You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

sgbrfs.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464
  1. *> \brief \b SGBRFS
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SGBRFS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgbrfs.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgbrfs.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgbrfs.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
  22. * IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
  23. * INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER TRANS
  27. * INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
  28. * ..
  29. * .. Array Arguments ..
  30. * INTEGER IPIV( * ), IWORK( * )
  31. * REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  32. * $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
  33. * ..
  34. *
  35. *
  36. *> \par Purpose:
  37. * =============
  38. *>
  39. *> \verbatim
  40. *>
  41. *> SGBRFS improves the computed solution to a system of linear
  42. *> equations when the coefficient matrix is banded, and provides
  43. *> error bounds and backward error estimates for the solution.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] TRANS
  50. *> \verbatim
  51. *> TRANS is CHARACTER*1
  52. *> Specifies the form of the system of equations:
  53. *> = 'N': A * X = B (No transpose)
  54. *> = 'T': A**T * X = B (Transpose)
  55. *> = 'C': A**H * X = B (Conjugate transpose = Transpose)
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] KL
  65. *> \verbatim
  66. *> KL is INTEGER
  67. *> The number of subdiagonals within the band of A. KL >= 0.
  68. *> \endverbatim
  69. *>
  70. *> \param[in] KU
  71. *> \verbatim
  72. *> KU is INTEGER
  73. *> The number of superdiagonals within the band of A. KU >= 0.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] NRHS
  77. *> \verbatim
  78. *> NRHS is INTEGER
  79. *> The number of right hand sides, i.e., the number of columns
  80. *> of the matrices B and X. NRHS >= 0.
  81. *> \endverbatim
  82. *>
  83. *> \param[in] AB
  84. *> \verbatim
  85. *> AB is REAL array, dimension (LDAB,N)
  86. *> The original band matrix A, stored in rows 1 to KL+KU+1.
  87. *> The j-th column of A is stored in the j-th column of the
  88. *> array AB as follows:
  89. *> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
  90. *> \endverbatim
  91. *>
  92. *> \param[in] LDAB
  93. *> \verbatim
  94. *> LDAB is INTEGER
  95. *> The leading dimension of the array AB. LDAB >= KL+KU+1.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] AFB
  99. *> \verbatim
  100. *> AFB is REAL array, dimension (LDAFB,N)
  101. *> Details of the LU factorization of the band matrix A, as
  102. *> computed by SGBTRF. U is stored as an upper triangular band
  103. *> matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and
  104. *> the multipliers used during the factorization are stored in
  105. *> rows KL+KU+2 to 2*KL+KU+1.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] LDAFB
  109. *> \verbatim
  110. *> LDAFB is INTEGER
  111. *> The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.
  112. *> \endverbatim
  113. *>
  114. *> \param[in] IPIV
  115. *> \verbatim
  116. *> IPIV is INTEGER array, dimension (N)
  117. *> The pivot indices from SGBTRF; for 1<=i<=N, row i of the
  118. *> matrix was interchanged with row IPIV(i).
  119. *> \endverbatim
  120. *>
  121. *> \param[in] B
  122. *> \verbatim
  123. *> B is REAL array, dimension (LDB,NRHS)
  124. *> The right hand side matrix B.
  125. *> \endverbatim
  126. *>
  127. *> \param[in] LDB
  128. *> \verbatim
  129. *> LDB is INTEGER
  130. *> The leading dimension of the array B. LDB >= max(1,N).
  131. *> \endverbatim
  132. *>
  133. *> \param[in,out] X
  134. *> \verbatim
  135. *> X is REAL array, dimension (LDX,NRHS)
  136. *> On entry, the solution matrix X, as computed by SGBTRS.
  137. *> On exit, the improved solution matrix X.
  138. *> \endverbatim
  139. *>
  140. *> \param[in] LDX
  141. *> \verbatim
  142. *> LDX is INTEGER
  143. *> The leading dimension of the array X. LDX >= max(1,N).
  144. *> \endverbatim
  145. *>
  146. *> \param[out] FERR
  147. *> \verbatim
  148. *> FERR is REAL array, dimension (NRHS)
  149. *> The estimated forward error bound for each solution vector
  150. *> X(j) (the j-th column of the solution matrix X).
  151. *> If XTRUE is the true solution corresponding to X(j), FERR(j)
  152. *> is an estimated upper bound for the magnitude of the largest
  153. *> element in (X(j) - XTRUE) divided by the magnitude of the
  154. *> largest element in X(j). The estimate is as reliable as
  155. *> the estimate for RCOND, and is almost always a slight
  156. *> overestimate of the true error.
  157. *> \endverbatim
  158. *>
  159. *> \param[out] BERR
  160. *> \verbatim
  161. *> BERR is REAL array, dimension (NRHS)
  162. *> The componentwise relative backward error of each solution
  163. *> vector X(j) (i.e., the smallest relative change in
  164. *> any element of A or B that makes X(j) an exact solution).
  165. *> \endverbatim
  166. *>
  167. *> \param[out] WORK
  168. *> \verbatim
  169. *> WORK is REAL array, dimension (3*N)
  170. *> \endverbatim
  171. *>
  172. *> \param[out] IWORK
  173. *> \verbatim
  174. *> IWORK is INTEGER array, dimension (N)
  175. *> \endverbatim
  176. *>
  177. *> \param[out] INFO
  178. *> \verbatim
  179. *> INFO is INTEGER
  180. *> = 0: successful exit
  181. *> < 0: if INFO = -i, the i-th argument had an illegal value
  182. *> \endverbatim
  183. *
  184. *> \par Internal Parameters:
  185. * =========================
  186. *>
  187. *> \verbatim
  188. *> ITMAX is the maximum number of steps of iterative refinement.
  189. *> \endverbatim
  190. *
  191. * Authors:
  192. * ========
  193. *
  194. *> \author Univ. of Tennessee
  195. *> \author Univ. of California Berkeley
  196. *> \author Univ. of Colorado Denver
  197. *> \author NAG Ltd.
  198. *
  199. *> \date November 2011
  200. *
  201. *> \ingroup realGBcomputational
  202. *
  203. * =====================================================================
  204. SUBROUTINE SGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB,
  205. $ IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
  206. $ INFO )
  207. *
  208. * -- LAPACK computational routine (version 3.4.0) --
  209. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  210. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  211. * November 2011
  212. *
  213. * .. Scalar Arguments ..
  214. CHARACTER TRANS
  215. INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
  216. * ..
  217. * .. Array Arguments ..
  218. INTEGER IPIV( * ), IWORK( * )
  219. REAL AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
  220. $ BERR( * ), FERR( * ), WORK( * ), X( LDX, * )
  221. * ..
  222. *
  223. * =====================================================================
  224. *
  225. * .. Parameters ..
  226. INTEGER ITMAX
  227. PARAMETER ( ITMAX = 5 )
  228. REAL ZERO
  229. PARAMETER ( ZERO = 0.0E+0 )
  230. REAL ONE
  231. PARAMETER ( ONE = 1.0E+0 )
  232. REAL TWO
  233. PARAMETER ( TWO = 2.0E+0 )
  234. REAL THREE
  235. PARAMETER ( THREE = 3.0E+0 )
  236. * ..
  237. * .. Local Scalars ..
  238. LOGICAL NOTRAN
  239. CHARACTER TRANST
  240. INTEGER COUNT, I, J, K, KASE, KK, NZ
  241. REAL EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN, XK
  242. * ..
  243. * .. Local Arrays ..
  244. INTEGER ISAVE( 3 )
  245. * ..
  246. * .. External Subroutines ..
  247. EXTERNAL SAXPY, SCOPY, SGBMV, SGBTRS, SLACN2, XERBLA
  248. * ..
  249. * .. Intrinsic Functions ..
  250. INTRINSIC ABS, MAX, MIN
  251. * ..
  252. * .. External Functions ..
  253. LOGICAL LSAME
  254. REAL SLAMCH
  255. EXTERNAL LSAME, SLAMCH
  256. * ..
  257. * .. Executable Statements ..
  258. *
  259. * Test the input parameters.
  260. *
  261. INFO = 0
  262. NOTRAN = LSAME( TRANS, 'N' )
  263. IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  264. $ LSAME( TRANS, 'C' ) ) THEN
  265. INFO = -1
  266. ELSE IF( N.LT.0 ) THEN
  267. INFO = -2
  268. ELSE IF( KL.LT.0 ) THEN
  269. INFO = -3
  270. ELSE IF( KU.LT.0 ) THEN
  271. INFO = -4
  272. ELSE IF( NRHS.LT.0 ) THEN
  273. INFO = -5
  274. ELSE IF( LDAB.LT.KL+KU+1 ) THEN
  275. INFO = -7
  276. ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
  277. INFO = -9
  278. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  279. INFO = -12
  280. ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
  281. INFO = -14
  282. END IF
  283. IF( INFO.NE.0 ) THEN
  284. CALL XERBLA( 'SGBRFS', -INFO )
  285. RETURN
  286. END IF
  287. *
  288. * Quick return if possible
  289. *
  290. IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
  291. DO 10 J = 1, NRHS
  292. FERR( J ) = ZERO
  293. BERR( J ) = ZERO
  294. 10 CONTINUE
  295. RETURN
  296. END IF
  297. *
  298. IF( NOTRAN ) THEN
  299. TRANST = 'T'
  300. ELSE
  301. TRANST = 'N'
  302. END IF
  303. *
  304. * NZ = maximum number of nonzero elements in each row of A, plus 1
  305. *
  306. NZ = MIN( KL+KU+2, N+1 )
  307. EPS = SLAMCH( 'Epsilon' )
  308. SAFMIN = SLAMCH( 'Safe minimum' )
  309. SAFE1 = NZ*SAFMIN
  310. SAFE2 = SAFE1 / EPS
  311. *
  312. * Do for each right hand side
  313. *
  314. DO 140 J = 1, NRHS
  315. *
  316. COUNT = 1
  317. LSTRES = THREE
  318. 20 CONTINUE
  319. *
  320. * Loop until stopping criterion is satisfied.
  321. *
  322. * Compute residual R = B - op(A) * X,
  323. * where op(A) = A, A**T, or A**H, depending on TRANS.
  324. *
  325. CALL SCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
  326. CALL SGBMV( TRANS, N, N, KL, KU, -ONE, AB, LDAB, X( 1, J ), 1,
  327. $ ONE, WORK( N+1 ), 1 )
  328. *
  329. * Compute componentwise relative backward error from formula
  330. *
  331. * max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
  332. *
  333. * where abs(Z) is the componentwise absolute value of the matrix
  334. * or vector Z. If the i-th component of the denominator is less
  335. * than SAFE2, then SAFE1 is added to the i-th components of the
  336. * numerator and denominator before dividing.
  337. *
  338. DO 30 I = 1, N
  339. WORK( I ) = ABS( B( I, J ) )
  340. 30 CONTINUE
  341. *
  342. * Compute abs(op(A))*abs(X) + abs(B).
  343. *
  344. IF( NOTRAN ) THEN
  345. DO 50 K = 1, N
  346. KK = KU + 1 - K
  347. XK = ABS( X( K, J ) )
  348. DO 40 I = MAX( 1, K-KU ), MIN( N, K+KL )
  349. WORK( I ) = WORK( I ) + ABS( AB( KK+I, K ) )*XK
  350. 40 CONTINUE
  351. 50 CONTINUE
  352. ELSE
  353. DO 70 K = 1, N
  354. S = ZERO
  355. KK = KU + 1 - K
  356. DO 60 I = MAX( 1, K-KU ), MIN( N, K+KL )
  357. S = S + ABS( AB( KK+I, K ) )*ABS( X( I, J ) )
  358. 60 CONTINUE
  359. WORK( K ) = WORK( K ) + S
  360. 70 CONTINUE
  361. END IF
  362. S = ZERO
  363. DO 80 I = 1, N
  364. IF( WORK( I ).GT.SAFE2 ) THEN
  365. S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
  366. ELSE
  367. S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
  368. $ ( WORK( I )+SAFE1 ) )
  369. END IF
  370. 80 CONTINUE
  371. BERR( J ) = S
  372. *
  373. * Test stopping criterion. Continue iterating if
  374. * 1) The residual BERR(J) is larger than machine epsilon, and
  375. * 2) BERR(J) decreased by at least a factor of 2 during the
  376. * last iteration, and
  377. * 3) At most ITMAX iterations tried.
  378. *
  379. IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
  380. $ COUNT.LE.ITMAX ) THEN
  381. *
  382. * Update solution and try again.
  383. *
  384. CALL SGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV,
  385. $ WORK( N+1 ), N, INFO )
  386. CALL SAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
  387. LSTRES = BERR( J )
  388. COUNT = COUNT + 1
  389. GO TO 20
  390. END IF
  391. *
  392. * Bound error from formula
  393. *
  394. * norm(X - XTRUE) / norm(X) .le. FERR =
  395. * norm( abs(inv(op(A)))*
  396. * ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
  397. *
  398. * where
  399. * norm(Z) is the magnitude of the largest component of Z
  400. * inv(op(A)) is the inverse of op(A)
  401. * abs(Z) is the componentwise absolute value of the matrix or
  402. * vector Z
  403. * NZ is the maximum number of nonzeros in any row of A, plus 1
  404. * EPS is machine epsilon
  405. *
  406. * The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
  407. * is incremented by SAFE1 if the i-th component of
  408. * abs(op(A))*abs(X) + abs(B) is less than SAFE2.
  409. *
  410. * Use SLACN2 to estimate the infinity-norm of the matrix
  411. * inv(op(A)) * diag(W),
  412. * where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
  413. *
  414. DO 90 I = 1, N
  415. IF( WORK( I ).GT.SAFE2 ) THEN
  416. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
  417. ELSE
  418. WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
  419. END IF
  420. 90 CONTINUE
  421. *
  422. KASE = 0
  423. 100 CONTINUE
  424. CALL SLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
  425. $ KASE, ISAVE )
  426. IF( KASE.NE.0 ) THEN
  427. IF( KASE.EQ.1 ) THEN
  428. *
  429. * Multiply by diag(W)*inv(op(A)**T).
  430. *
  431. CALL SGBTRS( TRANST, N, KL, KU, 1, AFB, LDAFB, IPIV,
  432. $ WORK( N+1 ), N, INFO )
  433. DO 110 I = 1, N
  434. WORK( N+I ) = WORK( N+I )*WORK( I )
  435. 110 CONTINUE
  436. ELSE
  437. *
  438. * Multiply by inv(op(A))*diag(W).
  439. *
  440. DO 120 I = 1, N
  441. WORK( N+I ) = WORK( N+I )*WORK( I )
  442. 120 CONTINUE
  443. CALL SGBTRS( TRANS, N, KL, KU, 1, AFB, LDAFB, IPIV,
  444. $ WORK( N+1 ), N, INFO )
  445. END IF
  446. GO TO 100
  447. END IF
  448. *
  449. * Normalize error.
  450. *
  451. LSTRES = ZERO
  452. DO 130 I = 1, N
  453. LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
  454. 130 CONTINUE
  455. IF( LSTRES.NE.ZERO )
  456. $ FERR( J ) = FERR( J ) / LSTRES
  457. *
  458. 140 CONTINUE
  459. *
  460. RETURN
  461. *
  462. * End of SGBRFS
  463. *
  464. END