You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsyequb.f 9.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342
  1. *> \brief \b DSYEQUB
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSYEQUB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsyequb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsyequb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsyequb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, N
  25. * DOUBLE PRECISION AMAX, SCOND
  26. * CHARACTER UPLO
  27. * ..
  28. * .. Array Arguments ..
  29. * DOUBLE PRECISION A( LDA, * ), S( * ), WORK( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DSYEQUB computes row and column scalings intended to equilibrate a
  39. *> symmetric matrix A and reduce its condition number
  40. *> (with respect to the two-norm). S contains the scale factors,
  41. *> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
  42. *> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
  43. *> choice of S puts the condition number of B within a factor N of the
  44. *> smallest possible condition number over all possible diagonal
  45. *> scalings.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> Specifies whether the details of the factorization are stored
  55. *> as an upper or lower triangular matrix.
  56. *> = 'U': Upper triangular, form is A = U*D*U**T;
  57. *> = 'L': Lower triangular, form is A = L*D*L**T.
  58. *> \endverbatim
  59. *>
  60. *> \param[in] N
  61. *> \verbatim
  62. *> N is INTEGER
  63. *> The order of the matrix A. N >= 0.
  64. *> \endverbatim
  65. *>
  66. *> \param[in] A
  67. *> \verbatim
  68. *> A is DOUBLE PRECISION array, dimension (LDA,N)
  69. *> The N-by-N symmetric matrix whose scaling
  70. *> factors are to be computed. Only the diagonal elements of A
  71. *> are referenced.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] LDA
  75. *> \verbatim
  76. *> LDA is INTEGER
  77. *> The leading dimension of the array A. LDA >= max(1,N).
  78. *> \endverbatim
  79. *>
  80. *> \param[out] S
  81. *> \verbatim
  82. *> S is DOUBLE PRECISION array, dimension (N)
  83. *> If INFO = 0, S contains the scale factors for A.
  84. *> \endverbatim
  85. *>
  86. *> \param[out] SCOND
  87. *> \verbatim
  88. *> SCOND is DOUBLE PRECISION
  89. *> If INFO = 0, S contains the ratio of the smallest S(i) to
  90. *> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
  91. *> large nor too small, it is not worth scaling by S.
  92. *> \endverbatim
  93. *>
  94. *> \param[out] AMAX
  95. *> \verbatim
  96. *> AMAX is DOUBLE PRECISION
  97. *> Absolute value of largest matrix element. If AMAX is very
  98. *> close to overflow or very close to underflow, the matrix
  99. *> should be scaled.
  100. *> \endverbatim
  101. *>
  102. *> \param[out] WORK
  103. *> \verbatim
  104. *> WORK is DOUBLE PRECISION array, dimension (3*N)
  105. *> \endverbatim
  106. *>
  107. *> \param[out] INFO
  108. *> \verbatim
  109. *> INFO is INTEGER
  110. *> = 0: successful exit
  111. *> < 0: if INFO = -i, the i-th argument had an illegal value
  112. *> > 0: if INFO = i, the i-th diagonal element is nonpositive.
  113. *> \endverbatim
  114. *
  115. * Authors:
  116. * ========
  117. *
  118. *> \author Univ. of Tennessee
  119. *> \author Univ. of California Berkeley
  120. *> \author Univ. of Colorado Denver
  121. *> \author NAG Ltd.
  122. *
  123. *> \date November 2011
  124. *
  125. *> \ingroup doubleSYcomputational
  126. *
  127. *> \par References:
  128. * ================
  129. *>
  130. *> Livne, O.E. and Golub, G.H., "Scaling by Binormalization", \n
  131. *> Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004. \n
  132. *> DOI 10.1023/B:NUMA.0000016606.32820.69 \n
  133. *> Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf
  134. *>
  135. * =====================================================================
  136. SUBROUTINE DSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
  137. *
  138. * -- LAPACK computational routine (version 3.4.0) --
  139. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  140. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  141. * November 2011
  142. *
  143. * .. Scalar Arguments ..
  144. INTEGER INFO, LDA, N
  145. DOUBLE PRECISION AMAX, SCOND
  146. CHARACTER UPLO
  147. * ..
  148. * .. Array Arguments ..
  149. DOUBLE PRECISION A( LDA, * ), S( * ), WORK( * )
  150. * ..
  151. *
  152. * =====================================================================
  153. *
  154. * .. Parameters ..
  155. DOUBLE PRECISION ONE, ZERO
  156. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  157. INTEGER MAX_ITER
  158. PARAMETER ( MAX_ITER = 100 )
  159. * ..
  160. * .. Local Scalars ..
  161. INTEGER I, J, ITER
  162. DOUBLE PRECISION AVG, STD, TOL, C0, C1, C2, T, U, SI, D, BASE,
  163. $ SMIN, SMAX, SMLNUM, BIGNUM, SCALE, SUMSQ
  164. LOGICAL UP
  165. * ..
  166. * .. External Functions ..
  167. DOUBLE PRECISION DLAMCH
  168. LOGICAL LSAME
  169. EXTERNAL DLAMCH, LSAME
  170. * ..
  171. * .. External Subroutines ..
  172. EXTERNAL DLASSQ
  173. * ..
  174. * .. Intrinsic Functions ..
  175. INTRINSIC ABS, INT, LOG, MAX, MIN, SQRT
  176. * ..
  177. * .. Executable Statements ..
  178. *
  179. * Test input parameters.
  180. *
  181. INFO = 0
  182. IF ( .NOT. ( LSAME( UPLO, 'U' ) .OR. LSAME( UPLO, 'L' ) ) ) THEN
  183. INFO = -1
  184. ELSE IF ( N .LT. 0 ) THEN
  185. INFO = -2
  186. ELSE IF ( LDA .LT. MAX( 1, N ) ) THEN
  187. INFO = -4
  188. END IF
  189. IF ( INFO .NE. 0 ) THEN
  190. CALL XERBLA( 'DSYEQUB', -INFO )
  191. RETURN
  192. END IF
  193. UP = LSAME( UPLO, 'U' )
  194. AMAX = ZERO
  195. *
  196. * Quick return if possible.
  197. *
  198. IF ( N .EQ. 0 ) THEN
  199. SCOND = ONE
  200. RETURN
  201. END IF
  202. DO I = 1, N
  203. S( I ) = ZERO
  204. END DO
  205. AMAX = ZERO
  206. IF ( UP ) THEN
  207. DO J = 1, N
  208. DO I = 1, J-1
  209. S( I ) = MAX( S( I ), ABS( A( I, J ) ) )
  210. S( J ) = MAX( S( J ), ABS( A( I, J ) ) )
  211. AMAX = MAX( AMAX, ABS( A(I, J) ) )
  212. END DO
  213. S( J ) = MAX( S( J ), ABS( A( J, J ) ) )
  214. AMAX = MAX( AMAX, ABS( A( J, J ) ) )
  215. END DO
  216. ELSE
  217. DO J = 1, N
  218. S( J ) = MAX( S( J ), ABS( A( J, J ) ) )
  219. AMAX = MAX( AMAX, ABS( A( J, J ) ) )
  220. DO I = J+1, N
  221. S( I ) = MAX( S( I ), ABS( A( I, J ) ) )
  222. S( J ) = MAX( S( J ), ABS( A( I, J ) ) )
  223. AMAX = MAX( AMAX, ABS( A( I, J ) ) )
  224. END DO
  225. END DO
  226. END IF
  227. DO J = 1, N
  228. S( J ) = 1.0D+0 / S( J )
  229. END DO
  230. TOL = ONE / SQRT(2.0D0 * N)
  231. DO ITER = 1, MAX_ITER
  232. SCALE = 0.0D+0
  233. SUMSQ = 0.0D+0
  234. * BETA = |A|S
  235. DO I = 1, N
  236. WORK(I) = ZERO
  237. END DO
  238. IF ( UP ) THEN
  239. DO J = 1, N
  240. DO I = 1, J-1
  241. T = ABS( A( I, J ) )
  242. WORK( I ) = WORK( I ) + ABS( A( I, J ) ) * S( J )
  243. WORK( J ) = WORK( J ) + ABS( A( I, J ) ) * S( I )
  244. END DO
  245. WORK( J ) = WORK( J ) + ABS( A( J, J ) ) * S( J )
  246. END DO
  247. ELSE
  248. DO J = 1, N
  249. WORK( J ) = WORK( J ) + ABS( A( J, J ) ) * S( J )
  250. DO I = J+1, N
  251. T = ABS( A( I, J ) )
  252. WORK( I ) = WORK( I ) + ABS( A( I, J ) ) * S( J )
  253. WORK( J ) = WORK( J ) + ABS( A( I, J ) ) * S( I )
  254. END DO
  255. END DO
  256. END IF
  257. * avg = s^T beta / n
  258. AVG = 0.0D+0
  259. DO I = 1, N
  260. AVG = AVG + S( I )*WORK( I )
  261. END DO
  262. AVG = AVG / N
  263. STD = 0.0D+0
  264. DO I = 2*N+1, 3*N
  265. WORK( I ) = S( I-2*N ) * WORK( I-2*N ) - AVG
  266. END DO
  267. CALL DLASSQ( N, WORK( 2*N+1 ), 1, SCALE, SUMSQ )
  268. STD = SCALE * SQRT( SUMSQ / N )
  269. IF ( STD .LT. TOL * AVG ) GOTO 999
  270. DO I = 1, N
  271. T = ABS( A( I, I ) )
  272. SI = S( I )
  273. C2 = ( N-1 ) * T
  274. C1 = ( N-2 ) * ( WORK( I ) - T*SI )
  275. C0 = -(T*SI)*SI + 2*WORK( I )*SI - N*AVG
  276. D = C1*C1 - 4*C0*C2
  277. IF ( D .LE. 0 ) THEN
  278. INFO = -1
  279. RETURN
  280. END IF
  281. SI = -2*C0 / ( C1 + SQRT( D ) )
  282. D = SI - S( I )
  283. U = ZERO
  284. IF ( UP ) THEN
  285. DO J = 1, I
  286. T = ABS( A( J, I ) )
  287. U = U + S( J )*T
  288. WORK( J ) = WORK( J ) + D*T
  289. END DO
  290. DO J = I+1,N
  291. T = ABS( A( I, J ) )
  292. U = U + S( J )*T
  293. WORK( J ) = WORK( J ) + D*T
  294. END DO
  295. ELSE
  296. DO J = 1, I
  297. T = ABS( A( I, J ) )
  298. U = U + S( J )*T
  299. WORK( J ) = WORK( J ) + D*T
  300. END DO
  301. DO J = I+1,N
  302. T = ABS( A( J, I ) )
  303. U = U + S( J )*T
  304. WORK( J ) = WORK( J ) + D*T
  305. END DO
  306. END IF
  307. AVG = AVG + ( U + WORK( I ) ) * D / N
  308. S( I ) = SI
  309. END DO
  310. END DO
  311. 999 CONTINUE
  312. SMLNUM = DLAMCH( 'SAFEMIN' )
  313. BIGNUM = ONE / SMLNUM
  314. SMIN = BIGNUM
  315. SMAX = ZERO
  316. T = ONE / SQRT(AVG)
  317. BASE = DLAMCH( 'B' )
  318. U = ONE / LOG( BASE )
  319. DO I = 1, N
  320. S( I ) = BASE ** INT( U * LOG( S( I ) * T ) )
  321. SMIN = MIN( SMIN, S( I ) )
  322. SMAX = MAX( SMAX, S( I ) )
  323. END DO
  324. SCOND = MAX( SMIN, SMLNUM ) / MIN( SMAX, BIGNUM )
  325. *
  326. END