You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsytf2.f 18 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597
  1. *> \brief \b DSYTF2 computes the factorization of a real symmetric indefinite matrix, using the diagonal pivoting method (unblocked algorithm).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSYTF2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsytf2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsytf2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsytf2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSYTF2( UPLO, N, A, LDA, IPIV, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, LDA, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * DOUBLE PRECISION A( LDA, * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DSYTF2 computes the factorization of a real symmetric matrix A using
  39. *> the Bunch-Kaufman diagonal pivoting method:
  40. *>
  41. *> A = U*D*U**T or A = L*D*L**T
  42. *>
  43. *> where U (or L) is a product of permutation and unit upper (lower)
  44. *> triangular matrices, U**T is the transpose of U, and D is symmetric and
  45. *> block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
  46. *>
  47. *> This is the unblocked version of the algorithm, calling Level 2 BLAS.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] UPLO
  54. *> \verbatim
  55. *> UPLO is CHARACTER*1
  56. *> Specifies whether the upper or lower triangular part of the
  57. *> symmetric matrix A is stored:
  58. *> = 'U': Upper triangular
  59. *> = 'L': Lower triangular
  60. *> \endverbatim
  61. *>
  62. *> \param[in] N
  63. *> \verbatim
  64. *> N is INTEGER
  65. *> The order of the matrix A. N >= 0.
  66. *> \endverbatim
  67. *>
  68. *> \param[in,out] A
  69. *> \verbatim
  70. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  71. *> On entry, the symmetric matrix A. If UPLO = 'U', the leading
  72. *> n-by-n upper triangular part of A contains the upper
  73. *> triangular part of the matrix A, and the strictly lower
  74. *> triangular part of A is not referenced. If UPLO = 'L', the
  75. *> leading n-by-n lower triangular part of A contains the lower
  76. *> triangular part of the matrix A, and the strictly upper
  77. *> triangular part of A is not referenced.
  78. *>
  79. *> On exit, the block diagonal matrix D and the multipliers used
  80. *> to obtain the factor U or L (see below for further details).
  81. *> \endverbatim
  82. *>
  83. *> \param[in] LDA
  84. *> \verbatim
  85. *> LDA is INTEGER
  86. *> The leading dimension of the array A. LDA >= max(1,N).
  87. *> \endverbatim
  88. *>
  89. *> \param[out] IPIV
  90. *> \verbatim
  91. *> IPIV is INTEGER array, dimension (N)
  92. *> Details of the interchanges and the block structure of D.
  93. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  94. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  95. *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
  96. *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  97. *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
  98. *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
  99. *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  100. *> \endverbatim
  101. *>
  102. *> \param[out] INFO
  103. *> \verbatim
  104. *> INFO is INTEGER
  105. *> = 0: successful exit
  106. *> < 0: if INFO = -k, the k-th argument had an illegal value
  107. *> > 0: if INFO = k, D(k,k) is exactly zero. The factorization
  108. *> has been completed, but the block diagonal matrix D is
  109. *> exactly singular, and division by zero will occur if it
  110. *> is used to solve a system of equations.
  111. *> \endverbatim
  112. *
  113. * Authors:
  114. * ========
  115. *
  116. *> \author Univ. of Tennessee
  117. *> \author Univ. of California Berkeley
  118. *> \author Univ. of Colorado Denver
  119. *> \author NAG Ltd.
  120. *
  121. *> \date September 2012
  122. *
  123. *> \ingroup doubleSYcomputational
  124. *
  125. *> \par Further Details:
  126. * =====================
  127. *>
  128. *> \verbatim
  129. *>
  130. *> If UPLO = 'U', then A = U*D*U**T, where
  131. *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
  132. *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  133. *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  134. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  135. *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  136. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  137. *>
  138. *> ( I v 0 ) k-s
  139. *> U(k) = ( 0 I 0 ) s
  140. *> ( 0 0 I ) n-k
  141. *> k-s s n-k
  142. *>
  143. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  144. *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  145. *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
  146. *>
  147. *> If UPLO = 'L', then A = L*D*L**T, where
  148. *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  149. *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  150. *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  151. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  152. *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  153. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  154. *>
  155. *> ( I 0 0 ) k-1
  156. *> L(k) = ( 0 I 0 ) s
  157. *> ( 0 v I ) n-k-s+1
  158. *> k-1 s n-k-s+1
  159. *>
  160. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  161. *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  162. *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  163. *> \endverbatim
  164. *
  165. *> \par Contributors:
  166. * ==================
  167. *>
  168. *> \verbatim
  169. *>
  170. *> 09-29-06 - patch from
  171. *> Bobby Cheng, MathWorks
  172. *>
  173. *> Replace l.204 and l.372
  174. *> IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  175. *> by
  176. *> IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  177. *>
  178. *> 01-01-96 - Based on modifications by
  179. *> J. Lewis, Boeing Computer Services Company
  180. *> A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
  181. *> 1-96 - Based on modifications by J. Lewis, Boeing Computer Services
  182. *> Company
  183. *> \endverbatim
  184. *
  185. * =====================================================================
  186. SUBROUTINE DSYTF2( UPLO, N, A, LDA, IPIV, INFO )
  187. *
  188. * -- LAPACK computational routine (version 3.4.2) --
  189. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  190. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  191. * September 2012
  192. *
  193. * .. Scalar Arguments ..
  194. CHARACTER UPLO
  195. INTEGER INFO, LDA, N
  196. * ..
  197. * .. Array Arguments ..
  198. INTEGER IPIV( * )
  199. DOUBLE PRECISION A( LDA, * )
  200. * ..
  201. *
  202. * =====================================================================
  203. *
  204. * .. Parameters ..
  205. DOUBLE PRECISION ZERO, ONE
  206. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  207. DOUBLE PRECISION EIGHT, SEVTEN
  208. PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  209. * ..
  210. * .. Local Scalars ..
  211. LOGICAL UPPER
  212. INTEGER I, IMAX, J, JMAX, K, KK, KP, KSTEP
  213. DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1,
  214. $ ROWMAX, T, WK, WKM1, WKP1
  215. * ..
  216. * .. External Functions ..
  217. LOGICAL LSAME, DISNAN
  218. INTEGER IDAMAX
  219. EXTERNAL LSAME, IDAMAX, DISNAN
  220. * ..
  221. * .. External Subroutines ..
  222. EXTERNAL DSCAL, DSWAP, DSYR, XERBLA
  223. * ..
  224. * .. Intrinsic Functions ..
  225. INTRINSIC ABS, MAX, SQRT
  226. * ..
  227. * .. Executable Statements ..
  228. *
  229. * Test the input parameters.
  230. *
  231. INFO = 0
  232. UPPER = LSAME( UPLO, 'U' )
  233. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  234. INFO = -1
  235. ELSE IF( N.LT.0 ) THEN
  236. INFO = -2
  237. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  238. INFO = -4
  239. END IF
  240. IF( INFO.NE.0 ) THEN
  241. CALL XERBLA( 'DSYTF2', -INFO )
  242. RETURN
  243. END IF
  244. *
  245. * Initialize ALPHA for use in choosing pivot block size.
  246. *
  247. ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  248. *
  249. IF( UPPER ) THEN
  250. *
  251. * Factorize A as U*D*U**T using the upper triangle of A
  252. *
  253. * K is the main loop index, decreasing from N to 1 in steps of
  254. * 1 or 2
  255. *
  256. K = N
  257. 10 CONTINUE
  258. *
  259. * If K < 1, exit from loop
  260. *
  261. IF( K.LT.1 )
  262. $ GO TO 70
  263. KSTEP = 1
  264. *
  265. * Determine rows and columns to be interchanged and whether
  266. * a 1-by-1 or 2-by-2 pivot block will be used
  267. *
  268. ABSAKK = ABS( A( K, K ) )
  269. *
  270. * IMAX is the row-index of the largest off-diagonal element in
  271. * column K, and COLMAX is its absolute value
  272. *
  273. IF( K.GT.1 ) THEN
  274. IMAX = IDAMAX( K-1, A( 1, K ), 1 )
  275. COLMAX = ABS( A( IMAX, K ) )
  276. ELSE
  277. COLMAX = ZERO
  278. END IF
  279. *
  280. IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  281. *
  282. * Column K is zero or contains a NaN: set INFO and continue
  283. *
  284. IF( INFO.EQ.0 )
  285. $ INFO = K
  286. KP = K
  287. ELSE
  288. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  289. *
  290. * no interchange, use 1-by-1 pivot block
  291. *
  292. KP = K
  293. ELSE
  294. *
  295. * JMAX is the column-index of the largest off-diagonal
  296. * element in row IMAX, and ROWMAX is its absolute value
  297. *
  298. JMAX = IMAX + IDAMAX( K-IMAX, A( IMAX, IMAX+1 ), LDA )
  299. ROWMAX = ABS( A( IMAX, JMAX ) )
  300. IF( IMAX.GT.1 ) THEN
  301. JMAX = IDAMAX( IMAX-1, A( 1, IMAX ), 1 )
  302. ROWMAX = MAX( ROWMAX, ABS( A( JMAX, IMAX ) ) )
  303. END IF
  304. *
  305. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  306. *
  307. * no interchange, use 1-by-1 pivot block
  308. *
  309. KP = K
  310. ELSE IF( ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  311. *
  312. * interchange rows and columns K and IMAX, use 1-by-1
  313. * pivot block
  314. *
  315. KP = IMAX
  316. ELSE
  317. *
  318. * interchange rows and columns K-1 and IMAX, use 2-by-2
  319. * pivot block
  320. *
  321. KP = IMAX
  322. KSTEP = 2
  323. END IF
  324. END IF
  325. *
  326. KK = K - KSTEP + 1
  327. IF( KP.NE.KK ) THEN
  328. *
  329. * Interchange rows and columns KK and KP in the leading
  330. * submatrix A(1:k,1:k)
  331. *
  332. CALL DSWAP( KP-1, A( 1, KK ), 1, A( 1, KP ), 1 )
  333. CALL DSWAP( KK-KP-1, A( KP+1, KK ), 1, A( KP, KP+1 ),
  334. $ LDA )
  335. T = A( KK, KK )
  336. A( KK, KK ) = A( KP, KP )
  337. A( KP, KP ) = T
  338. IF( KSTEP.EQ.2 ) THEN
  339. T = A( K-1, K )
  340. A( K-1, K ) = A( KP, K )
  341. A( KP, K ) = T
  342. END IF
  343. END IF
  344. *
  345. * Update the leading submatrix
  346. *
  347. IF( KSTEP.EQ.1 ) THEN
  348. *
  349. * 1-by-1 pivot block D(k): column k now holds
  350. *
  351. * W(k) = U(k)*D(k)
  352. *
  353. * where U(k) is the k-th column of U
  354. *
  355. * Perform a rank-1 update of A(1:k-1,1:k-1) as
  356. *
  357. * A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
  358. *
  359. R1 = ONE / A( K, K )
  360. CALL DSYR( UPLO, K-1, -R1, A( 1, K ), 1, A, LDA )
  361. *
  362. * Store U(k) in column k
  363. *
  364. CALL DSCAL( K-1, R1, A( 1, K ), 1 )
  365. ELSE
  366. *
  367. * 2-by-2 pivot block D(k): columns k and k-1 now hold
  368. *
  369. * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  370. *
  371. * where U(k) and U(k-1) are the k-th and (k-1)-th columns
  372. * of U
  373. *
  374. * Perform a rank-2 update of A(1:k-2,1:k-2) as
  375. *
  376. * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  377. * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
  378. *
  379. IF( K.GT.2 ) THEN
  380. *
  381. D12 = A( K-1, K )
  382. D22 = A( K-1, K-1 ) / D12
  383. D11 = A( K, K ) / D12
  384. T = ONE / ( D11*D22-ONE )
  385. D12 = T / D12
  386. *
  387. DO 30 J = K - 2, 1, -1
  388. WKM1 = D12*( D11*A( J, K-1 )-A( J, K ) )
  389. WK = D12*( D22*A( J, K )-A( J, K-1 ) )
  390. DO 20 I = J, 1, -1
  391. A( I, J ) = A( I, J ) - A( I, K )*WK -
  392. $ A( I, K-1 )*WKM1
  393. 20 CONTINUE
  394. A( J, K ) = WK
  395. A( J, K-1 ) = WKM1
  396. 30 CONTINUE
  397. *
  398. END IF
  399. *
  400. END IF
  401. END IF
  402. *
  403. * Store details of the interchanges in IPIV
  404. *
  405. IF( KSTEP.EQ.1 ) THEN
  406. IPIV( K ) = KP
  407. ELSE
  408. IPIV( K ) = -KP
  409. IPIV( K-1 ) = -KP
  410. END IF
  411. *
  412. * Decrease K and return to the start of the main loop
  413. *
  414. K = K - KSTEP
  415. GO TO 10
  416. *
  417. ELSE
  418. *
  419. * Factorize A as L*D*L**T using the lower triangle of A
  420. *
  421. * K is the main loop index, increasing from 1 to N in steps of
  422. * 1 or 2
  423. *
  424. K = 1
  425. 40 CONTINUE
  426. *
  427. * If K > N, exit from loop
  428. *
  429. IF( K.GT.N )
  430. $ GO TO 70
  431. KSTEP = 1
  432. *
  433. * Determine rows and columns to be interchanged and whether
  434. * a 1-by-1 or 2-by-2 pivot block will be used
  435. *
  436. ABSAKK = ABS( A( K, K ) )
  437. *
  438. * IMAX is the row-index of the largest off-diagonal element in
  439. * column K, and COLMAX is its absolute value
  440. *
  441. IF( K.LT.N ) THEN
  442. IMAX = K + IDAMAX( N-K, A( K+1, K ), 1 )
  443. COLMAX = ABS( A( IMAX, K ) )
  444. ELSE
  445. COLMAX = ZERO
  446. END IF
  447. *
  448. IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
  449. *
  450. * Column K is zero or contains a NaN: set INFO and continue
  451. *
  452. IF( INFO.EQ.0 )
  453. $ INFO = K
  454. KP = K
  455. ELSE
  456. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  457. *
  458. * no interchange, use 1-by-1 pivot block
  459. *
  460. KP = K
  461. ELSE
  462. *
  463. * JMAX is the column-index of the largest off-diagonal
  464. * element in row IMAX, and ROWMAX is its absolute value
  465. *
  466. JMAX = K - 1 + IDAMAX( IMAX-K, A( IMAX, K ), LDA )
  467. ROWMAX = ABS( A( IMAX, JMAX ) )
  468. IF( IMAX.LT.N ) THEN
  469. JMAX = IMAX + IDAMAX( N-IMAX, A( IMAX+1, IMAX ), 1 )
  470. ROWMAX = MAX( ROWMAX, ABS( A( JMAX, IMAX ) ) )
  471. END IF
  472. *
  473. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  474. *
  475. * no interchange, use 1-by-1 pivot block
  476. *
  477. KP = K
  478. ELSE IF( ABS( A( IMAX, IMAX ) ).GE.ALPHA*ROWMAX ) THEN
  479. *
  480. * interchange rows and columns K and IMAX, use 1-by-1
  481. * pivot block
  482. *
  483. KP = IMAX
  484. ELSE
  485. *
  486. * interchange rows and columns K+1 and IMAX, use 2-by-2
  487. * pivot block
  488. *
  489. KP = IMAX
  490. KSTEP = 2
  491. END IF
  492. END IF
  493. *
  494. KK = K + KSTEP - 1
  495. IF( KP.NE.KK ) THEN
  496. *
  497. * Interchange rows and columns KK and KP in the trailing
  498. * submatrix A(k:n,k:n)
  499. *
  500. IF( KP.LT.N )
  501. $ CALL DSWAP( N-KP, A( KP+1, KK ), 1, A( KP+1, KP ), 1 )
  502. CALL DSWAP( KP-KK-1, A( KK+1, KK ), 1, A( KP, KK+1 ),
  503. $ LDA )
  504. T = A( KK, KK )
  505. A( KK, KK ) = A( KP, KP )
  506. A( KP, KP ) = T
  507. IF( KSTEP.EQ.2 ) THEN
  508. T = A( K+1, K )
  509. A( K+1, K ) = A( KP, K )
  510. A( KP, K ) = T
  511. END IF
  512. END IF
  513. *
  514. * Update the trailing submatrix
  515. *
  516. IF( KSTEP.EQ.1 ) THEN
  517. *
  518. * 1-by-1 pivot block D(k): column k now holds
  519. *
  520. * W(k) = L(k)*D(k)
  521. *
  522. * where L(k) is the k-th column of L
  523. *
  524. IF( K.LT.N ) THEN
  525. *
  526. * Perform a rank-1 update of A(k+1:n,k+1:n) as
  527. *
  528. * A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
  529. *
  530. D11 = ONE / A( K, K )
  531. CALL DSYR( UPLO, N-K, -D11, A( K+1, K ), 1,
  532. $ A( K+1, K+1 ), LDA )
  533. *
  534. * Store L(k) in column K
  535. *
  536. CALL DSCAL( N-K, D11, A( K+1, K ), 1 )
  537. END IF
  538. ELSE
  539. *
  540. * 2-by-2 pivot block D(k)
  541. *
  542. IF( K.LT.N-1 ) THEN
  543. *
  544. * Perform a rank-2 update of A(k+2:n,k+2:n) as
  545. *
  546. * A := A - ( (A(k) A(k+1))*D(k)**(-1) ) * (A(k) A(k+1))**T
  547. *
  548. * where L(k) and L(k+1) are the k-th and (k+1)-th
  549. * columns of L
  550. *
  551. D21 = A( K+1, K )
  552. D11 = A( K+1, K+1 ) / D21
  553. D22 = A( K, K ) / D21
  554. T = ONE / ( D11*D22-ONE )
  555. D21 = T / D21
  556. *
  557. DO 60 J = K + 2, N
  558. *
  559. WK = D21*( D11*A( J, K )-A( J, K+1 ) )
  560. WKP1 = D21*( D22*A( J, K+1 )-A( J, K ) )
  561. *
  562. DO 50 I = J, N
  563. A( I, J ) = A( I, J ) - A( I, K )*WK -
  564. $ A( I, K+1 )*WKP1
  565. 50 CONTINUE
  566. *
  567. A( J, K ) = WK
  568. A( J, K+1 ) = WKP1
  569. *
  570. 60 CONTINUE
  571. END IF
  572. END IF
  573. END IF
  574. *
  575. * Store details of the interchanges in IPIV
  576. *
  577. IF( KSTEP.EQ.1 ) THEN
  578. IPIV( K ) = KP
  579. ELSE
  580. IPIV( K ) = -KP
  581. IPIV( K+1 ) = -KP
  582. END IF
  583. *
  584. * Increase K and return to the start of the main loop
  585. *
  586. K = K + KSTEP
  587. GO TO 40
  588. *
  589. END IF
  590. *
  591. 70 CONTINUE
  592. *
  593. RETURN
  594. *
  595. * End of DSYTF2
  596. *
  597. END