|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520 |
- *> \brief \b SGGSVP
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- *> \htmlonly
- *> Download SGGSVP + dependencies
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggsvp.f">
- *> [TGZ]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggsvp.f">
- *> [ZIP]</a>
- *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggsvp.f">
- *> [TXT]</a>
- *> \endhtmlonly
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE SGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
- * TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
- * IWORK, TAU, WORK, INFO )
- *
- * .. Scalar Arguments ..
- * CHARACTER JOBQ, JOBU, JOBV
- * INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
- * REAL TOLA, TOLB
- * ..
- * .. Array Arguments ..
- * INTEGER IWORK( * )
- * REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
- * $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> SGGSVP computes orthogonal matrices U, V and Q such that
- *>
- *> N-K-L K L
- *> U**T*A*Q = K ( 0 A12 A13 ) if M-K-L >= 0;
- *> L ( 0 0 A23 )
- *> M-K-L ( 0 0 0 )
- *>
- *> N-K-L K L
- *> = K ( 0 A12 A13 ) if M-K-L < 0;
- *> M-K ( 0 0 A23 )
- *>
- *> N-K-L K L
- *> V**T*B*Q = L ( 0 0 B13 )
- *> P-L ( 0 0 0 )
- *>
- *> where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
- *> upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
- *> otherwise A23 is (M-K)-by-L upper trapezoidal. K+L = the effective
- *> numerical rank of the (M+P)-by-N matrix (A**T,B**T)**T.
- *>
- *> This decomposition is the preprocessing step for computing the
- *> Generalized Singular Value Decomposition (GSVD), see subroutine
- *> SGGSVD.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] JOBU
- *> \verbatim
- *> JOBU is CHARACTER*1
- *> = 'U': Orthogonal matrix U is computed;
- *> = 'N': U is not computed.
- *> \endverbatim
- *>
- *> \param[in] JOBV
- *> \verbatim
- *> JOBV is CHARACTER*1
- *> = 'V': Orthogonal matrix V is computed;
- *> = 'N': V is not computed.
- *> \endverbatim
- *>
- *> \param[in] JOBQ
- *> \verbatim
- *> JOBQ is CHARACTER*1
- *> = 'Q': Orthogonal matrix Q is computed;
- *> = 'N': Q is not computed.
- *> \endverbatim
- *>
- *> \param[in] M
- *> \verbatim
- *> M is INTEGER
- *> The number of rows of the matrix A. M >= 0.
- *> \endverbatim
- *>
- *> \param[in] P
- *> \verbatim
- *> P is INTEGER
- *> The number of rows of the matrix B. P >= 0.
- *> \endverbatim
- *>
- *> \param[in] N
- *> \verbatim
- *> N is INTEGER
- *> The number of columns of the matrices A and B. N >= 0.
- *> \endverbatim
- *>
- *> \param[in,out] A
- *> \verbatim
- *> A is REAL array, dimension (LDA,N)
- *> On entry, the M-by-N matrix A.
- *> On exit, A contains the triangular (or trapezoidal) matrix
- *> described in the Purpose section.
- *> \endverbatim
- *>
- *> \param[in] LDA
- *> \verbatim
- *> LDA is INTEGER
- *> The leading dimension of the array A. LDA >= max(1,M).
- *> \endverbatim
- *>
- *> \param[in,out] B
- *> \verbatim
- *> B is REAL array, dimension (LDB,N)
- *> On entry, the P-by-N matrix B.
- *> On exit, B contains the triangular matrix described in
- *> the Purpose section.
- *> \endverbatim
- *>
- *> \param[in] LDB
- *> \verbatim
- *> LDB is INTEGER
- *> The leading dimension of the array B. LDB >= max(1,P).
- *> \endverbatim
- *>
- *> \param[in] TOLA
- *> \verbatim
- *> TOLA is REAL
- *> \endverbatim
- *>
- *> \param[in] TOLB
- *> \verbatim
- *> TOLB is REAL
- *>
- *> TOLA and TOLB are the thresholds to determine the effective
- *> numerical rank of matrix B and a subblock of A. Generally,
- *> they are set to
- *> TOLA = MAX(M,N)*norm(A)*MACHEPS,
- *> TOLB = MAX(P,N)*norm(B)*MACHEPS.
- *> The size of TOLA and TOLB may affect the size of backward
- *> errors of the decomposition.
- *> \endverbatim
- *>
- *> \param[out] K
- *> \verbatim
- *> K is INTEGER
- *> \endverbatim
- *>
- *> \param[out] L
- *> \verbatim
- *> L is INTEGER
- *>
- *> On exit, K and L specify the dimension of the subblocks
- *> described in Purpose section.
- *> K + L = effective numerical rank of (A**T,B**T)**T.
- *> \endverbatim
- *>
- *> \param[out] U
- *> \verbatim
- *> U is REAL array, dimension (LDU,M)
- *> If JOBU = 'U', U contains the orthogonal matrix U.
- *> If JOBU = 'N', U is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDU
- *> \verbatim
- *> LDU is INTEGER
- *> The leading dimension of the array U. LDU >= max(1,M) if
- *> JOBU = 'U'; LDU >= 1 otherwise.
- *> \endverbatim
- *>
- *> \param[out] V
- *> \verbatim
- *> V is REAL array, dimension (LDV,P)
- *> If JOBV = 'V', V contains the orthogonal matrix V.
- *> If JOBV = 'N', V is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDV
- *> \verbatim
- *> LDV is INTEGER
- *> The leading dimension of the array V. LDV >= max(1,P) if
- *> JOBV = 'V'; LDV >= 1 otherwise.
- *> \endverbatim
- *>
- *> \param[out] Q
- *> \verbatim
- *> Q is REAL array, dimension (LDQ,N)
- *> If JOBQ = 'Q', Q contains the orthogonal matrix Q.
- *> If JOBQ = 'N', Q is not referenced.
- *> \endverbatim
- *>
- *> \param[in] LDQ
- *> \verbatim
- *> LDQ is INTEGER
- *> The leading dimension of the array Q. LDQ >= max(1,N) if
- *> JOBQ = 'Q'; LDQ >= 1 otherwise.
- *> \endverbatim
- *>
- *> \param[out] IWORK
- *> \verbatim
- *> IWORK is INTEGER array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] TAU
- *> \verbatim
- *> TAU is REAL array, dimension (N)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is REAL array, dimension (max(3*N,M,P))
- *> \endverbatim
- *>
- *> \param[out] INFO
- *> \verbatim
- *> INFO is INTEGER
- *> = 0: successful exit
- *> < 0: if INFO = -i, the i-th argument had an illegal value.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date November 2011
- *
- *> \ingroup realOTHERcomputational
- *
- *> \par Further Details:
- * =====================
- *>
- *> The subroutine uses LAPACK subroutine SGEQPF for the QR factorization
- *> with column pivoting to detect the effective numerical rank of the
- *> a matrix. It may be replaced by a better rank determination strategy.
- *>
- * =====================================================================
- SUBROUTINE SGGSVP( JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB,
- $ TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ,
- $ IWORK, TAU, WORK, INFO )
- *
- * -- LAPACK computational routine (version 3.4.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * November 2011
- *
- * .. Scalar Arguments ..
- CHARACTER JOBQ, JOBU, JOBV
- INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P
- REAL TOLA, TOLB
- * ..
- * .. Array Arguments ..
- INTEGER IWORK( * )
- REAL A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
- $ TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- REAL ZERO, ONE
- PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
- * ..
- * .. Local Scalars ..
- LOGICAL FORWRD, WANTQ, WANTU, WANTV
- INTEGER I, J
- * ..
- * .. External Functions ..
- LOGICAL LSAME
- EXTERNAL LSAME
- * ..
- * .. External Subroutines ..
- EXTERNAL SGEQPF, SGEQR2, SGERQ2, SLACPY, SLAPMT, SLASET,
- $ SORG2R, SORM2R, SORMR2, XERBLA
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX, MIN
- * ..
- * .. Executable Statements ..
- *
- * Test the input parameters
- *
- WANTU = LSAME( JOBU, 'U' )
- WANTV = LSAME( JOBV, 'V' )
- WANTQ = LSAME( JOBQ, 'Q' )
- FORWRD = .TRUE.
- *
- INFO = 0
- IF( .NOT.( WANTU .OR. LSAME( JOBU, 'N' ) ) ) THEN
- INFO = -1
- ELSE IF( .NOT.( WANTV .OR. LSAME( JOBV, 'N' ) ) ) THEN
- INFO = -2
- ELSE IF( .NOT.( WANTQ .OR. LSAME( JOBQ, 'N' ) ) ) THEN
- INFO = -3
- ELSE IF( M.LT.0 ) THEN
- INFO = -4
- ELSE IF( P.LT.0 ) THEN
- INFO = -5
- ELSE IF( N.LT.0 ) THEN
- INFO = -6
- ELSE IF( LDA.LT.MAX( 1, M ) ) THEN
- INFO = -8
- ELSE IF( LDB.LT.MAX( 1, P ) ) THEN
- INFO = -10
- ELSE IF( LDU.LT.1 .OR. ( WANTU .AND. LDU.LT.M ) ) THEN
- INFO = -16
- ELSE IF( LDV.LT.1 .OR. ( WANTV .AND. LDV.LT.P ) ) THEN
- INFO = -18
- ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
- INFO = -20
- END IF
- IF( INFO.NE.0 ) THEN
- CALL XERBLA( 'SGGSVP', -INFO )
- RETURN
- END IF
- *
- * QR with column pivoting of B: B*P = V*( S11 S12 )
- * ( 0 0 )
- *
- DO 10 I = 1, N
- IWORK( I ) = 0
- 10 CONTINUE
- CALL SGEQPF( P, N, B, LDB, IWORK, TAU, WORK, INFO )
- *
- * Update A := A*P
- *
- CALL SLAPMT( FORWRD, M, N, A, LDA, IWORK )
- *
- * Determine the effective rank of matrix B.
- *
- L = 0
- DO 20 I = 1, MIN( P, N )
- IF( ABS( B( I, I ) ).GT.TOLB )
- $ L = L + 1
- 20 CONTINUE
- *
- IF( WANTV ) THEN
- *
- * Copy the details of V, and form V.
- *
- CALL SLASET( 'Full', P, P, ZERO, ZERO, V, LDV )
- IF( P.GT.1 )
- $ CALL SLACPY( 'Lower', P-1, N, B( 2, 1 ), LDB, V( 2, 1 ),
- $ LDV )
- CALL SORG2R( P, P, MIN( P, N ), V, LDV, TAU, WORK, INFO )
- END IF
- *
- * Clean up B
- *
- DO 40 J = 1, L - 1
- DO 30 I = J + 1, L
- B( I, J ) = ZERO
- 30 CONTINUE
- 40 CONTINUE
- IF( P.GT.L )
- $ CALL SLASET( 'Full', P-L, N, ZERO, ZERO, B( L+1, 1 ), LDB )
- *
- IF( WANTQ ) THEN
- *
- * Set Q = I and Update Q := Q*P
- *
- CALL SLASET( 'Full', N, N, ZERO, ONE, Q, LDQ )
- CALL SLAPMT( FORWRD, N, N, Q, LDQ, IWORK )
- END IF
- *
- IF( P.GE.L .AND. N.NE.L ) THEN
- *
- * RQ factorization of (S11 S12): ( S11 S12 ) = ( 0 S12 )*Z
- *
- CALL SGERQ2( L, N, B, LDB, TAU, WORK, INFO )
- *
- * Update A := A*Z**T
- *
- CALL SORMR2( 'Right', 'Transpose', M, N, L, B, LDB, TAU, A,
- $ LDA, WORK, INFO )
- *
- IF( WANTQ ) THEN
- *
- * Update Q := Q*Z**T
- *
- CALL SORMR2( 'Right', 'Transpose', N, N, L, B, LDB, TAU, Q,
- $ LDQ, WORK, INFO )
- END IF
- *
- * Clean up B
- *
- CALL SLASET( 'Full', L, N-L, ZERO, ZERO, B, LDB )
- DO 60 J = N - L + 1, N
- DO 50 I = J - N + L + 1, L
- B( I, J ) = ZERO
- 50 CONTINUE
- 60 CONTINUE
- *
- END IF
- *
- * Let N-L L
- * A = ( A11 A12 ) M,
- *
- * then the following does the complete QR decomposition of A11:
- *
- * A11 = U*( 0 T12 )*P1**T
- * ( 0 0 )
- *
- DO 70 I = 1, N - L
- IWORK( I ) = 0
- 70 CONTINUE
- CALL SGEQPF( M, N-L, A, LDA, IWORK, TAU, WORK, INFO )
- *
- * Determine the effective rank of A11
- *
- K = 0
- DO 80 I = 1, MIN( M, N-L )
- IF( ABS( A( I, I ) ).GT.TOLA )
- $ K = K + 1
- 80 CONTINUE
- *
- * Update A12 := U**T*A12, where A12 = A( 1:M, N-L+1:N )
- *
- CALL SORM2R( 'Left', 'Transpose', M, L, MIN( M, N-L ), A, LDA,
- $ TAU, A( 1, N-L+1 ), LDA, WORK, INFO )
- *
- IF( WANTU ) THEN
- *
- * Copy the details of U, and form U
- *
- CALL SLASET( 'Full', M, M, ZERO, ZERO, U, LDU )
- IF( M.GT.1 )
- $ CALL SLACPY( 'Lower', M-1, N-L, A( 2, 1 ), LDA, U( 2, 1 ),
- $ LDU )
- CALL SORG2R( M, M, MIN( M, N-L ), U, LDU, TAU, WORK, INFO )
- END IF
- *
- IF( WANTQ ) THEN
- *
- * Update Q( 1:N, 1:N-L ) = Q( 1:N, 1:N-L )*P1
- *
- CALL SLAPMT( FORWRD, N, N-L, Q, LDQ, IWORK )
- END IF
- *
- * Clean up A: set the strictly lower triangular part of
- * A(1:K, 1:K) = 0, and A( K+1:M, 1:N-L ) = 0.
- *
- DO 100 J = 1, K - 1
- DO 90 I = J + 1, K
- A( I, J ) = ZERO
- 90 CONTINUE
- 100 CONTINUE
- IF( M.GT.K )
- $ CALL SLASET( 'Full', M-K, N-L, ZERO, ZERO, A( K+1, 1 ), LDA )
- *
- IF( N-L.GT.K ) THEN
- *
- * RQ factorization of ( T11 T12 ) = ( 0 T12 )*Z1
- *
- CALL SGERQ2( K, N-L, A, LDA, TAU, WORK, INFO )
- *
- IF( WANTQ ) THEN
- *
- * Update Q( 1:N,1:N-L ) = Q( 1:N,1:N-L )*Z1**T
- *
- CALL SORMR2( 'Right', 'Transpose', N, N-L, K, A, LDA, TAU,
- $ Q, LDQ, WORK, INFO )
- END IF
- *
- * Clean up A
- *
- CALL SLASET( 'Full', K, N-L-K, ZERO, ZERO, A, LDA )
- DO 120 J = N - L - K + 1, N - L
- DO 110 I = J - N + L + K + 1, K
- A( I, J ) = ZERO
- 110 CONTINUE
- 120 CONTINUE
- *
- END IF
- *
- IF( M.GT.K ) THEN
- *
- * QR factorization of A( K+1:M,N-L+1:N )
- *
- CALL SGEQR2( M-K, L, A( K+1, N-L+1 ), LDA, TAU, WORK, INFO )
- *
- IF( WANTU ) THEN
- *
- * Update U(:,K+1:M) := U(:,K+1:M)*U1
- *
- CALL SORM2R( 'Right', 'No transpose', M, M-K, MIN( M-K, L ),
- $ A( K+1, N-L+1 ), LDA, TAU, U( 1, K+1 ), LDU,
- $ WORK, INFO )
- END IF
- *
- * Clean up
- *
- DO 140 J = N - L + 1, N
- DO 130 I = J - N + K + L + 1, M
- A( I, J ) = ZERO
- 130 CONTINUE
- 140 CONTINUE
- *
- END IF
- *
- RETURN
- *
- * End of SGGSVP
- *
- END
|