You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dtrsmf.f 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378
  1. SUBROUTINE DTRSMF ( SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA,
  2. $ B, LDB )
  3. * .. Scalar Arguments ..
  4. CHARACTER*1 SIDE, UPLO, TRANSA, DIAG
  5. INTEGER M, N, LDA, LDB
  6. DOUBLE PRECISION ALPHA
  7. * .. Array Arguments ..
  8. DOUBLE PRECISION A( LDA, * ), B( LDB, * )
  9. * ..
  10. *
  11. * Purpose
  12. * =======
  13. *
  14. * DTRSM solves one of the matrix equations
  15. *
  16. * op( A )*X = alpha*B, or X*op( A ) = alpha*B,
  17. *
  18. * where alpha is a scalar, X and B are m by n matrices, A is a unit, or
  19. * non-unit, upper or lower triangular matrix and op( A ) is one of
  20. *
  21. * op( A ) = A or op( A ) = A'.
  22. *
  23. * The matrix X is overwritten on B.
  24. *
  25. * Parameters
  26. * ==========
  27. *
  28. * SIDE - CHARACTER*1.
  29. * On entry, SIDE specifies whether op( A ) appears on the left
  30. * or right of X as follows:
  31. *
  32. * SIDE = 'L' or 'l' op( A )*X = alpha*B.
  33. *
  34. * SIDE = 'R' or 'r' X*op( A ) = alpha*B.
  35. *
  36. * Unchanged on exit.
  37. *
  38. * UPLO - CHARACTER*1.
  39. * On entry, UPLO specifies whether the matrix A is an upper or
  40. * lower triangular matrix as follows:
  41. *
  42. * UPLO = 'U' or 'u' A is an upper triangular matrix.
  43. *
  44. * UPLO = 'L' or 'l' A is a lower triangular matrix.
  45. *
  46. * Unchanged on exit.
  47. *
  48. * TRANSA - CHARACTER*1.
  49. * On entry, TRANSA specifies the form of op( A ) to be used in
  50. * the matrix multiplication as follows:
  51. *
  52. * TRANSA = 'N' or 'n' op( A ) = A.
  53. *
  54. * TRANSA = 'T' or 't' op( A ) = A'.
  55. *
  56. * TRANSA = 'C' or 'c' op( A ) = A'.
  57. *
  58. * Unchanged on exit.
  59. *
  60. * DIAG - CHARACTER*1.
  61. * On entry, DIAG specifies whether or not A is unit triangular
  62. * as follows:
  63. *
  64. * DIAG = 'U' or 'u' A is assumed to be unit triangular.
  65. *
  66. * DIAG = 'N' or 'n' A is not assumed to be unit
  67. * triangular.
  68. *
  69. * Unchanged on exit.
  70. *
  71. * M - INTEGER.
  72. * On entry, M specifies the number of rows of B. M must be at
  73. * least zero.
  74. * Unchanged on exit.
  75. *
  76. * N - INTEGER.
  77. * On entry, N specifies the number of columns of B. N must be
  78. * at least zero.
  79. * Unchanged on exit.
  80. *
  81. * ALPHA - DOUBLE PRECISION.
  82. * On entry, ALPHA specifies the scalar alpha. When alpha is
  83. * zero then A is not referenced and B need not be set before
  84. * entry.
  85. * Unchanged on exit.
  86. *
  87. * A - DOUBLE PRECISION array of DIMENSION ( LDA, k ), where k is m
  88. * when SIDE = 'L' or 'l' and is n when SIDE = 'R' or 'r'.
  89. * Before entry with UPLO = 'U' or 'u', the leading k by k
  90. * upper triangular part of the array A must contain the upper
  91. * triangular matrix and the strictly lower triangular part of
  92. * A is not referenced.
  93. * Before entry with UPLO = 'L' or 'l', the leading k by k
  94. * lower triangular part of the array A must contain the lower
  95. * triangular matrix and the strictly upper triangular part of
  96. * A is not referenced.
  97. * Note that when DIAG = 'U' or 'u', the diagonal elements of
  98. * A are not referenced either, but are assumed to be unity.
  99. * Unchanged on exit.
  100. *
  101. * LDA - INTEGER.
  102. * On entry, LDA specifies the first dimension of A as declared
  103. * in the calling (sub) program. When SIDE = 'L' or 'l' then
  104. * LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
  105. * then LDA must be at least max( 1, n ).
  106. * Unchanged on exit.
  107. *
  108. * B - DOUBLE PRECISION array of DIMENSION ( LDB, n ).
  109. * Before entry, the leading m by n part of the array B must
  110. * contain the right-hand side matrix B, and on exit is
  111. * overwritten by the solution matrix X.
  112. *
  113. * LDB - INTEGER.
  114. * On entry, LDB specifies the first dimension of B as declared
  115. * in the calling (sub) program. LDB must be at least
  116. * max( 1, m ).
  117. * Unchanged on exit.
  118. *
  119. *
  120. * Level 3 Blas routine.
  121. *
  122. *
  123. * -- Written on 8-February-1989.
  124. * Jack Dongarra, Argonne National Laboratory.
  125. * Iain Duff, AERE Harwell.
  126. * Jeremy Du Croz, Numerical Algorithms Group Ltd.
  127. * Sven Hammarling, Numerical Algorithms Group Ltd.
  128. *
  129. *
  130. * .. External Functions ..
  131. LOGICAL LSAME
  132. EXTERNAL LSAME
  133. * .. External Subroutines ..
  134. EXTERNAL XERBLA
  135. * .. Intrinsic Functions ..
  136. INTRINSIC MAX
  137. * .. Local Scalars ..
  138. LOGICAL LSIDE, NOUNIT, UPPER
  139. INTEGER I, INFO, J, K, NROWA
  140. DOUBLE PRECISION TEMP
  141. * .. Parameters ..
  142. DOUBLE PRECISION ONE , ZERO
  143. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  144. * ..
  145. * .. Executable Statements ..
  146. *
  147. * Test the input parameters.
  148. *
  149. LSIDE = LSAME( SIDE , 'L' )
  150. IF( LSIDE )THEN
  151. NROWA = M
  152. ELSE
  153. NROWA = N
  154. END IF
  155. NOUNIT = LSAME( DIAG , 'N' )
  156. UPPER = LSAME( UPLO , 'U' )
  157. *
  158. INFO = 0
  159. IF( ( .NOT.LSIDE ).AND.
  160. $ ( .NOT.LSAME( SIDE , 'R' ) ) )THEN
  161. INFO = 1
  162. ELSE IF( ( .NOT.UPPER ).AND.
  163. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
  164. INFO = 2
  165. ELSE IF( ( .NOT.LSAME( TRANSA, 'N' ) ).AND.
  166. $ ( .NOT.LSAME( TRANSA, 'T' ) ).AND.
  167. $ ( .NOT.LSAME( TRANSA, 'C' ) ) )THEN
  168. INFO = 3
  169. ELSE IF( ( .NOT.LSAME( DIAG , 'U' ) ).AND.
  170. $ ( .NOT.LSAME( DIAG , 'N' ) ) )THEN
  171. INFO = 4
  172. ELSE IF( M .LT.0 )THEN
  173. INFO = 5
  174. ELSE IF( N .LT.0 )THEN
  175. INFO = 6
  176. ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
  177. INFO = 9
  178. ELSE IF( LDB.LT.MAX( 1, M ) )THEN
  179. INFO = 11
  180. END IF
  181. IF( INFO.NE.0 )THEN
  182. CALL XERBLA( 'DTRSM ', INFO )
  183. RETURN
  184. END IF
  185. *
  186. * Quick return if possible.
  187. *
  188. IF( N.EQ.0 )
  189. $ RETURN
  190. *
  191. * And when alpha.eq.zero.
  192. *
  193. IF( ALPHA.EQ.ZERO )THEN
  194. DO 20, J = 1, N
  195. DO 10, I = 1, M
  196. B( I, J ) = ZERO
  197. 10 CONTINUE
  198. 20 CONTINUE
  199. RETURN
  200. END IF
  201. *
  202. * Start the operations.
  203. *
  204. IF( LSIDE )THEN
  205. IF( LSAME( TRANSA, 'N' ) )THEN
  206. *
  207. * Form B := alpha*inv( A )*B.
  208. *
  209. IF( UPPER )THEN
  210. DO 60, J = 1, N
  211. IF( ALPHA.NE.ONE )THEN
  212. DO 30, I = 1, M
  213. B( I, J ) = ALPHA*B( I, J )
  214. 30 CONTINUE
  215. END IF
  216. DO 50, K = M, 1, -1
  217. IF( B( K, J ).NE.ZERO )THEN
  218. IF( NOUNIT )
  219. $ B( K, J ) = B( K, J )/A( K, K )
  220. DO 40, I = 1, K - 1
  221. B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
  222. 40 CONTINUE
  223. END IF
  224. 50 CONTINUE
  225. 60 CONTINUE
  226. ELSE
  227. DO 100, J = 1, N
  228. IF( ALPHA.NE.ONE )THEN
  229. DO 70, I = 1, M
  230. B( I, J ) = ALPHA*B( I, J )
  231. 70 CONTINUE
  232. END IF
  233. DO 90 K = 1, M
  234. IF( B( K, J ).NE.ZERO )THEN
  235. IF( NOUNIT )
  236. $ B( K, J ) = B( K, J )/A( K, K )
  237. DO 80, I = K + 1, M
  238. B( I, J ) = B( I, J ) - B( K, J )*A( I, K )
  239. 80 CONTINUE
  240. END IF
  241. 90 CONTINUE
  242. 100 CONTINUE
  243. END IF
  244. ELSE
  245. *
  246. * Form B := alpha*inv( A' )*B.
  247. *
  248. IF( UPPER )THEN
  249. DO 130, J = 1, N
  250. DO 120, I = 1, M
  251. TEMP = ALPHA*B( I, J )
  252. DO 110, K = 1, I - 1
  253. TEMP = TEMP - A( K, I )*B( K, J )
  254. 110 CONTINUE
  255. IF( NOUNIT )
  256. $ TEMP = TEMP/A( I, I )
  257. B( I, J ) = TEMP
  258. 120 CONTINUE
  259. 130 CONTINUE
  260. ELSE
  261. DO 160, J = 1, N
  262. DO 150, I = M, 1, -1
  263. TEMP = ALPHA*B( I, J )
  264. DO 140, K = I + 1, M
  265. TEMP = TEMP - A( K, I )*B( K, J )
  266. 140 CONTINUE
  267. IF( NOUNIT )
  268. $ TEMP = TEMP/A( I, I )
  269. B( I, J ) = TEMP
  270. 150 CONTINUE
  271. 160 CONTINUE
  272. END IF
  273. END IF
  274. ELSE
  275. IF( LSAME( TRANSA, 'N' ) )THEN
  276. *
  277. * Form B := alpha*B*inv( A ).
  278. *
  279. IF( UPPER )THEN
  280. DO 210, J = 1, N
  281. IF( ALPHA.NE.ONE )THEN
  282. DO 170, I = 1, M
  283. B( I, J ) = ALPHA*B( I, J )
  284. 170 CONTINUE
  285. END IF
  286. DO 190, K = 1, J - 1
  287. IF( A( K, J ).NE.ZERO )THEN
  288. DO 180, I = 1, M
  289. B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
  290. 180 CONTINUE
  291. END IF
  292. 190 CONTINUE
  293. IF( NOUNIT )THEN
  294. TEMP = ONE/A( J, J )
  295. DO 200, I = 1, M
  296. B( I, J ) = TEMP*B( I, J )
  297. 200 CONTINUE
  298. END IF
  299. 210 CONTINUE
  300. ELSE
  301. DO 260, J = N, 1, -1
  302. IF( ALPHA.NE.ONE )THEN
  303. DO 220, I = 1, M
  304. B( I, J ) = ALPHA*B( I, J )
  305. 220 CONTINUE
  306. END IF
  307. DO 240, K = J + 1, N
  308. IF( A( K, J ).NE.ZERO )THEN
  309. DO 230, I = 1, M
  310. B( I, J ) = B( I, J ) - A( K, J )*B( I, K )
  311. 230 CONTINUE
  312. END IF
  313. 240 CONTINUE
  314. IF( NOUNIT )THEN
  315. TEMP = ONE/A( J, J )
  316. DO 250, I = 1, M
  317. B( I, J ) = TEMP*B( I, J )
  318. 250 CONTINUE
  319. END IF
  320. 260 CONTINUE
  321. END IF
  322. ELSE
  323. *
  324. * Form B := alpha*B*inv( A' ).
  325. *
  326. IF( UPPER )THEN
  327. DO 310, K = N, 1, -1
  328. IF( NOUNIT )THEN
  329. TEMP = ONE/A( K, K )
  330. DO 270, I = 1, M
  331. B( I, K ) = TEMP*B( I, K )
  332. 270 CONTINUE
  333. END IF
  334. DO 290, J = 1, K - 1
  335. IF( A( J, K ).NE.ZERO )THEN
  336. TEMP = A( J, K )
  337. DO 280, I = 1, M
  338. B( I, J ) = B( I, J ) - TEMP*B( I, K )
  339. 280 CONTINUE
  340. END IF
  341. 290 CONTINUE
  342. IF( ALPHA.NE.ONE )THEN
  343. DO 300, I = 1, M
  344. B( I, K ) = ALPHA*B( I, K )
  345. 300 CONTINUE
  346. END IF
  347. 310 CONTINUE
  348. ELSE
  349. DO 360, K = 1, N
  350. IF( NOUNIT )THEN
  351. TEMP = ONE/A( K, K )
  352. DO 320, I = 1, M
  353. B( I, K ) = TEMP*B( I, K )
  354. 320 CONTINUE
  355. END IF
  356. DO 340, J = K + 1, N
  357. IF( A( J, K ).NE.ZERO )THEN
  358. TEMP = A( J, K )
  359. DO 330, I = 1, M
  360. B( I, J ) = B( I, J ) - TEMP*B( I, K )
  361. 330 CONTINUE
  362. END IF
  363. 340 CONTINUE
  364. IF( ALPHA.NE.ONE )THEN
  365. DO 350, I = 1, M
  366. B( I, K ) = ALPHA*B( I, K )
  367. 350 CONTINUE
  368. END IF
  369. 360 CONTINUE
  370. END IF
  371. END IF
  372. END IF
  373. *
  374. RETURN
  375. *
  376. * End of DTRSM .
  377. *
  378. END

OpenBLAS is an optimized BLAS library based on GotoBLAS2 1.13 BSD version.