You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctgsna.f 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519
  1. *> \brief \b CTGSNA
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CTGSNA + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgsna.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgsna.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgsna.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
  22. * LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
  23. * IWORK, INFO )
  24. *
  25. * .. Scalar Arguments ..
  26. * CHARACTER HOWMNY, JOB
  27. * INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
  28. * ..
  29. * .. Array Arguments ..
  30. * LOGICAL SELECT( * )
  31. * INTEGER IWORK( * )
  32. * REAL DIF( * ), S( * )
  33. * COMPLEX A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
  34. * $ VR( LDVR, * ), WORK( * )
  35. * ..
  36. *
  37. *
  38. *> \par Purpose:
  39. * =============
  40. *>
  41. *> \verbatim
  42. *>
  43. *> CTGSNA estimates reciprocal condition numbers for specified
  44. *> eigenvalues and/or eigenvectors of a matrix pair (A, B).
  45. *>
  46. *> (A, B) must be in generalized Schur canonical form, that is, A and
  47. *> B are both upper triangular.
  48. *> \endverbatim
  49. *
  50. * Arguments:
  51. * ==========
  52. *
  53. *> \param[in] JOB
  54. *> \verbatim
  55. *> JOB is CHARACTER*1
  56. *> Specifies whether condition numbers are required for
  57. *> eigenvalues (S) or eigenvectors (DIF):
  58. *> = 'E': for eigenvalues only (S);
  59. *> = 'V': for eigenvectors only (DIF);
  60. *> = 'B': for both eigenvalues and eigenvectors (S and DIF).
  61. *> \endverbatim
  62. *>
  63. *> \param[in] HOWMNY
  64. *> \verbatim
  65. *> HOWMNY is CHARACTER*1
  66. *> = 'A': compute condition numbers for all eigenpairs;
  67. *> = 'S': compute condition numbers for selected eigenpairs
  68. *> specified by the array SELECT.
  69. *> \endverbatim
  70. *>
  71. *> \param[in] SELECT
  72. *> \verbatim
  73. *> SELECT is LOGICAL array, dimension (N)
  74. *> If HOWMNY = 'S', SELECT specifies the eigenpairs for which
  75. *> condition numbers are required. To select condition numbers
  76. *> for the corresponding j-th eigenvalue and/or eigenvector,
  77. *> SELECT(j) must be set to .TRUE..
  78. *> If HOWMNY = 'A', SELECT is not referenced.
  79. *> \endverbatim
  80. *>
  81. *> \param[in] N
  82. *> \verbatim
  83. *> N is INTEGER
  84. *> The order of the square matrix pair (A, B). N >= 0.
  85. *> \endverbatim
  86. *>
  87. *> \param[in] A
  88. *> \verbatim
  89. *> A is COMPLEX array, dimension (LDA,N)
  90. *> The upper triangular matrix A in the pair (A,B).
  91. *> \endverbatim
  92. *>
  93. *> \param[in] LDA
  94. *> \verbatim
  95. *> LDA is INTEGER
  96. *> The leading dimension of the array A. LDA >= max(1,N).
  97. *> \endverbatim
  98. *>
  99. *> \param[in] B
  100. *> \verbatim
  101. *> B is COMPLEX array, dimension (LDB,N)
  102. *> The upper triangular matrix B in the pair (A, B).
  103. *> \endverbatim
  104. *>
  105. *> \param[in] LDB
  106. *> \verbatim
  107. *> LDB is INTEGER
  108. *> The leading dimension of the array B. LDB >= max(1,N).
  109. *> \endverbatim
  110. *>
  111. *> \param[in] VL
  112. *> \verbatim
  113. *> VL is COMPLEX array, dimension (LDVL,M)
  114. *> IF JOB = 'E' or 'B', VL must contain left eigenvectors of
  115. *> (A, B), corresponding to the eigenpairs specified by HOWMNY
  116. *> and SELECT. The eigenvectors must be stored in consecutive
  117. *> columns of VL, as returned by CTGEVC.
  118. *> If JOB = 'V', VL is not referenced.
  119. *> \endverbatim
  120. *>
  121. *> \param[in] LDVL
  122. *> \verbatim
  123. *> LDVL is INTEGER
  124. *> The leading dimension of the array VL. LDVL >= 1; and
  125. *> If JOB = 'E' or 'B', LDVL >= N.
  126. *> \endverbatim
  127. *>
  128. *> \param[in] VR
  129. *> \verbatim
  130. *> VR is COMPLEX array, dimension (LDVR,M)
  131. *> IF JOB = 'E' or 'B', VR must contain right eigenvectors of
  132. *> (A, B), corresponding to the eigenpairs specified by HOWMNY
  133. *> and SELECT. The eigenvectors must be stored in consecutive
  134. *> columns of VR, as returned by CTGEVC.
  135. *> If JOB = 'V', VR is not referenced.
  136. *> \endverbatim
  137. *>
  138. *> \param[in] LDVR
  139. *> \verbatim
  140. *> LDVR is INTEGER
  141. *> The leading dimension of the array VR. LDVR >= 1;
  142. *> If JOB = 'E' or 'B', LDVR >= N.
  143. *> \endverbatim
  144. *>
  145. *> \param[out] S
  146. *> \verbatim
  147. *> S is REAL array, dimension (MM)
  148. *> If JOB = 'E' or 'B', the reciprocal condition numbers of the
  149. *> selected eigenvalues, stored in consecutive elements of the
  150. *> array.
  151. *> If JOB = 'V', S is not referenced.
  152. *> \endverbatim
  153. *>
  154. *> \param[out] DIF
  155. *> \verbatim
  156. *> DIF is REAL array, dimension (MM)
  157. *> If JOB = 'V' or 'B', the estimated reciprocal condition
  158. *> numbers of the selected eigenvectors, stored in consecutive
  159. *> elements of the array.
  160. *> If the eigenvalues cannot be reordered to compute DIF(j),
  161. *> DIF(j) is set to 0; this can only occur when the true value
  162. *> would be very small anyway.
  163. *> For each eigenvalue/vector specified by SELECT, DIF stores
  164. *> a Frobenius norm-based estimate of Difl.
  165. *> If JOB = 'E', DIF is not referenced.
  166. *> \endverbatim
  167. *>
  168. *> \param[in] MM
  169. *> \verbatim
  170. *> MM is INTEGER
  171. *> The number of elements in the arrays S and DIF. MM >= M.
  172. *> \endverbatim
  173. *>
  174. *> \param[out] M
  175. *> \verbatim
  176. *> M is INTEGER
  177. *> The number of elements of the arrays S and DIF used to store
  178. *> the specified condition numbers; for each selected eigenvalue
  179. *> one element is used. If HOWMNY = 'A', M is set to N.
  180. *> \endverbatim
  181. *>
  182. *> \param[out] WORK
  183. *> \verbatim
  184. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  185. *> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
  186. *> \endverbatim
  187. *>
  188. *> \param[in] LWORK
  189. *> \verbatim
  190. *> LWORK is INTEGER
  191. *> The dimension of the array WORK. LWORK >= max(1,N).
  192. *> If JOB = 'V' or 'B', LWORK >= max(1,2*N*N).
  193. *> \endverbatim
  194. *>
  195. *> \param[out] IWORK
  196. *> \verbatim
  197. *> IWORK is INTEGER array, dimension (N+2)
  198. *> If JOB = 'E', IWORK is not referenced.
  199. *> \endverbatim
  200. *>
  201. *> \param[out] INFO
  202. *> \verbatim
  203. *> INFO is INTEGER
  204. *> = 0: Successful exit
  205. *> < 0: If INFO = -i, the i-th argument had an illegal value
  206. *> \endverbatim
  207. *
  208. * Authors:
  209. * ========
  210. *
  211. *> \author Univ. of Tennessee
  212. *> \author Univ. of California Berkeley
  213. *> \author Univ. of Colorado Denver
  214. *> \author NAG Ltd.
  215. *
  216. *> \date November 2011
  217. *
  218. *> \ingroup complexOTHERcomputational
  219. *
  220. *> \par Further Details:
  221. * =====================
  222. *>
  223. *> \verbatim
  224. *>
  225. *> The reciprocal of the condition number of the i-th generalized
  226. *> eigenvalue w = (a, b) is defined as
  227. *>
  228. *> S(I) = (|v**HAu|**2 + |v**HBu|**2)**(1/2) / (norm(u)*norm(v))
  229. *>
  230. *> where u and v are the right and left eigenvectors of (A, B)
  231. *> corresponding to w; |z| denotes the absolute value of the complex
  232. *> number, and norm(u) denotes the 2-norm of the vector u. The pair
  233. *> (a, b) corresponds to an eigenvalue w = a/b (= v**HAu/v**HBu) of the
  234. *> matrix pair (A, B). If both a and b equal zero, then (A,B) is
  235. *> singular and S(I) = -1 is returned.
  236. *>
  237. *> An approximate error bound on the chordal distance between the i-th
  238. *> computed generalized eigenvalue w and the corresponding exact
  239. *> eigenvalue lambda is
  240. *>
  241. *> chord(w, lambda) <= EPS * norm(A, B) / S(I),
  242. *>
  243. *> where EPS is the machine precision.
  244. *>
  245. *> The reciprocal of the condition number of the right eigenvector u
  246. *> and left eigenvector v corresponding to the generalized eigenvalue w
  247. *> is defined as follows. Suppose
  248. *>
  249. *> (A, B) = ( a * ) ( b * ) 1
  250. *> ( 0 A22 ),( 0 B22 ) n-1
  251. *> 1 n-1 1 n-1
  252. *>
  253. *> Then the reciprocal condition number DIF(I) is
  254. *>
  255. *> Difl[(a, b), (A22, B22)] = sigma-min( Zl )
  256. *>
  257. *> where sigma-min(Zl) denotes the smallest singular value of
  258. *>
  259. *> Zl = [ kron(a, In-1) -kron(1, A22) ]
  260. *> [ kron(b, In-1) -kron(1, B22) ].
  261. *>
  262. *> Here In-1 is the identity matrix of size n-1 and X**H is the conjugate
  263. *> transpose of X. kron(X, Y) is the Kronecker product between the
  264. *> matrices X and Y.
  265. *>
  266. *> We approximate the smallest singular value of Zl with an upper
  267. *> bound. This is done by CLATDF.
  268. *>
  269. *> An approximate error bound for a computed eigenvector VL(i) or
  270. *> VR(i) is given by
  271. *>
  272. *> EPS * norm(A, B) / DIF(i).
  273. *>
  274. *> See ref. [2-3] for more details and further references.
  275. *> \endverbatim
  276. *
  277. *> \par Contributors:
  278. * ==================
  279. *>
  280. *> Bo Kagstrom and Peter Poromaa, Department of Computing Science,
  281. *> Umea University, S-901 87 Umea, Sweden.
  282. *
  283. *> \par References:
  284. * ================
  285. *>
  286. *> \verbatim
  287. *>
  288. *> [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
  289. *> Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
  290. *> M.S. Moonen et al (eds), Linear Algebra for Large Scale and
  291. *> Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
  292. *>
  293. *> [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
  294. *> Eigenvalues of a Regular Matrix Pair (A, B) and Condition
  295. *> Estimation: Theory, Algorithms and Software, Report
  296. *> UMINF - 94.04, Department of Computing Science, Umea University,
  297. *> S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
  298. *> To appear in Numerical Algorithms, 1996.
  299. *>
  300. *> [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
  301. *> for Solving the Generalized Sylvester Equation and Estimating the
  302. *> Separation between Regular Matrix Pairs, Report UMINF - 93.23,
  303. *> Department of Computing Science, Umea University, S-901 87 Umea,
  304. *> Sweden, December 1993, Revised April 1994, Also as LAPACK Working
  305. *> Note 75.
  306. *> To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
  307. *> \endverbatim
  308. *>
  309. * =====================================================================
  310. SUBROUTINE CTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
  311. $ LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
  312. $ IWORK, INFO )
  313. *
  314. * -- LAPACK computational routine (version 3.4.0) --
  315. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  316. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  317. * November 2011
  318. *
  319. * .. Scalar Arguments ..
  320. CHARACTER HOWMNY, JOB
  321. INTEGER INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
  322. * ..
  323. * .. Array Arguments ..
  324. LOGICAL SELECT( * )
  325. INTEGER IWORK( * )
  326. REAL DIF( * ), S( * )
  327. COMPLEX A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
  328. $ VR( LDVR, * ), WORK( * )
  329. * ..
  330. *
  331. * =====================================================================
  332. *
  333. * .. Parameters ..
  334. REAL ZERO, ONE
  335. INTEGER IDIFJB
  336. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0, IDIFJB = 3 )
  337. * ..
  338. * .. Local Scalars ..
  339. LOGICAL LQUERY, SOMCON, WANTBH, WANTDF, WANTS
  340. INTEGER I, IERR, IFST, ILST, K, KS, LWMIN, N1, N2
  341. REAL BIGNUM, COND, EPS, LNRM, RNRM, SCALE, SMLNUM
  342. COMPLEX YHAX, YHBX
  343. * ..
  344. * .. Local Arrays ..
  345. COMPLEX DUMMY( 1 ), DUMMY1( 1 )
  346. * ..
  347. * .. External Functions ..
  348. LOGICAL LSAME
  349. REAL SCNRM2, SLAMCH, SLAPY2
  350. COMPLEX CDOTC
  351. EXTERNAL LSAME, SCNRM2, SLAMCH, SLAPY2, CDOTC
  352. * ..
  353. * .. External Subroutines ..
  354. EXTERNAL CGEMV, CLACPY, CTGEXC, CTGSYL, SLABAD, XERBLA
  355. * ..
  356. * .. Intrinsic Functions ..
  357. INTRINSIC ABS, CMPLX, MAX
  358. * ..
  359. * .. Executable Statements ..
  360. *
  361. * Decode and test the input parameters
  362. *
  363. WANTBH = LSAME( JOB, 'B' )
  364. WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
  365. WANTDF = LSAME( JOB, 'V' ) .OR. WANTBH
  366. *
  367. SOMCON = LSAME( HOWMNY, 'S' )
  368. *
  369. INFO = 0
  370. LQUERY = ( LWORK.EQ.-1 )
  371. *
  372. IF( .NOT.WANTS .AND. .NOT.WANTDF ) THEN
  373. INFO = -1
  374. ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
  375. INFO = -2
  376. ELSE IF( N.LT.0 ) THEN
  377. INFO = -4
  378. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  379. INFO = -6
  380. ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
  381. INFO = -8
  382. ELSE IF( WANTS .AND. LDVL.LT.N ) THEN
  383. INFO = -10
  384. ELSE IF( WANTS .AND. LDVR.LT.N ) THEN
  385. INFO = -12
  386. ELSE
  387. *
  388. * Set M to the number of eigenpairs for which condition numbers
  389. * are required, and test MM.
  390. *
  391. IF( SOMCON ) THEN
  392. M = 0
  393. DO 10 K = 1, N
  394. IF( SELECT( K ) )
  395. $ M = M + 1
  396. 10 CONTINUE
  397. ELSE
  398. M = N
  399. END IF
  400. *
  401. IF( N.EQ.0 ) THEN
  402. LWMIN = 1
  403. ELSE IF( LSAME( JOB, 'V' ) .OR. LSAME( JOB, 'B' ) ) THEN
  404. LWMIN = 2*N*N
  405. ELSE
  406. LWMIN = N
  407. END IF
  408. WORK( 1 ) = LWMIN
  409. *
  410. IF( MM.LT.M ) THEN
  411. INFO = -15
  412. ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
  413. INFO = -18
  414. END IF
  415. END IF
  416. *
  417. IF( INFO.NE.0 ) THEN
  418. CALL XERBLA( 'CTGSNA', -INFO )
  419. RETURN
  420. ELSE IF( LQUERY ) THEN
  421. RETURN
  422. END IF
  423. *
  424. * Quick return if possible
  425. *
  426. IF( N.EQ.0 )
  427. $ RETURN
  428. *
  429. * Get machine constants
  430. *
  431. EPS = SLAMCH( 'P' )
  432. SMLNUM = SLAMCH( 'S' ) / EPS
  433. BIGNUM = ONE / SMLNUM
  434. CALL SLABAD( SMLNUM, BIGNUM )
  435. KS = 0
  436. DO 20 K = 1, N
  437. *
  438. * Determine whether condition numbers are required for the k-th
  439. * eigenpair.
  440. *
  441. IF( SOMCON ) THEN
  442. IF( .NOT.SELECT( K ) )
  443. $ GO TO 20
  444. END IF
  445. *
  446. KS = KS + 1
  447. *
  448. IF( WANTS ) THEN
  449. *
  450. * Compute the reciprocal condition number of the k-th
  451. * eigenvalue.
  452. *
  453. RNRM = SCNRM2( N, VR( 1, KS ), 1 )
  454. LNRM = SCNRM2( N, VL( 1, KS ), 1 )
  455. CALL CGEMV( 'N', N, N, CMPLX( ONE, ZERO ), A, LDA,
  456. $ VR( 1, KS ), 1, CMPLX( ZERO, ZERO ), WORK, 1 )
  457. YHAX = CDOTC( N, WORK, 1, VL( 1, KS ), 1 )
  458. CALL CGEMV( 'N', N, N, CMPLX( ONE, ZERO ), B, LDB,
  459. $ VR( 1, KS ), 1, CMPLX( ZERO, ZERO ), WORK, 1 )
  460. YHBX = CDOTC( N, WORK, 1, VL( 1, KS ), 1 )
  461. COND = SLAPY2( ABS( YHAX ), ABS( YHBX ) )
  462. IF( COND.EQ.ZERO ) THEN
  463. S( KS ) = -ONE
  464. ELSE
  465. S( KS ) = COND / ( RNRM*LNRM )
  466. END IF
  467. END IF
  468. *
  469. IF( WANTDF ) THEN
  470. IF( N.EQ.1 ) THEN
  471. DIF( KS ) = SLAPY2( ABS( A( 1, 1 ) ), ABS( B( 1, 1 ) ) )
  472. ELSE
  473. *
  474. * Estimate the reciprocal condition number of the k-th
  475. * eigenvectors.
  476. *
  477. * Copy the matrix (A, B) to the array WORK and move the
  478. * (k,k)th pair to the (1,1) position.
  479. *
  480. CALL CLACPY( 'Full', N, N, A, LDA, WORK, N )
  481. CALL CLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
  482. IFST = K
  483. ILST = 1
  484. *
  485. CALL CTGEXC( .FALSE., .FALSE., N, WORK, N, WORK( N*N+1 ),
  486. $ N, DUMMY, 1, DUMMY1, 1, IFST, ILST, IERR )
  487. *
  488. IF( IERR.GT.0 ) THEN
  489. *
  490. * Ill-conditioned problem - swap rejected.
  491. *
  492. DIF( KS ) = ZERO
  493. ELSE
  494. *
  495. * Reordering successful, solve generalized Sylvester
  496. * equation for R and L,
  497. * A22 * R - L * A11 = A12
  498. * B22 * R - L * B11 = B12,
  499. * and compute estimate of Difl[(A11,B11), (A22, B22)].
  500. *
  501. N1 = 1
  502. N2 = N - N1
  503. I = N*N + 1
  504. CALL CTGSYL( 'N', IDIFJB, N2, N1, WORK( N*N1+N1+1 ),
  505. $ N, WORK, N, WORK( N1+1 ), N,
  506. $ WORK( N*N1+N1+I ), N, WORK( I ), N,
  507. $ WORK( N1+I ), N, SCALE, DIF( KS ), DUMMY,
  508. $ 1, IWORK, IERR )
  509. END IF
  510. END IF
  511. END IF
  512. *
  513. 20 CONTINUE
  514. WORK( 1 ) = LWMIN
  515. RETURN
  516. *
  517. * End of CTGSNA
  518. *
  519. END