You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dsptrf.f 19 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613
  1. *> \brief \b DSPTRF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DSPTRF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsptrf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsptrf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsptrf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, N
  26. * ..
  27. * .. Array Arguments ..
  28. * INTEGER IPIV( * )
  29. * DOUBLE PRECISION AP( * )
  30. * ..
  31. *
  32. *
  33. *> \par Purpose:
  34. * =============
  35. *>
  36. *> \verbatim
  37. *>
  38. *> DSPTRF computes the factorization of a real symmetric matrix A stored
  39. *> in packed format using the Bunch-Kaufman diagonal pivoting method:
  40. *>
  41. *> A = U*D*U**T or A = L*D*L**T
  42. *>
  43. *> where U (or L) is a product of permutation and unit upper (lower)
  44. *> triangular matrices, and D is symmetric and block diagonal with
  45. *> 1-by-1 and 2-by-2 diagonal blocks.
  46. *> \endverbatim
  47. *
  48. * Arguments:
  49. * ==========
  50. *
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': Upper triangle of A is stored;
  55. *> = 'L': Lower triangle of A is stored.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in,out] AP
  65. *> \verbatim
  66. *> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
  67. *> On entry, the upper or lower triangle of the symmetric matrix
  68. *> A, packed columnwise in a linear array. The j-th column of A
  69. *> is stored in the array AP as follows:
  70. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  71. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  72. *>
  73. *> On exit, the block diagonal matrix D and the multipliers used
  74. *> to obtain the factor U or L, stored as a packed triangular
  75. *> matrix overwriting A (see below for further details).
  76. *> \endverbatim
  77. *>
  78. *> \param[out] IPIV
  79. *> \verbatim
  80. *> IPIV is INTEGER array, dimension (N)
  81. *> Details of the interchanges and the block structure of D.
  82. *> If IPIV(k) > 0, then rows and columns k and IPIV(k) were
  83. *> interchanged and D(k,k) is a 1-by-1 diagonal block.
  84. *> If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
  85. *> columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
  86. *> is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
  87. *> IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
  88. *> interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
  89. *> \endverbatim
  90. *>
  91. *> \param[out] INFO
  92. *> \verbatim
  93. *> INFO is INTEGER
  94. *> = 0: successful exit
  95. *> < 0: if INFO = -i, the i-th argument had an illegal value
  96. *> > 0: if INFO = i, D(i,i) is exactly zero. The factorization
  97. *> has been completed, but the block diagonal matrix D is
  98. *> exactly singular, and division by zero will occur if it
  99. *> is used to solve a system of equations.
  100. *> \endverbatim
  101. *
  102. * Authors:
  103. * ========
  104. *
  105. *> \author Univ. of Tennessee
  106. *> \author Univ. of California Berkeley
  107. *> \author Univ. of Colorado Denver
  108. *> \author NAG Ltd.
  109. *
  110. *> \ingroup doubleOTHERcomputational
  111. *
  112. *> \par Further Details:
  113. * =====================
  114. *>
  115. *> \verbatim
  116. *>
  117. *> If UPLO = 'U', then A = U*D*U**T, where
  118. *> U = P(n)*U(n)* ... *P(k)U(k)* ...,
  119. *> i.e., U is a product of terms P(k)*U(k), where k decreases from n to
  120. *> 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  121. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  122. *> defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
  123. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  124. *>
  125. *> ( I v 0 ) k-s
  126. *> U(k) = ( 0 I 0 ) s
  127. *> ( 0 0 I ) n-k
  128. *> k-s s n-k
  129. *>
  130. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
  131. *> If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
  132. *> and A(k,k), and v overwrites A(1:k-2,k-1:k).
  133. *>
  134. *> If UPLO = 'L', then A = L*D*L**T, where
  135. *> L = P(1)*L(1)* ... *P(k)*L(k)* ...,
  136. *> i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
  137. *> n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
  138. *> and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
  139. *> defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
  140. *> that if the diagonal block D(k) is of order s (s = 1 or 2), then
  141. *>
  142. *> ( I 0 0 ) k-1
  143. *> L(k) = ( 0 I 0 ) s
  144. *> ( 0 v I ) n-k-s+1
  145. *> k-1 s n-k-s+1
  146. *>
  147. *> If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
  148. *> If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
  149. *> and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
  150. *> \endverbatim
  151. *
  152. *> \par Contributors:
  153. * ==================
  154. *>
  155. *> J. Lewis, Boeing Computer Services Company
  156. *>
  157. * =====================================================================
  158. SUBROUTINE DSPTRF( UPLO, N, AP, IPIV, INFO )
  159. *
  160. * -- LAPACK computational routine --
  161. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  162. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  163. *
  164. * .. Scalar Arguments ..
  165. CHARACTER UPLO
  166. INTEGER INFO, N
  167. * ..
  168. * .. Array Arguments ..
  169. INTEGER IPIV( * )
  170. DOUBLE PRECISION AP( * )
  171. * ..
  172. *
  173. * =====================================================================
  174. *
  175. * .. Parameters ..
  176. DOUBLE PRECISION ZERO, ONE
  177. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
  178. DOUBLE PRECISION EIGHT, SEVTEN
  179. PARAMETER ( EIGHT = 8.0D+0, SEVTEN = 17.0D+0 )
  180. * ..
  181. * .. Local Scalars ..
  182. LOGICAL UPPER
  183. INTEGER I, IMAX, J, JMAX, K, KC, KK, KNC, KP, KPC,
  184. $ KSTEP, KX, NPP
  185. DOUBLE PRECISION ABSAKK, ALPHA, COLMAX, D11, D12, D21, D22, R1,
  186. $ ROWMAX, T, WK, WKM1, WKP1
  187. * ..
  188. * .. External Functions ..
  189. LOGICAL LSAME
  190. INTEGER IDAMAX
  191. EXTERNAL LSAME, IDAMAX
  192. * ..
  193. * .. External Subroutines ..
  194. EXTERNAL DSCAL, DSPR, DSWAP, XERBLA
  195. * ..
  196. * .. Intrinsic Functions ..
  197. INTRINSIC ABS, MAX, SQRT
  198. * ..
  199. * .. Executable Statements ..
  200. *
  201. * Test the input parameters.
  202. *
  203. INFO = 0
  204. UPPER = LSAME( UPLO, 'U' )
  205. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  206. INFO = -1
  207. ELSE IF( N.LT.0 ) THEN
  208. INFO = -2
  209. END IF
  210. IF( INFO.NE.0 ) THEN
  211. CALL XERBLA( 'DSPTRF', -INFO )
  212. RETURN
  213. END IF
  214. *
  215. * Initialize ALPHA for use in choosing pivot block size.
  216. *
  217. ALPHA = ( ONE+SQRT( SEVTEN ) ) / EIGHT
  218. *
  219. IF( UPPER ) THEN
  220. *
  221. * Factorize A as U*D*U**T using the upper triangle of A
  222. *
  223. * K is the main loop index, decreasing from N to 1 in steps of
  224. * 1 or 2
  225. *
  226. K = N
  227. KC = ( N-1 )*N / 2 + 1
  228. 10 CONTINUE
  229. KNC = KC
  230. *
  231. * If K < 1, exit from loop
  232. *
  233. IF( K.LT.1 )
  234. $ GO TO 110
  235. KSTEP = 1
  236. *
  237. * Determine rows and columns to be interchanged and whether
  238. * a 1-by-1 or 2-by-2 pivot block will be used
  239. *
  240. ABSAKK = ABS( AP( KC+K-1 ) )
  241. *
  242. * IMAX is the row-index of the largest off-diagonal element in
  243. * column K, and COLMAX is its absolute value
  244. *
  245. IF( K.GT.1 ) THEN
  246. IMAX = IDAMAX( K-1, AP( KC ), 1 )
  247. COLMAX = ABS( AP( KC+IMAX-1 ) )
  248. ELSE
  249. COLMAX = ZERO
  250. END IF
  251. *
  252. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  253. *
  254. * Column K is zero: set INFO and continue
  255. *
  256. IF( INFO.EQ.0 )
  257. $ INFO = K
  258. KP = K
  259. ELSE
  260. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  261. *
  262. * no interchange, use 1-by-1 pivot block
  263. *
  264. KP = K
  265. ELSE
  266. *
  267. ROWMAX = ZERO
  268. JMAX = IMAX
  269. KX = IMAX*( IMAX+1 ) / 2 + IMAX
  270. DO 20 J = IMAX + 1, K
  271. IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN
  272. ROWMAX = ABS( AP( KX ) )
  273. JMAX = J
  274. END IF
  275. KX = KX + J
  276. 20 CONTINUE
  277. KPC = ( IMAX-1 )*IMAX / 2 + 1
  278. IF( IMAX.GT.1 ) THEN
  279. JMAX = IDAMAX( IMAX-1, AP( KPC ), 1 )
  280. ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-1 ) ) )
  281. END IF
  282. *
  283. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  284. *
  285. * no interchange, use 1-by-1 pivot block
  286. *
  287. KP = K
  288. ELSE IF( ABS( AP( KPC+IMAX-1 ) ).GE.ALPHA*ROWMAX ) THEN
  289. *
  290. * interchange rows and columns K and IMAX, use 1-by-1
  291. * pivot block
  292. *
  293. KP = IMAX
  294. ELSE
  295. *
  296. * interchange rows and columns K-1 and IMAX, use 2-by-2
  297. * pivot block
  298. *
  299. KP = IMAX
  300. KSTEP = 2
  301. END IF
  302. END IF
  303. *
  304. KK = K - KSTEP + 1
  305. IF( KSTEP.EQ.2 )
  306. $ KNC = KNC - K + 1
  307. IF( KP.NE.KK ) THEN
  308. *
  309. * Interchange rows and columns KK and KP in the leading
  310. * submatrix A(1:k,1:k)
  311. *
  312. CALL DSWAP( KP-1, AP( KNC ), 1, AP( KPC ), 1 )
  313. KX = KPC + KP - 1
  314. DO 30 J = KP + 1, KK - 1
  315. KX = KX + J - 1
  316. T = AP( KNC+J-1 )
  317. AP( KNC+J-1 ) = AP( KX )
  318. AP( KX ) = T
  319. 30 CONTINUE
  320. T = AP( KNC+KK-1 )
  321. AP( KNC+KK-1 ) = AP( KPC+KP-1 )
  322. AP( KPC+KP-1 ) = T
  323. IF( KSTEP.EQ.2 ) THEN
  324. T = AP( KC+K-2 )
  325. AP( KC+K-2 ) = AP( KC+KP-1 )
  326. AP( KC+KP-1 ) = T
  327. END IF
  328. END IF
  329. *
  330. * Update the leading submatrix
  331. *
  332. IF( KSTEP.EQ.1 ) THEN
  333. *
  334. * 1-by-1 pivot block D(k): column k now holds
  335. *
  336. * W(k) = U(k)*D(k)
  337. *
  338. * where U(k) is the k-th column of U
  339. *
  340. * Perform a rank-1 update of A(1:k-1,1:k-1) as
  341. *
  342. * A := A - U(k)*D(k)*U(k)**T = A - W(k)*1/D(k)*W(k)**T
  343. *
  344. R1 = ONE / AP( KC+K-1 )
  345. CALL DSPR( UPLO, K-1, -R1, AP( KC ), 1, AP )
  346. *
  347. * Store U(k) in column k
  348. *
  349. CALL DSCAL( K-1, R1, AP( KC ), 1 )
  350. ELSE
  351. *
  352. * 2-by-2 pivot block D(k): columns k and k-1 now hold
  353. *
  354. * ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k)
  355. *
  356. * where U(k) and U(k-1) are the k-th and (k-1)-th columns
  357. * of U
  358. *
  359. * Perform a rank-2 update of A(1:k-2,1:k-2) as
  360. *
  361. * A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )**T
  362. * = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )**T
  363. *
  364. IF( K.GT.2 ) THEN
  365. *
  366. D12 = AP( K-1+( K-1 )*K / 2 )
  367. D22 = AP( K-1+( K-2 )*( K-1 ) / 2 ) / D12
  368. D11 = AP( K+( K-1 )*K / 2 ) / D12
  369. T = ONE / ( D11*D22-ONE )
  370. D12 = T / D12
  371. *
  372. DO 50 J = K - 2, 1, -1
  373. WKM1 = D12*( D11*AP( J+( K-2 )*( K-1 ) / 2 )-
  374. $ AP( J+( K-1 )*K / 2 ) )
  375. WK = D12*( D22*AP( J+( K-1 )*K / 2 )-
  376. $ AP( J+( K-2 )*( K-1 ) / 2 ) )
  377. DO 40 I = J, 1, -1
  378. AP( I+( J-1 )*J / 2 ) = AP( I+( J-1 )*J / 2 ) -
  379. $ AP( I+( K-1 )*K / 2 )*WK -
  380. $ AP( I+( K-2 )*( K-1 ) / 2 )*WKM1
  381. 40 CONTINUE
  382. AP( J+( K-1 )*K / 2 ) = WK
  383. AP( J+( K-2 )*( K-1 ) / 2 ) = WKM1
  384. 50 CONTINUE
  385. *
  386. END IF
  387. *
  388. END IF
  389. END IF
  390. *
  391. * Store details of the interchanges in IPIV
  392. *
  393. IF( KSTEP.EQ.1 ) THEN
  394. IPIV( K ) = KP
  395. ELSE
  396. IPIV( K ) = -KP
  397. IPIV( K-1 ) = -KP
  398. END IF
  399. *
  400. * Decrease K and return to the start of the main loop
  401. *
  402. K = K - KSTEP
  403. KC = KNC - K
  404. GO TO 10
  405. *
  406. ELSE
  407. *
  408. * Factorize A as L*D*L**T using the lower triangle of A
  409. *
  410. * K is the main loop index, increasing from 1 to N in steps of
  411. * 1 or 2
  412. *
  413. K = 1
  414. KC = 1
  415. NPP = N*( N+1 ) / 2
  416. 60 CONTINUE
  417. KNC = KC
  418. *
  419. * If K > N, exit from loop
  420. *
  421. IF( K.GT.N )
  422. $ GO TO 110
  423. KSTEP = 1
  424. *
  425. * Determine rows and columns to be interchanged and whether
  426. * a 1-by-1 or 2-by-2 pivot block will be used
  427. *
  428. ABSAKK = ABS( AP( KC ) )
  429. *
  430. * IMAX is the row-index of the largest off-diagonal element in
  431. * column K, and COLMAX is its absolute value
  432. *
  433. IF( K.LT.N ) THEN
  434. IMAX = K + IDAMAX( N-K, AP( KC+1 ), 1 )
  435. COLMAX = ABS( AP( KC+IMAX-K ) )
  436. ELSE
  437. COLMAX = ZERO
  438. END IF
  439. *
  440. IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
  441. *
  442. * Column K is zero: set INFO and continue
  443. *
  444. IF( INFO.EQ.0 )
  445. $ INFO = K
  446. KP = K
  447. ELSE
  448. IF( ABSAKK.GE.ALPHA*COLMAX ) THEN
  449. *
  450. * no interchange, use 1-by-1 pivot block
  451. *
  452. KP = K
  453. ELSE
  454. *
  455. * JMAX is the column-index of the largest off-diagonal
  456. * element in row IMAX, and ROWMAX is its absolute value
  457. *
  458. ROWMAX = ZERO
  459. KX = KC + IMAX - K
  460. DO 70 J = K, IMAX - 1
  461. IF( ABS( AP( KX ) ).GT.ROWMAX ) THEN
  462. ROWMAX = ABS( AP( KX ) )
  463. JMAX = J
  464. END IF
  465. KX = KX + N - J
  466. 70 CONTINUE
  467. KPC = NPP - ( N-IMAX+1 )*( N-IMAX+2 ) / 2 + 1
  468. IF( IMAX.LT.N ) THEN
  469. JMAX = IMAX + IDAMAX( N-IMAX, AP( KPC+1 ), 1 )
  470. ROWMAX = MAX( ROWMAX, ABS( AP( KPC+JMAX-IMAX ) ) )
  471. END IF
  472. *
  473. IF( ABSAKK.GE.ALPHA*COLMAX*( COLMAX / ROWMAX ) ) THEN
  474. *
  475. * no interchange, use 1-by-1 pivot block
  476. *
  477. KP = K
  478. ELSE IF( ABS( AP( KPC ) ).GE.ALPHA*ROWMAX ) THEN
  479. *
  480. * interchange rows and columns K and IMAX, use 1-by-1
  481. * pivot block
  482. *
  483. KP = IMAX
  484. ELSE
  485. *
  486. * interchange rows and columns K+1 and IMAX, use 2-by-2
  487. * pivot block
  488. *
  489. KP = IMAX
  490. KSTEP = 2
  491. END IF
  492. END IF
  493. *
  494. KK = K + KSTEP - 1
  495. IF( KSTEP.EQ.2 )
  496. $ KNC = KNC + N - K + 1
  497. IF( KP.NE.KK ) THEN
  498. *
  499. * Interchange rows and columns KK and KP in the trailing
  500. * submatrix A(k:n,k:n)
  501. *
  502. IF( KP.LT.N )
  503. $ CALL DSWAP( N-KP, AP( KNC+KP-KK+1 ), 1, AP( KPC+1 ),
  504. $ 1 )
  505. KX = KNC + KP - KK
  506. DO 80 J = KK + 1, KP - 1
  507. KX = KX + N - J + 1
  508. T = AP( KNC+J-KK )
  509. AP( KNC+J-KK ) = AP( KX )
  510. AP( KX ) = T
  511. 80 CONTINUE
  512. T = AP( KNC )
  513. AP( KNC ) = AP( KPC )
  514. AP( KPC ) = T
  515. IF( KSTEP.EQ.2 ) THEN
  516. T = AP( KC+1 )
  517. AP( KC+1 ) = AP( KC+KP-K )
  518. AP( KC+KP-K ) = T
  519. END IF
  520. END IF
  521. *
  522. * Update the trailing submatrix
  523. *
  524. IF( KSTEP.EQ.1 ) THEN
  525. *
  526. * 1-by-1 pivot block D(k): column k now holds
  527. *
  528. * W(k) = L(k)*D(k)
  529. *
  530. * where L(k) is the k-th column of L
  531. *
  532. IF( K.LT.N ) THEN
  533. *
  534. * Perform a rank-1 update of A(k+1:n,k+1:n) as
  535. *
  536. * A := A - L(k)*D(k)*L(k)**T = A - W(k)*(1/D(k))*W(k)**T
  537. *
  538. R1 = ONE / AP( KC )
  539. CALL DSPR( UPLO, N-K, -R1, AP( KC+1 ), 1,
  540. $ AP( KC+N-K+1 ) )
  541. *
  542. * Store L(k) in column K
  543. *
  544. CALL DSCAL( N-K, R1, AP( KC+1 ), 1 )
  545. END IF
  546. ELSE
  547. *
  548. * 2-by-2 pivot block D(k): columns K and K+1 now hold
  549. *
  550. * ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k)
  551. *
  552. * where L(k) and L(k+1) are the k-th and (k+1)-th columns
  553. * of L
  554. *
  555. IF( K.LT.N-1 ) THEN
  556. *
  557. * Perform a rank-2 update of A(k+2:n,k+2:n) as
  558. *
  559. * A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )**T
  560. * = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )**T
  561. *
  562. * where L(k) and L(k+1) are the k-th and (k+1)-th
  563. * columns of L
  564. *
  565. D21 = AP( K+1+( K-1 )*( 2*N-K ) / 2 )
  566. D11 = AP( K+1+K*( 2*N-K-1 ) / 2 ) / D21
  567. D22 = AP( K+( K-1 )*( 2*N-K ) / 2 ) / D21
  568. T = ONE / ( D11*D22-ONE )
  569. D21 = T / D21
  570. *
  571. DO 100 J = K + 2, N
  572. WK = D21*( D11*AP( J+( K-1 )*( 2*N-K ) / 2 )-
  573. $ AP( J+K*( 2*N-K-1 ) / 2 ) )
  574. WKP1 = D21*( D22*AP( J+K*( 2*N-K-1 ) / 2 )-
  575. $ AP( J+( K-1 )*( 2*N-K ) / 2 ) )
  576. *
  577. DO 90 I = J, N
  578. AP( I+( J-1 )*( 2*N-J ) / 2 ) = AP( I+( J-1 )*
  579. $ ( 2*N-J ) / 2 ) - AP( I+( K-1 )*( 2*N-K ) /
  580. $ 2 )*WK - AP( I+K*( 2*N-K-1 ) / 2 )*WKP1
  581. 90 CONTINUE
  582. *
  583. AP( J+( K-1 )*( 2*N-K ) / 2 ) = WK
  584. AP( J+K*( 2*N-K-1 ) / 2 ) = WKP1
  585. *
  586. 100 CONTINUE
  587. END IF
  588. END IF
  589. END IF
  590. *
  591. * Store details of the interchanges in IPIV
  592. *
  593. IF( KSTEP.EQ.1 ) THEN
  594. IPIV( K ) = KP
  595. ELSE
  596. IPIV( K ) = -KP
  597. IPIV( K+1 ) = -KP
  598. END IF
  599. *
  600. * Increase K and return to the start of the main loop
  601. *
  602. K = K + KSTEP
  603. KC = KNC + N - K + 2
  604. GO TO 60
  605. *
  606. END IF
  607. *
  608. 110 CONTINUE
  609. RETURN
  610. *
  611. * End of DSPTRF
  612. *
  613. END