You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

cpoequb.f 5.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217
  1. *> \brief \b CPOEQUB
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CPOEQUB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpoequb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpoequb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpoequb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CPOEQUB( N, A, LDA, S, SCOND, AMAX, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * INTEGER INFO, LDA, N
  25. * REAL AMAX, SCOND
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX A( LDA, * )
  29. * REAL S( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> CPOEQUB computes row and column scalings intended to equilibrate a
  39. *> symmetric positive definite matrix A and reduce its condition number
  40. *> (with respect to the two-norm). S contains the scale factors,
  41. *> S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
  42. *> elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
  43. *> choice of S puts the condition number of B within a factor N of the
  44. *> smallest possible condition number over all possible diagonal
  45. *> scalings.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] N
  52. *> \verbatim
  53. *> N is INTEGER
  54. *> The order of the matrix A. N >= 0.
  55. *> \endverbatim
  56. *>
  57. *> \param[in] A
  58. *> \verbatim
  59. *> A is COMPLEX array, dimension (LDA,N)
  60. *> The N-by-N symmetric positive definite matrix whose scaling
  61. *> factors are to be computed. Only the diagonal elements of A
  62. *> are referenced.
  63. *> \endverbatim
  64. *>
  65. *> \param[in] LDA
  66. *> \verbatim
  67. *> LDA is INTEGER
  68. *> The leading dimension of the array A. LDA >= max(1,N).
  69. *> \endverbatim
  70. *>
  71. *> \param[out] S
  72. *> \verbatim
  73. *> S is REAL array, dimension (N)
  74. *> If INFO = 0, S contains the scale factors for A.
  75. *> \endverbatim
  76. *>
  77. *> \param[out] SCOND
  78. *> \verbatim
  79. *> SCOND is REAL
  80. *> If INFO = 0, S contains the ratio of the smallest S(i) to
  81. *> the largest S(i). If SCOND >= 0.1 and AMAX is neither too
  82. *> large nor too small, it is not worth scaling by S.
  83. *> \endverbatim
  84. *>
  85. *> \param[out] AMAX
  86. *> \verbatim
  87. *> AMAX is REAL
  88. *> Absolute value of largest matrix element. If AMAX is very
  89. *> close to overflow or very close to underflow, the matrix
  90. *> should be scaled.
  91. *> \endverbatim
  92. *>
  93. *> \param[out] INFO
  94. *> \verbatim
  95. *> INFO is INTEGER
  96. *> = 0: successful exit
  97. *> < 0: if INFO = -i, the i-th argument had an illegal value
  98. *> > 0: if INFO = i, the i-th diagonal element is nonpositive.
  99. *> \endverbatim
  100. *
  101. * Authors:
  102. * ========
  103. *
  104. *> \author Univ. of Tennessee
  105. *> \author Univ. of California Berkeley
  106. *> \author Univ. of Colorado Denver
  107. *> \author NAG Ltd.
  108. *
  109. *> \date November 2011
  110. *
  111. *> \ingroup complexPOcomputational
  112. *
  113. * =====================================================================
  114. SUBROUTINE CPOEQUB( N, A, LDA, S, SCOND, AMAX, INFO )
  115. *
  116. * -- LAPACK computational routine (version 3.4.0) --
  117. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  118. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  119. * November 2011
  120. *
  121. * .. Scalar Arguments ..
  122. INTEGER INFO, LDA, N
  123. REAL AMAX, SCOND
  124. * ..
  125. * .. Array Arguments ..
  126. COMPLEX A( LDA, * )
  127. REAL S( * )
  128. * ..
  129. *
  130. * =====================================================================
  131. *
  132. * .. Parameters ..
  133. REAL ZERO, ONE
  134. PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
  135. * ..
  136. * .. Local Scalars ..
  137. INTEGER I
  138. REAL SMIN, BASE, TMP
  139. * ..
  140. * .. External Functions ..
  141. REAL SLAMCH
  142. EXTERNAL SLAMCH
  143. * ..
  144. * .. External Subroutines ..
  145. EXTERNAL XERBLA
  146. * ..
  147. * .. Intrinsic Functions ..
  148. INTRINSIC MAX, MIN, SQRT, LOG, INT
  149. * ..
  150. * .. Executable Statements ..
  151. *
  152. * Test the input parameters.
  153. *
  154. * Positive definite only performs 1 pass of equilibration.
  155. *
  156. INFO = 0
  157. IF( N.LT.0 ) THEN
  158. INFO = -1
  159. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  160. INFO = -3
  161. END IF
  162. IF( INFO.NE.0 ) THEN
  163. CALL XERBLA( 'CPOEQUB', -INFO )
  164. RETURN
  165. END IF
  166. *
  167. * Quick return if possible.
  168. *
  169. IF( N.EQ.0 ) THEN
  170. SCOND = ONE
  171. AMAX = ZERO
  172. RETURN
  173. END IF
  174. BASE = SLAMCH( 'B' )
  175. TMP = -0.5 / LOG ( BASE )
  176. *
  177. * Find the minimum and maximum diagonal elements.
  178. *
  179. S( 1 ) = A( 1, 1 )
  180. SMIN = S( 1 )
  181. AMAX = S( 1 )
  182. DO 10 I = 2, N
  183. S( I ) = A( I, I )
  184. SMIN = MIN( SMIN, S( I ) )
  185. AMAX = MAX( AMAX, S( I ) )
  186. 10 CONTINUE
  187. *
  188. IF( SMIN.LE.ZERO ) THEN
  189. *
  190. * Find the first non-positive diagonal element and return.
  191. *
  192. DO 20 I = 1, N
  193. IF( S( I ).LE.ZERO ) THEN
  194. INFO = I
  195. RETURN
  196. END IF
  197. 20 CONTINUE
  198. ELSE
  199. *
  200. * Set the scale factors to the reciprocals
  201. * of the diagonal elements.
  202. *
  203. DO 30 I = 1, N
  204. S( I ) = BASE ** INT( TMP * LOG( S( I ) ) )
  205. 30 CONTINUE
  206. *
  207. * Compute SCOND = min(S(I)) / max(S(I)).
  208. *
  209. SCOND = SQRT( SMIN ) / SQRT( AMAX )
  210. END IF
  211. *
  212. RETURN
  213. *
  214. * End of CPOEQUB
  215. *
  216. END