You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

chemmf.f 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304
  1. SUBROUTINE CHEMMF ( SIDE, UPLO, M, N, ALPHA, A, LDA, B, LDB,
  2. $ BETA, C, LDC )
  3. * .. Scalar Arguments ..
  4. CHARACTER*1 SIDE, UPLO
  5. INTEGER M, N, LDA, LDB, LDC
  6. COMPLEX ALPHA, BETA
  7. * .. Array Arguments ..
  8. COMPLEX A( LDA, * ), B( LDB, * ), C( LDC, * )
  9. * ..
  10. *
  11. * Purpose
  12. * =======
  13. *
  14. * CHEMM performs one of the matrix-matrix operations
  15. *
  16. * C := alpha*A*B + beta*C,
  17. *
  18. * or
  19. *
  20. * C := alpha*B*A + beta*C,
  21. *
  22. * where alpha and beta are scalars, A is an hermitian matrix and B and
  23. * C are m by n matrices.
  24. *
  25. * Parameters
  26. * ==========
  27. *
  28. * SIDE - CHARACTER*1.
  29. * On entry, SIDE specifies whether the hermitian matrix A
  30. * appears on the left or right in the operation as follows:
  31. *
  32. * SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
  33. *
  34. * SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
  35. *
  36. * Unchanged on exit.
  37. *
  38. * UPLO - CHARACTER*1.
  39. * On entry, UPLO specifies whether the upper or lower
  40. * triangular part of the hermitian matrix A is to be
  41. * referenced as follows:
  42. *
  43. * UPLO = 'U' or 'u' Only the upper triangular part of the
  44. * hermitian matrix is to be referenced.
  45. *
  46. * UPLO = 'L' or 'l' Only the lower triangular part of the
  47. * hermitian matrix is to be referenced.
  48. *
  49. * Unchanged on exit.
  50. *
  51. * M - INTEGER.
  52. * On entry, M specifies the number of rows of the matrix C.
  53. * M must be at least zero.
  54. * Unchanged on exit.
  55. *
  56. * N - INTEGER.
  57. * On entry, N specifies the number of columns of the matrix C.
  58. * N must be at least zero.
  59. * Unchanged on exit.
  60. *
  61. * ALPHA - COMPLEX .
  62. * On entry, ALPHA specifies the scalar alpha.
  63. * Unchanged on exit.
  64. *
  65. * A - COMPLEX array of DIMENSION ( LDA, ka ), where ka is
  66. * m when SIDE = 'L' or 'l' and is n otherwise.
  67. * Before entry with SIDE = 'L' or 'l', the m by m part of
  68. * the array A must contain the hermitian matrix, such that
  69. * when UPLO = 'U' or 'u', the leading m by m upper triangular
  70. * part of the array A must contain the upper triangular part
  71. * of the hermitian matrix and the strictly lower triangular
  72. * part of A is not referenced, and when UPLO = 'L' or 'l',
  73. * the leading m by m lower triangular part of the array A
  74. * must contain the lower triangular part of the hermitian
  75. * matrix and the strictly upper triangular part of A is not
  76. * referenced.
  77. * Before entry with SIDE = 'R' or 'r', the n by n part of
  78. * the array A must contain the hermitian matrix, such that
  79. * when UPLO = 'U' or 'u', the leading n by n upper triangular
  80. * part of the array A must contain the upper triangular part
  81. * of the hermitian matrix and the strictly lower triangular
  82. * part of A is not referenced, and when UPLO = 'L' or 'l',
  83. * the leading n by n lower triangular part of the array A
  84. * must contain the lower triangular part of the hermitian
  85. * matrix and the strictly upper triangular part of A is not
  86. * referenced.
  87. * Note that the imaginary parts of the diagonal elements need
  88. * not be set, they are assumed to be zero.
  89. * Unchanged on exit.
  90. *
  91. * LDA - INTEGER.
  92. * On entry, LDA specifies the first dimension of A as declared
  93. * in the calling (sub) program. When SIDE = 'L' or 'l' then
  94. * LDA must be at least max( 1, m ), otherwise LDA must be at
  95. * least max( 1, n ).
  96. * Unchanged on exit.
  97. *
  98. * B - COMPLEX array of DIMENSION ( LDB, n ).
  99. * Before entry, the leading m by n part of the array B must
  100. * contain the matrix B.
  101. * Unchanged on exit.
  102. *
  103. * LDB - INTEGER.
  104. * On entry, LDB specifies the first dimension of B as declared
  105. * in the calling (sub) program. LDB must be at least
  106. * max( 1, m ).
  107. * Unchanged on exit.
  108. *
  109. * BETA - COMPLEX .
  110. * On entry, BETA specifies the scalar beta. When BETA is
  111. * supplied as zero then C need not be set on input.
  112. * Unchanged on exit.
  113. *
  114. * C - COMPLEX array of DIMENSION ( LDC, n ).
  115. * Before entry, the leading m by n part of the array C must
  116. * contain the matrix C, except when beta is zero, in which
  117. * case C need not be set on entry.
  118. * On exit, the array C is overwritten by the m by n updated
  119. * matrix.
  120. *
  121. * LDC - INTEGER.
  122. * On entry, LDC specifies the first dimension of C as declared
  123. * in the calling (sub) program. LDC must be at least
  124. * max( 1, m ).
  125. * Unchanged on exit.
  126. *
  127. *
  128. * Level 3 Blas routine.
  129. *
  130. * -- Written on 8-February-1989.
  131. * Jack Dongarra, Argonne National Laboratory.
  132. * Iain Duff, AERE Harwell.
  133. * Jeremy Du Croz, Numerical Algorithms Group Ltd.
  134. * Sven Hammarling, Numerical Algorithms Group Ltd.
  135. *
  136. *
  137. * .. External Functions ..
  138. LOGICAL LSAME
  139. EXTERNAL LSAME
  140. * .. External Subroutines ..
  141. EXTERNAL XERBLA
  142. * .. Intrinsic Functions ..
  143. INTRINSIC CONJG, MAX, REAL
  144. * .. Local Scalars ..
  145. LOGICAL UPPER
  146. INTEGER I, INFO, J, K, NROWA
  147. COMPLEX TEMP1, TEMP2
  148. * .. Parameters ..
  149. COMPLEX ONE
  150. PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
  151. COMPLEX ZERO
  152. PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
  153. * ..
  154. * .. Executable Statements ..
  155. *
  156. * Set NROWA as the number of rows of A.
  157. *
  158. IF( LSAME( SIDE, 'L' ) )THEN
  159. NROWA = M
  160. ELSE
  161. NROWA = N
  162. END IF
  163. UPPER = LSAME( UPLO, 'U' )
  164. *
  165. * Test the input parameters.
  166. *
  167. INFO = 0
  168. IF( ( .NOT.LSAME( SIDE, 'L' ) ).AND.
  169. $ ( .NOT.LSAME( SIDE, 'R' ) ) )THEN
  170. INFO = 1
  171. ELSE IF( ( .NOT.UPPER ).AND.
  172. $ ( .NOT.LSAME( UPLO, 'L' ) ) )THEN
  173. INFO = 2
  174. ELSE IF( M .LT.0 )THEN
  175. INFO = 3
  176. ELSE IF( N .LT.0 )THEN
  177. INFO = 4
  178. ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
  179. INFO = 7
  180. ELSE IF( LDB.LT.MAX( 1, M ) )THEN
  181. INFO = 9
  182. ELSE IF( LDC.LT.MAX( 1, M ) )THEN
  183. INFO = 12
  184. END IF
  185. IF( INFO.NE.0 )THEN
  186. CALL XERBLA( 'CHEMM3M', INFO )
  187. RETURN
  188. END IF
  189. *
  190. * Quick return if possible.
  191. *
  192. IF( ( M.EQ.0 ).OR.( N.EQ.0 ).OR.
  193. $ ( ( ALPHA.EQ.ZERO ).AND.( BETA.EQ.ONE ) ) )
  194. $ RETURN
  195. *
  196. * And when alpha.eq.zero.
  197. *
  198. IF( ALPHA.EQ.ZERO )THEN
  199. IF( BETA.EQ.ZERO )THEN
  200. DO 20, J = 1, N
  201. DO 10, I = 1, M
  202. C( I, J ) = ZERO
  203. 10 CONTINUE
  204. 20 CONTINUE
  205. ELSE
  206. DO 40, J = 1, N
  207. DO 30, I = 1, M
  208. C( I, J ) = BETA*C( I, J )
  209. 30 CONTINUE
  210. 40 CONTINUE
  211. END IF
  212. RETURN
  213. END IF
  214. *
  215. * Start the operations.
  216. *
  217. IF( LSAME( SIDE, 'L' ) )THEN
  218. *
  219. * Form C := alpha*A*B + beta*C.
  220. *
  221. IF( UPPER )THEN
  222. DO 70, J = 1, N
  223. DO 60, I = 1, M
  224. TEMP1 = ALPHA*B( I, J )
  225. TEMP2 = ZERO
  226. DO 50, K = 1, I - 1
  227. C( K, J ) = C( K, J ) + TEMP1*A( K, I )
  228. TEMP2 = TEMP2 +
  229. $ B( K, J )*CONJG( A( K, I ) )
  230. 50 CONTINUE
  231. IF( BETA.EQ.ZERO )THEN
  232. C( I, J ) = TEMP1*REAL( A( I, I ) ) +
  233. $ ALPHA*TEMP2
  234. ELSE
  235. C( I, J ) = BETA *C( I, J ) +
  236. $ TEMP1*REAL( A( I, I ) ) +
  237. $ ALPHA*TEMP2
  238. END IF
  239. 60 CONTINUE
  240. 70 CONTINUE
  241. ELSE
  242. DO 100, J = 1, N
  243. DO 90, I = M, 1, -1
  244. TEMP1 = ALPHA*B( I, J )
  245. TEMP2 = ZERO
  246. DO 80, K = I + 1, M
  247. C( K, J ) = C( K, J ) + TEMP1*A( K, I )
  248. TEMP2 = TEMP2 +
  249. $ B( K, J )*CONJG( A( K, I ) )
  250. 80 CONTINUE
  251. IF( BETA.EQ.ZERO )THEN
  252. C( I, J ) = TEMP1*REAL( A( I, I ) ) +
  253. $ ALPHA*TEMP2
  254. ELSE
  255. C( I, J ) = BETA *C( I, J ) +
  256. $ TEMP1*REAL( A( I, I ) ) +
  257. $ ALPHA*TEMP2
  258. END IF
  259. 90 CONTINUE
  260. 100 CONTINUE
  261. END IF
  262. ELSE
  263. *
  264. * Form C := alpha*B*A + beta*C.
  265. *
  266. DO 170, J = 1, N
  267. TEMP1 = ALPHA*REAL( A( J, J ) )
  268. IF( BETA.EQ.ZERO )THEN
  269. DO 110, I = 1, M
  270. C( I, J ) = TEMP1*B( I, J )
  271. 110 CONTINUE
  272. ELSE
  273. DO 120, I = 1, M
  274. C( I, J ) = BETA*C( I, J ) + TEMP1*B( I, J )
  275. 120 CONTINUE
  276. END IF
  277. DO 140, K = 1, J - 1
  278. IF( UPPER )THEN
  279. TEMP1 = ALPHA*A( K, J )
  280. ELSE
  281. TEMP1 = ALPHA*CONJG( A( J, K ) )
  282. END IF
  283. DO 130, I = 1, M
  284. C( I, J ) = C( I, J ) + TEMP1*B( I, K )
  285. 130 CONTINUE
  286. 140 CONTINUE
  287. DO 160, K = J + 1, N
  288. IF( UPPER )THEN
  289. TEMP1 = ALPHA*CONJG( A( J, K ) )
  290. ELSE
  291. TEMP1 = ALPHA*A( K, J )
  292. END IF
  293. DO 150, I = 1, M
  294. C( I, J ) = C( I, J ) + TEMP1*B( I, K )
  295. 150 CONTINUE
  296. 160 CONTINUE
  297. 170 CONTINUE
  298. END IF
  299. *
  300. RETURN
  301. *
  302. * End of CHEMM .
  303. *
  304. END