAL LAMBDA, TOL
  167. * ..
  168. * .. Array Arguments ..
  169. INTEGER IN( * )
  170. REAL A( * ), B( * ), C( * ), D( * )
  171. * ..
  172. *
  173. * =====================================================================
  174. *
  175. * .. Parameters ..
  176. REAL ZERO
  177. PARAMETER ( ZERO = 0.0E+0 )
  178. * ..
  179. * .. Local Scalars ..
  180. INTEGER K
  181. REAL EPS, MULT, PIV1, PIV2, SCALE1, SCALE2, TEMP, TL
  182. * ..
  183. * .. Intrinsic Functions ..
  184. INTRINSIC ABS, MAX
  185. * ..
  186. * .. External Functions ..
  187. REAL SLAMCH
  188. EXTERNAL SLAMCH
  189. * ..
  190. * .. External Subroutines ..
  191. EXTERNAL XERBLA
  192. * ..
  193. * .. Executable Statements ..
  194. *
  195. INFO = 0
  196. IF( N.LT.0 ) THEN
  197. INFO = -1
  198. CALL XERBLA( 'SLAGTF', -INFO )
  199. RETURN
  200. END IF
  201. *
  202. IF( N.EQ.0 )
  203. $ RETURN
  204. *
  205. A( 1 ) = A( 1 ) - LAMBDA
  206. IN( N ) = 0
  207. IF( N.EQ.1 ) THEN
  208. IF( A( 1 ).EQ.ZERO )
  209. $ IN( 1 ) = 1
  210. RETURN
  211. END IF
  212. *
  213. EPS = SLAMCH( 'Epsilon' )
  214. *
  215. TL = MAX( TOL, EPS )
  216. SCALE1 = ABS( A( 1 ) ) + ABS( B( 1 ) )
  217. DO 10 K = 1, N - 1
  218. A( K+1 ) = A( K+1 ) - LAMBDA
  219. SCALE2 = ABS( C( K ) ) + ABS( A( K+1 ) )
  220. IF( K.LT.( N-1 ) )
  221. $ SCALE2 = SCALE2 + ABS( B( K+1 ) )
  222. IF( A( K ).EQ.ZERO ) THEN
  223. PIV1 = ZERO
  224. ELSE
  225. PIV1 = ABS( A( K ) ) / SCALE1
  226. END IF
  227. IF( C( K ).EQ.ZERO ) THEN
  228. IN( K ) = 0
  229. PIV2 = ZERO
  230. SCALE1 = SCALE2
  231. IF( K.LT.( N-1 ) )
  232. $ D( K ) = ZERO
  233. ELSE
  234. PIV2 = ABS( C( K ) ) / SCALE2
  235. IF( PIV2.LE.PIV1 ) THEN
  236. IN( K ) = 0
  237. SCALE1 = SCALE2
  238. C( K ) = C( K ) / A( K )
  239. A( K+1 ) = A( K+1 ) - C( K )*B( K )
  240. IF( K.LT.( N-1 ) )
  241. $ D( K ) = ZERO
  242. ELSE
  243. IN( K ) = 1
  244. MULT = A( K ) / C( K )
  245. A( K ) = C( K )
  246. TEMP = A( K+1 )
  247. A( K+1 ) = B( K ) - MULT*TEMP
  248. IF( K.LT.( N-1 ) ) THEN
  249. D( K ) = B( K+1 )
  250. B( K+1 ) = -MULT*D( K )
  251. END IF
  252. B( K ) = TEMP
  253. C( K ) = MULT
  254. END IF
  255. END IF
  256. IF( ( MAX( PIV1, PIV2 ).LE.TL ) .AND. ( IN( N ).EQ.0 ) )
  257. $ IN( N ) = K
  258. 10 CONTINUE
  259. IF( ( ABS( A( N ) ).LE.SCALE1*TL ) .AND. ( IN( N ).EQ.0 ) )
  260. $ IN( N ) = N
  261. *
  262. RETURN
  263. *
  264. * End of SLAGTF
  265. *
  266. END