You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544
  1. *> \brief \b DSFRK performs a symmetric rank-k operation for matrix in RFP format.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSFRK + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsfrk.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsfrk.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsfrk.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
  22. * C )
  23. *
  24. * .. Scalar Arguments ..
  25. * DOUBLE PRECISION ALPHA, BETA
  26. * INTEGER K, LDA, N
  27. * CHARACTER TRANS, TRANSR, UPLO
  28. * ..
  29. * .. Array Arguments ..
  30. * DOUBLE PRECISION A( LDA, * ), C( * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> Level 3 BLAS like routine for C in RFP Format.
  40. *>
  41. *> DSFRK performs one of the symmetric rank--k operations
  42. *>
  43. *> C := alpha*A*A**T + beta*C,
  44. *>
  45. *> or
  46. *>
  47. *> C := alpha*A**T*A + beta*C,
  48. *>
  49. *> where alpha and beta are real scalars, C is an n--by--n symmetric
  50. *> matrix and A is an n--by--k matrix in the first case and a k--by--n
  51. *> matrix in the second case.
  52. *> \endverbatim
  53. *
  54. * Arguments:
  55. * ==========
  56. *
  57. *> \param[in] TRANSR
  58. *> \verbatim
  59. *> TRANSR is CHARACTER*1
  60. *> = 'N': The Normal Form of RFP A is stored;
  61. *> = 'T': The Transpose Form of RFP A is stored.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] UPLO
  65. *> \verbatim
  66. *> UPLO is CHARACTER*1
  67. *> On entry, UPLO specifies whether the upper or lower
  68. *> triangular part of the array C is to be referenced as
  69. *> follows:
  70. *>
  71. *> UPLO = 'U' or 'u' Only the upper triangular part of C
  72. *> is to be referenced.
  73. *>
  74. *> UPLO = 'L' or 'l' Only the lower triangular part of C
  75. *> is to be referenced.
  76. *>
  77. *> Unchanged on exit.
  78. *> \endverbatim
  79. *>
  80. *> \param[in] TRANS
  81. *> \verbatim
  82. *> TRANS is CHARACTER*1
  83. *> On entry, TRANS specifies the operation to be performed as
  84. *> follows:
  85. *>
  86. *> TRANS = 'N' or 'n' C := alpha*A*A**T + beta*C.
  87. *>
  88. *> TRANS = 'T' or 't' C := alpha*A**T*A + beta*C.
  89. *>
  90. *> Unchanged on exit.
  91. *> \endverbatim
  92. *>
  93. *> \param[in] N
  94. *> \verbatim
  95. *> N is INTEGER
  96. *> On entry, N specifies the order of the matrix C. N must be
  97. *> at least zero.
  98. *> Unchanged on exit.
  99. *> \endverbatim
  100. *>
  101. *> \param[in] K
  102. *> \verbatim
  103. *> K is INTEGER
  104. *> On entry with TRANS = 'N' or 'n', K specifies the number
  105. *> of columns of the matrix A, and on entry with TRANS = 'T'
  106. *> or 't', K specifies the number of rows of the matrix A. K
  107. *> must be at least zero.
  108. *> Unchanged on exit.
  109. *> \endverbatim
  110. *>
  111. *> \param[in] ALPHA
  112. *> \verbatim
  113. *> ALPHA is DOUBLE PRECISION
  114. *> On entry, ALPHA specifies the scalar alpha.
  115. *> Unchanged on exit.
  116. *> \endverbatim
  117. *>
  118. *> \param[in] A
  119. *> \verbatim
  120. *> A is DOUBLE PRECISION array, dimension (LDA,ka)
  121. *> where KA
  122. *> is K when TRANS = 'N' or 'n', and is N otherwise. Before
  123. *> entry with TRANS = 'N' or 'n', the leading N--by--K part of
  124. *> the array A must contain the matrix A, otherwise the leading
  125. *> K--by--N part of the array A must contain the matrix A.
  126. *> Unchanged on exit.
  127. *> \endverbatim
  128. *>
  129. *> \param[in] LDA
  130. *> \verbatim
  131. *> LDA is INTEGER
  132. *> On entry, LDA specifies the first dimension of A as declared
  133. *> in the calling (sub) program. When TRANS = 'N' or 'n'
  134. *> then LDA must be at least max( 1, n ), otherwise LDA must
  135. *> be at least max( 1, k ).
  136. *> Unchanged on exit.
  137. *> \endverbatim
  138. *>
  139. *> \param[in] BETA
  140. *> \verbatim
  141. *> BETA is DOUBLE PRECISION
  142. *> On entry, BETA specifies the scalar beta.
  143. *> Unchanged on exit.
  144. *> \endverbatim
  145. *>
  146. *> \param[in,out] C
  147. *> \verbatim
  148. *> C is DOUBLE PRECISION array, dimension (NT)
  149. *> NT = N*(N+1)/2. On entry, the symmetric matrix C in RFP
  150. *> Format. RFP Format is described by TRANSR, UPLO and N.
  151. *> \endverbatim
  152. *
  153. * Authors:
  154. * ========
  155. *
  156. *> \author Univ. of Tennessee
  157. *> \author Univ. of California Berkeley
  158. *> \author Univ. of Colorado Denver
  159. *> \author NAG Ltd.
  160. *
  161. *> \date September 2012
  162. *
  163. *> \ingroup doubleOTHERcomputational
  164. *
  165. * =====================================================================
  166. SUBROUTINE DSFRK( TRANSR, UPLO, TRANS, N, K, ALPHA, A, LDA, BETA,
  167. $ C )
  168. *
  169. * -- LAPACK computational routine (version 3.4.2) --
  170. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  171. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  172. * September 2012
  173. *
  174. * .. Scalar Arguments ..
  175. DOUBLE PRECISION ALPHA, BETA
  176. INTEGER K, LDA, N
  177. CHARACTER TRANS, TRANSR, UPLO
  178. * ..
  179. * .. Array Arguments ..
  180. DOUBLE PRECISION A( LDA, * ), C( * )
  181. * ..
  182. *
  183. * =====================================================================
  184. *
  185. * ..
  186. * .. Parameters ..
  187. DOUBLE PRECISION ONE, ZERO
  188. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  189. * ..
  190. * .. Local Scalars ..
  191. LOGICAL LOWER, NORMALTRANSR, NISODD, NOTRANS
  192. INTEGER INFO, NROWA, J, NK, N1, N2
  193. * ..
  194. * .. External Functions ..
  195. LOGICAL LSAME
  196. EXTERNAL LSAME
  197. * ..
  198. * .. External Subroutines ..
  199. EXTERNAL XERBLA, DGEMM, DSYRK
  200. * ..
  201. * .. Intrinsic Functions ..
  202. INTRINSIC MAX
  203. * ..
  204. * .. Executable Statements ..
  205. *
  206. * Test the input parameters.
  207. *
  208. INFO = 0
  209. NORMALTRANSR = LSAME( TRANSR, 'N' )
  210. LOWER = LSAME( UPLO, 'L' )
  211. NOTRANS = LSAME( TRANS, 'N' )
  212. *
  213. IF( NOTRANS ) THEN
  214. NROWA = N
  215. ELSE
  216. NROWA = K
  217. END IF
  218. *
  219. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'T' ) ) THEN
  220. INFO = -1
  221. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  222. INFO = -2
  223. ELSE IF( .NOT.NOTRANS .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
  224. INFO = -3
  225. ELSE IF( N.LT.0 ) THEN
  226. INFO = -4
  227. ELSE IF( K.LT.0 ) THEN
  228. INFO = -5
  229. ELSE IF( LDA.LT.MAX( 1, NROWA ) ) THEN
  230. INFO = -8
  231. END IF
  232. IF( INFO.NE.0 ) THEN
  233. CALL XERBLA( 'DSFRK ', -INFO )
  234. RETURN
  235. END IF
  236. *
  237. * Quick return if possible.
  238. *
  239. * The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not
  240. * done (it is in DSYRK for example) and left in the general case.
  241. *
  242. IF( ( N.EQ.0 ) .OR. ( ( ( ALPHA.EQ.ZERO ) .OR. ( K.EQ.0 ) ) .AND.
  243. $ ( BETA.EQ.ONE ) ) )RETURN
  244. *
  245. IF( ( ALPHA.EQ.ZERO ) .AND. ( BETA.EQ.ZERO ) ) THEN
  246. DO J = 1, ( ( N*( N+1 ) ) / 2 )
  247. C( J ) = ZERO
  248. END DO
  249. RETURN
  250. END IF
  251. *
  252. * C is N-by-N.
  253. * If N is odd, set NISODD = .TRUE., and N1 and N2.
  254. * If N is even, NISODD = .FALSE., and NK.
  255. *
  256. IF( MOD( N, 2 ).EQ.0 ) THEN
  257. NISODD = .FALSE.
  258. NK = N / 2
  259. ELSE
  260. NISODD = .TRUE.
  261. IF( LOWER ) THEN
  262. N2 = N / 2
  263. N1 = N - N2
  264. ELSE
  265. N1 = N / 2
  266. N2 = N - N1
  267. END IF
  268. END IF
  269. *
  270. IF( NISODD ) THEN
  271. *
  272. * N is odd
  273. *
  274. IF( NORMALTRANSR ) THEN
  275. *
  276. * N is odd and TRANSR = 'N'
  277. *
  278. IF( LOWER ) THEN
  279. *
  280. * N is odd, TRANSR = 'N', and UPLO = 'L'
  281. *
  282. IF( NOTRANS ) THEN
  283. *
  284. * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  285. *
  286. CALL DSYRK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  287. $ BETA, C( 1 ), N )
  288. CALL DSYRK( 'U', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  289. $ BETA, C( N+1 ), N )
  290. CALL DGEMM( 'N', 'T', N2, N1, K, ALPHA, A( N1+1, 1 ),
  291. $ LDA, A( 1, 1 ), LDA, BETA, C( N1+1 ), N )
  292. *
  293. ELSE
  294. *
  295. * N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'T'
  296. *
  297. CALL DSYRK( 'L', 'T', N1, K, ALPHA, A( 1, 1 ), LDA,
  298. $ BETA, C( 1 ), N )
  299. CALL DSYRK( 'U', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  300. $ BETA, C( N+1 ), N )
  301. CALL DGEMM( 'T', 'N', N2, N1, K, ALPHA, A( 1, N1+1 ),
  302. $ LDA, A( 1, 1 ), LDA, BETA, C( N1+1 ), N )
  303. *
  304. END IF
  305. *
  306. ELSE
  307. *
  308. * N is odd, TRANSR = 'N', and UPLO = 'U'
  309. *
  310. IF( NOTRANS ) THEN
  311. *
  312. * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  313. *
  314. CALL DSYRK( 'L', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  315. $ BETA, C( N2+1 ), N )
  316. CALL DSYRK( 'U', 'N', N2, K, ALPHA, A( N2, 1 ), LDA,
  317. $ BETA, C( N1+1 ), N )
  318. CALL DGEMM( 'N', 'T', N1, N2, K, ALPHA, A( 1, 1 ),
  319. $ LDA, A( N2, 1 ), LDA, BETA, C( 1 ), N )
  320. *
  321. ELSE
  322. *
  323. * N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'T'
  324. *
  325. CALL DSYRK( 'L', 'T', N1, K, ALPHA, A( 1, 1 ), LDA,
  326. $ BETA, C( N2+1 ), N )
  327. CALL DSYRK( 'U', 'T', N2, K, ALPHA, A( 1, N2 ), LDA,
  328. $ BETA, C( N1+1 ), N )
  329. CALL DGEMM( 'T', 'N', N1, N2, K, ALPHA, A( 1, 1 ),
  330. $ LDA, A( 1, N2 ), LDA, BETA, C( 1 ), N )
  331. *
  332. END IF
  333. *
  334. END IF
  335. *
  336. ELSE
  337. *
  338. * N is odd, and TRANSR = 'T'
  339. *
  340. IF( LOWER ) THEN
  341. *
  342. * N is odd, TRANSR = 'T', and UPLO = 'L'
  343. *
  344. IF( NOTRANS ) THEN
  345. *
  346. * N is odd, TRANSR = 'T', UPLO = 'L', and TRANS = 'N'
  347. *
  348. CALL DSYRK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  349. $ BETA, C( 1 ), N1 )
  350. CALL DSYRK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  351. $ BETA, C( 2 ), N1 )
  352. CALL DGEMM( 'N', 'T', N1, N2, K, ALPHA, A( 1, 1 ),
  353. $ LDA, A( N1+1, 1 ), LDA, BETA,
  354. $ C( N1*N1+1 ), N1 )
  355. *
  356. ELSE
  357. *
  358. * N is odd, TRANSR = 'T', UPLO = 'L', and TRANS = 'T'
  359. *
  360. CALL DSYRK( 'U', 'T', N1, K, ALPHA, A( 1, 1 ), LDA,
  361. $ BETA, C( 1 ), N1 )
  362. CALL DSYRK( 'L', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  363. $ BETA, C( 2 ), N1 )
  364. CALL DGEMM( 'T', 'N', N1, N2, K, ALPHA, A( 1, 1 ),
  365. $ LDA, A( 1, N1+1 ), LDA, BETA,
  366. $ C( N1*N1+1 ), N1 )
  367. *
  368. END IF
  369. *
  370. ELSE
  371. *
  372. * N is odd, TRANSR = 'T', and UPLO = 'U'
  373. *
  374. IF( NOTRANS ) THEN
  375. *
  376. * N is odd, TRANSR = 'T', UPLO = 'U', and TRANS = 'N'
  377. *
  378. CALL DSYRK( 'U', 'N', N1, K, ALPHA, A( 1, 1 ), LDA,
  379. $ BETA, C( N2*N2+1 ), N2 )
  380. CALL DSYRK( 'L', 'N', N2, K, ALPHA, A( N1+1, 1 ), LDA,
  381. $ BETA, C( N1*N2+1 ), N2 )
  382. CALL DGEMM( 'N', 'T', N2, N1, K, ALPHA, A( N1+1, 1 ),
  383. $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), N2 )
  384. *
  385. ELSE
  386. *
  387. * N is odd, TRANSR = 'T', UPLO = 'U', and TRANS = 'T'
  388. *
  389. CALL DSYRK( 'U', 'T', N1, K, ALPHA, A( 1, 1 ), LDA,
  390. $ BETA, C( N2*N2+1 ), N2 )
  391. CALL DSYRK( 'L', 'T', N2, K, ALPHA, A( 1, N1+1 ), LDA,
  392. $ BETA, C( N1*N2+1 ), N2 )
  393. CALL DGEMM( 'T', 'N', N2, N1, K, ALPHA, A( 1, N1+1 ),
  394. $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), N2 )
  395. *
  396. END IF
  397. *
  398. END IF
  399. *
  400. END IF
  401. *
  402. ELSE
  403. *
  404. * N is even
  405. *
  406. IF( NORMALTRANSR ) THEN
  407. *
  408. * N is even and TRANSR = 'N'
  409. *
  410. IF( LOWER ) THEN
  411. *
  412. * N is even, TRANSR = 'N', and UPLO = 'L'
  413. *
  414. IF( NOTRANS ) THEN
  415. *
  416. * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N'
  417. *
  418. CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  419. $ BETA, C( 2 ), N+1 )
  420. CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  421. $ BETA, C( 1 ), N+1 )
  422. CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( NK+1, 1 ),
  423. $ LDA, A( 1, 1 ), LDA, BETA, C( NK+2 ),
  424. $ N+1 )
  425. *
  426. ELSE
  427. *
  428. * N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'T'
  429. *
  430. CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, 1 ), LDA,
  431. $ BETA, C( 2 ), N+1 )
  432. CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  433. $ BETA, C( 1 ), N+1 )
  434. CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, NK+1 ),
  435. $ LDA, A( 1, 1 ), LDA, BETA, C( NK+2 ),
  436. $ N+1 )
  437. *
  438. END IF
  439. *
  440. ELSE
  441. *
  442. * N is even, TRANSR = 'N', and UPLO = 'U'
  443. *
  444. IF( NOTRANS ) THEN
  445. *
  446. * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N'
  447. *
  448. CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  449. $ BETA, C( NK+2 ), N+1 )
  450. CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  451. $ BETA, C( NK+1 ), N+1 )
  452. CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( 1, 1 ),
  453. $ LDA, A( NK+1, 1 ), LDA, BETA, C( 1 ),
  454. $ N+1 )
  455. *
  456. ELSE
  457. *
  458. * N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'T'
  459. *
  460. CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, 1 ), LDA,
  461. $ BETA, C( NK+2 ), N+1 )
  462. CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  463. $ BETA, C( NK+1 ), N+1 )
  464. CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, 1 ),
  465. $ LDA, A( 1, NK+1 ), LDA, BETA, C( 1 ),
  466. $ N+1 )
  467. *
  468. END IF
  469. *
  470. END IF
  471. *
  472. ELSE
  473. *
  474. * N is even, and TRANSR = 'T'
  475. *
  476. IF( LOWER ) THEN
  477. *
  478. * N is even, TRANSR = 'T', and UPLO = 'L'
  479. *
  480. IF( NOTRANS ) THEN
  481. *
  482. * N is even, TRANSR = 'T', UPLO = 'L', and TRANS = 'N'
  483. *
  484. CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  485. $ BETA, C( NK+1 ), NK )
  486. CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  487. $ BETA, C( 1 ), NK )
  488. CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( 1, 1 ),
  489. $ LDA, A( NK+1, 1 ), LDA, BETA,
  490. $ C( ( ( NK+1 )*NK )+1 ), NK )
  491. *
  492. ELSE
  493. *
  494. * N is even, TRANSR = 'T', UPLO = 'L', and TRANS = 'T'
  495. *
  496. CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, 1 ), LDA,
  497. $ BETA, C( NK+1 ), NK )
  498. CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  499. $ BETA, C( 1 ), NK )
  500. CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, 1 ),
  501. $ LDA, A( 1, NK+1 ), LDA, BETA,
  502. $ C( ( ( NK+1 )*NK )+1 ), NK )
  503. *
  504. END IF
  505. *
  506. ELSE
  507. *
  508. * N is even, TRANSR = 'T', and UPLO = 'U'
  509. *
  510. IF( NOTRANS ) THEN
  511. *
  512. * N is even, TRANSR = 'T', UPLO = 'U', and TRANS = 'N'
  513. *
  514. CALL DSYRK( 'U', 'N', NK, K, ALPHA, A( 1, 1 ), LDA,
  515. $ BETA, C( NK*( NK+1 )+1 ), NK )
  516. CALL DSYRK( 'L', 'N', NK, K, ALPHA, A( NK+1, 1 ), LDA,
  517. $ BETA, C( NK*NK+1 ), NK )
  518. CALL DGEMM( 'N', 'T', NK, NK, K, ALPHA, A( NK+1, 1 ),
  519. $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), NK )
  520. *
  521. ELSE
  522. *
  523. * N is even, TRANSR = 'T', UPLO = 'U', and TRANS = 'T'
  524. *
  525. CALL DSYRK( 'U', 'T', NK, K, ALPHA, A( 1, 1 ), LDA,
  526. $ BETA, C( NK*( NK+1 )+1 ), NK )
  527. CALL DSYRK( 'L', 'T', NK, K, ALPHA, A( 1, NK+1 ), LDA,
  528. $ BETA, C( NK*NK+1 ), NK )
  529. CALL DGEMM( 'T', 'N', NK, NK, K, ALPHA, A( 1, NK+1 ),
  530. $ LDA, A( 1, 1 ), LDA, BETA, C( 1 ), NK )
  531. *
  532. END IF
  533. *
  534. END IF
  535. *
  536. END IF
  537. *
  538. END IF
  539. *
  540. RETURN
  541. *
  542. * End of DSFRK
  543. *
  544. END