You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zdrvst.f 75 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089
  1. *> \brief \b ZDRVST
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. * Definition:
  9. * ===========
  10. *
  11. * SUBROUTINE ZDRVST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  12. * NOUNIT, A, LDA, D1, D2, D3, WA1, WA2, WA3, U,
  13. * LDU, V, TAU, Z, WORK, LWORK, RWORK, LRWORK,
  14. * IWORK, LIWORK, RESULT, INFO )
  15. *
  16. * .. Scalar Arguments ..
  17. * INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
  18. * $ NSIZES, NTYPES
  19. * DOUBLE PRECISION THRESH
  20. * ..
  21. * .. Array Arguments ..
  22. * LOGICAL DOTYPE( * )
  23. * INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  24. * DOUBLE PRECISION D1( * ), D2( * ), D3( * ), RESULT( * ),
  25. * $ RWORK( * ), WA1( * ), WA2( * ), WA3( * )
  26. * COMPLEX*16 A( LDA, * ), TAU( * ), U( LDU, * ),
  27. * $ V( LDU, * ), WORK( * ), Z( LDU, * )
  28. * ..
  29. *
  30. *
  31. *> \par Purpose:
  32. * =============
  33. *>
  34. *> \verbatim
  35. *>
  36. *> ZDRVST checks the Hermitian eigenvalue problem drivers.
  37. *>
  38. *> ZHEEVD computes all eigenvalues and, optionally,
  39. *> eigenvectors of a complex Hermitian matrix,
  40. *> using a divide-and-conquer algorithm.
  41. *>
  42. *> ZHEEVX computes selected eigenvalues and, optionally,
  43. *> eigenvectors of a complex Hermitian matrix.
  44. *>
  45. *> ZHEEVR computes selected eigenvalues and, optionally,
  46. *> eigenvectors of a complex Hermitian matrix
  47. *> using the Relatively Robust Representation where it can.
  48. *>
  49. *> ZHPEVD computes all eigenvalues and, optionally,
  50. *> eigenvectors of a complex Hermitian matrix in packed
  51. *> storage, using a divide-and-conquer algorithm.
  52. *>
  53. *> ZHPEVX computes selected eigenvalues and, optionally,
  54. *> eigenvectors of a complex Hermitian matrix in packed
  55. *> storage.
  56. *>
  57. *> ZHBEVD computes all eigenvalues and, optionally,
  58. *> eigenvectors of a complex Hermitian band matrix,
  59. *> using a divide-and-conquer algorithm.
  60. *>
  61. *> ZHBEVX computes selected eigenvalues and, optionally,
  62. *> eigenvectors of a complex Hermitian band matrix.
  63. *>
  64. *> ZHEEV computes all eigenvalues and, optionally,
  65. *> eigenvectors of a complex Hermitian matrix.
  66. *>
  67. *> ZHPEV computes all eigenvalues and, optionally,
  68. *> eigenvectors of a complex Hermitian matrix in packed
  69. *> storage.
  70. *>
  71. *> ZHBEV computes all eigenvalues and, optionally,
  72. *> eigenvectors of a complex Hermitian band matrix.
  73. *>
  74. *> When ZDRVST is called, a number of matrix "sizes" ("n's") and a
  75. *> number of matrix "types" are specified. For each size ("n")
  76. *> and each type of matrix, one matrix will be generated and used
  77. *> to test the appropriate drivers. For each matrix and each
  78. *> driver routine called, the following tests will be performed:
  79. *>
  80. *> (1) | A - Z D Z' | / ( |A| n ulp )
  81. *>
  82. *> (2) | I - Z Z' | / ( n ulp )
  83. *>
  84. *> (3) | D1 - D2 | / ( |D1| ulp )
  85. *>
  86. *> where Z is the matrix of eigenvectors returned when the
  87. *> eigenvector option is given and D1 and D2 are the eigenvalues
  88. *> returned with and without the eigenvector option.
  89. *>
  90. *> The "sizes" are specified by an array NN(1:NSIZES); the value of
  91. *> each element NN(j) specifies one size.
  92. *> The "types" are specified by a logical array DOTYPE( 1:NTYPES );
  93. *> if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
  94. *> Currently, the list of possible types is:
  95. *>
  96. *> (1) The zero matrix.
  97. *> (2) The identity matrix.
  98. *>
  99. *> (3) A diagonal matrix with evenly spaced entries
  100. *> 1, ..., ULP and random signs.
  101. *> (ULP = (first number larger than 1) - 1 )
  102. *> (4) A diagonal matrix with geometrically spaced entries
  103. *> 1, ..., ULP and random signs.
  104. *> (5) A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
  105. *> and random signs.
  106. *>
  107. *> (6) Same as (4), but multiplied by SQRT( overflow threshold )
  108. *> (7) Same as (4), but multiplied by SQRT( underflow threshold )
  109. *>
  110. *> (8) A matrix of the form U* D U, where U is unitary and
  111. *> D has evenly spaced entries 1, ..., ULP with random signs
  112. *> on the diagonal.
  113. *>
  114. *> (9) A matrix of the form U* D U, where U is unitary and
  115. *> D has geometrically spaced entries 1, ..., ULP with random
  116. *> signs on the diagonal.
  117. *>
  118. *> (10) A matrix of the form U* D U, where U is unitary and
  119. *> D has "clustered" entries 1, ULP,..., ULP with random
  120. *> signs on the diagonal.
  121. *>
  122. *> (11) Same as (8), but multiplied by SQRT( overflow threshold )
  123. *> (12) Same as (8), but multiplied by SQRT( underflow threshold )
  124. *>
  125. *> (13) Symmetric matrix with random entries chosen from (-1,1).
  126. *> (14) Same as (13), but multiplied by SQRT( overflow threshold )
  127. *> (15) Same as (13), but multiplied by SQRT( underflow threshold )
  128. *> (16) A band matrix with half bandwidth randomly chosen between
  129. *> 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP
  130. *> with random signs.
  131. *> (17) Same as (16), but multiplied by SQRT( overflow threshold )
  132. *> (18) Same as (16), but multiplied by SQRT( underflow threshold )
  133. *> \endverbatim
  134. *
  135. * Arguments:
  136. * ==========
  137. *
  138. *> \verbatim
  139. *> NSIZES INTEGER
  140. *> The number of sizes of matrices to use. If it is zero,
  141. *> ZDRVST does nothing. It must be at least zero.
  142. *> Not modified.
  143. *>
  144. *> NN INTEGER array, dimension (NSIZES)
  145. *> An array containing the sizes to be used for the matrices.
  146. *> Zero values will be skipped. The values must be at least
  147. *> zero.
  148. *> Not modified.
  149. *>
  150. *> NTYPES INTEGER
  151. *> The number of elements in DOTYPE. If it is zero, ZDRVST
  152. *> does nothing. It must be at least zero. If it is MAXTYP+1
  153. *> and NSIZES is 1, then an additional type, MAXTYP+1 is
  154. *> defined, which is to use whatever matrix is in A. This
  155. *> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
  156. *> DOTYPE(MAXTYP+1) is .TRUE. .
  157. *> Not modified.
  158. *>
  159. *> DOTYPE LOGICAL array, dimension (NTYPES)
  160. *> If DOTYPE(j) is .TRUE., then for each size in NN a
  161. *> matrix of that size and of type j will be generated.
  162. *> If NTYPES is smaller than the maximum number of types
  163. *> defined (PARAMETER MAXTYP), then types NTYPES+1 through
  164. *> MAXTYP will not be generated. If NTYPES is larger
  165. *> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
  166. *> will be ignored.
  167. *> Not modified.
  168. *>
  169. *> ISEED INTEGER array, dimension (4)
  170. *> On entry ISEED specifies the seed of the random number
  171. *> generator. The array elements should be between 0 and 4095;
  172. *> if not they will be reduced mod 4096. Also, ISEED(4) must
  173. *> be odd. The random number generator uses a linear
  174. *> congruential sequence limited to small integers, and so
  175. *> should produce machine independent random numbers. The
  176. *> values of ISEED are changed on exit, and can be used in the
  177. *> next call to ZDRVST to continue the same random number
  178. *> sequence.
  179. *> Modified.
  180. *>
  181. *> THRESH DOUBLE PRECISION
  182. *> A test will count as "failed" if the "error", computed as
  183. *> described above, exceeds THRESH. Note that the error
  184. *> is scaled to be O(1), so THRESH should be a reasonably
  185. *> small multiple of 1, e.g., 10 or 100. In particular,
  186. *> it should not depend on the precision (single vs. double)
  187. *> or the size of the matrix. It must be at least zero.
  188. *> Not modified.
  189. *>
  190. *> NOUNIT INTEGER
  191. *> The FORTRAN unit number for printing out error messages
  192. *> (e.g., if a routine returns IINFO not equal to 0.)
  193. *> Not modified.
  194. *>
  195. *> A COMPLEX*16 array, dimension (LDA , max(NN))
  196. *> Used to hold the matrix whose eigenvalues are to be
  197. *> computed. On exit, A contains the last matrix actually
  198. *> used.
  199. *> Modified.
  200. *>
  201. *> LDA INTEGER
  202. *> The leading dimension of A. It must be at
  203. *> least 1 and at least max( NN ).
  204. *> Not modified.
  205. *>
  206. *> D1 DOUBLE PRECISION array, dimension (max(NN))
  207. *> The eigenvalues of A, as computed by ZSTEQR simultaneously
  208. *> with Z. On exit, the eigenvalues in D1 correspond with the
  209. *> matrix in A.
  210. *> Modified.
  211. *>
  212. *> D2 DOUBLE PRECISION array, dimension (max(NN))
  213. *> The eigenvalues of A, as computed by ZSTEQR if Z is not
  214. *> computed. On exit, the eigenvalues in D2 correspond with
  215. *> the matrix in A.
  216. *> Modified.
  217. *>
  218. *> D3 DOUBLE PRECISION array, dimension (max(NN))
  219. *> The eigenvalues of A, as computed by DSTERF. On exit, the
  220. *> eigenvalues in D3 correspond with the matrix in A.
  221. *> Modified.
  222. *>
  223. *> WA1 DOUBLE PRECISION array, dimension
  224. *>
  225. *> WA2 DOUBLE PRECISION array, dimension
  226. *>
  227. *> WA3 DOUBLE PRECISION array, dimension
  228. *>
  229. *> U COMPLEX*16 array, dimension (LDU, max(NN))
  230. *> The unitary matrix computed by ZHETRD + ZUNGC3.
  231. *> Modified.
  232. *>
  233. *> LDU INTEGER
  234. *> The leading dimension of U, Z, and V. It must be at
  235. *> least 1 and at least max( NN ).
  236. *> Not modified.
  237. *>
  238. *> V COMPLEX*16 array, dimension (LDU, max(NN))
  239. *> The Housholder vectors computed by ZHETRD in reducing A to
  240. *> tridiagonal form.
  241. *> Modified.
  242. *>
  243. *> TAU COMPLEX*16 array, dimension (max(NN))
  244. *> The Householder factors computed by ZHETRD in reducing A
  245. *> to tridiagonal form.
  246. *> Modified.
  247. *>
  248. *> Z COMPLEX*16 array, dimension (LDU, max(NN))
  249. *> The unitary matrix of eigenvectors computed by ZHEEVD,
  250. *> ZHEEVX, ZHPEVD, CHPEVX, ZHBEVD, and CHBEVX.
  251. *> Modified.
  252. *>
  253. *> WORK - COMPLEX*16 array of dimension ( LWORK )
  254. *> Workspace.
  255. *> Modified.
  256. *>
  257. *> LWORK - INTEGER
  258. *> The number of entries in WORK. This must be at least
  259. *> 2*max( NN(j), 2 )**2.
  260. *> Not modified.
  261. *>
  262. *> RWORK DOUBLE PRECISION array, dimension (3*max(NN))
  263. *> Workspace.
  264. *> Modified.
  265. *>
  266. *> LRWORK - INTEGER
  267. *> The number of entries in RWORK.
  268. *>
  269. *> IWORK INTEGER array, dimension (6*max(NN))
  270. *> Workspace.
  271. *> Modified.
  272. *>
  273. *> LIWORK - INTEGER
  274. *> The number of entries in IWORK.
  275. *>
  276. *> RESULT DOUBLE PRECISION array, dimension (??)
  277. *> The values computed by the tests described above.
  278. *> The values are currently limited to 1/ulp, to avoid
  279. *> overflow.
  280. *> Modified.
  281. *>
  282. *> INFO INTEGER
  283. *> If 0, then everything ran OK.
  284. *> -1: NSIZES < 0
  285. *> -2: Some NN(j) < 0
  286. *> -3: NTYPES < 0
  287. *> -5: THRESH < 0
  288. *> -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ).
  289. *> -16: LDU < 1 or LDU < NMAX.
  290. *> -21: LWORK too small.
  291. *> If DLATMR, SLATMS, ZHETRD, DORGC3, ZSTEQR, DSTERF,
  292. *> or DORMC2 returns an error code, the
  293. *> absolute value of it is returned.
  294. *> Modified.
  295. *>
  296. *>-----------------------------------------------------------------------
  297. *>
  298. *> Some Local Variables and Parameters:
  299. *> ---- ----- --------- --- ----------
  300. *> ZERO, ONE Real 0 and 1.
  301. *> MAXTYP The number of types defined.
  302. *> NTEST The number of tests performed, or which can
  303. *> be performed so far, for the current matrix.
  304. *> NTESTT The total number of tests performed so far.
  305. *> NMAX Largest value in NN.
  306. *> NMATS The number of matrices generated so far.
  307. *> NERRS The number of tests which have exceeded THRESH
  308. *> so far (computed by DLAFTS).
  309. *> COND, IMODE Values to be passed to the matrix generators.
  310. *> ANORM Norm of A; passed to matrix generators.
  311. *>
  312. *> OVFL, UNFL Overflow and underflow thresholds.
  313. *> ULP, ULPINV Finest relative precision and its inverse.
  314. *> RTOVFL, RTUNFL Square roots of the previous 2 values.
  315. *> The following four arrays decode JTYPE:
  316. *> KTYPE(j) The general type (1-10) for type "j".
  317. *> KMODE(j) The MODE value to be passed to the matrix
  318. *> generator for type "j".
  319. *> KMAGN(j) The order of magnitude ( O(1),
  320. *> O(overflow^(1/2) ), O(underflow^(1/2) )
  321. *> \endverbatim
  322. *
  323. * Authors:
  324. * ========
  325. *
  326. *> \author Univ. of Tennessee
  327. *> \author Univ. of California Berkeley
  328. *> \author Univ. of Colorado Denver
  329. *> \author NAG Ltd.
  330. *
  331. *> \ingroup complex16_eig
  332. *
  333. * =====================================================================
  334. SUBROUTINE ZDRVST( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
  335. $ NOUNIT, A, LDA, D1, D2, D3, WA1, WA2, WA3, U,
  336. $ LDU, V, TAU, Z, WORK, LWORK, RWORK, LRWORK,
  337. $ IWORK, LIWORK, RESULT, INFO )
  338. *
  339. * -- LAPACK test routine --
  340. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  341. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  342. *
  343. * .. Scalar Arguments ..
  344. INTEGER INFO, LDA, LDU, LIWORK, LRWORK, LWORK, NOUNIT,
  345. $ NSIZES, NTYPES
  346. DOUBLE PRECISION THRESH
  347. * ..
  348. * .. Array Arguments ..
  349. LOGICAL DOTYPE( * )
  350. INTEGER ISEED( 4 ), IWORK( * ), NN( * )
  351. DOUBLE PRECISION D1( * ), D2( * ), D3( * ), RESULT( * ),
  352. $ RWORK( * ), WA1( * ), WA2( * ), WA3( * )
  353. COMPLEX*16 A( LDA, * ), TAU( * ), U( LDU, * ),
  354. $ V( LDU, * ), WORK( * ), Z( LDU, * )
  355. * ..
  356. *
  357. * =====================================================================
  358. *
  359. *
  360. * .. Parameters ..
  361. DOUBLE PRECISION ZERO, ONE, TWO, TEN
  362. PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0,
  363. $ TEN = 10.0D+0 )
  364. DOUBLE PRECISION HALF
  365. PARAMETER ( HALF = ONE / TWO )
  366. COMPLEX*16 CZERO, CONE
  367. PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
  368. $ CONE = ( 1.0D+0, 0.0D+0 ) )
  369. INTEGER MAXTYP
  370. PARAMETER ( MAXTYP = 18 )
  371. * ..
  372. * .. Local Scalars ..
  373. LOGICAL BADNN
  374. CHARACTER UPLO
  375. INTEGER I, IDIAG, IHBW, IINFO, IL, IMODE, INDWRK, INDX,
  376. $ IROW, ITEMP, ITYPE, IU, IUPLO, J, J1, J2, JCOL,
  377. $ JSIZE, JTYPE, KD, LGN, LIWEDC, LRWEDC, LWEDC,
  378. $ M, M2, M3, MTYPES, N, NERRS, NMATS, NMAX,
  379. $ NTEST, NTESTT
  380. DOUBLE PRECISION ABSTOL, ANINV, ANORM, COND, OVFL, RTOVFL,
  381. $ RTUNFL, TEMP1, TEMP2, TEMP3, ULP, ULPINV, UNFL,
  382. $ VL, VU
  383. * ..
  384. * .. Local Arrays ..
  385. INTEGER IDUMMA( 1 ), IOLDSD( 4 ), ISEED2( 4 ),
  386. $ ISEED3( 4 ), KMAGN( MAXTYP ), KMODE( MAXTYP ),
  387. $ KTYPE( MAXTYP )
  388. * ..
  389. * .. External Functions ..
  390. DOUBLE PRECISION DLAMCH, DLARND, DSXT1
  391. EXTERNAL DLAMCH, DLARND, DSXT1
  392. * ..
  393. * .. External Subroutines ..
  394. EXTERNAL ALASVM, DLAFTS, XERBLA, ZHBEV, ZHBEVD, ZHBEVX,
  395. $ ZHEEV, ZHEEVD, ZHEEVR, ZHEEVX, ZHET21, ZHET22,
  396. $ ZHPEV, ZHPEVD, ZHPEVX, ZLACPY, ZLASET, ZLATMR,
  397. $ ZLATMS
  398. * ..
  399. * .. Intrinsic Functions ..
  400. INTRINSIC ABS, DBLE, INT, LOG, MAX, MIN, SQRT
  401. * ..
  402. * .. Data statements ..
  403. DATA KTYPE / 1, 2, 5*4, 5*5, 3*8, 3*9 /
  404. DATA KMAGN / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
  405. $ 2, 3, 1, 2, 3 /
  406. DATA KMODE / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
  407. $ 0, 0, 4, 4, 4 /
  408. * ..
  409. * .. Executable Statements ..
  410. *
  411. * 1) Check for errors
  412. *
  413. NTESTT = 0
  414. INFO = 0
  415. *
  416. BADNN = .FALSE.
  417. NMAX = 1
  418. DO 10 J = 1, NSIZES
  419. NMAX = MAX( NMAX, NN( J ) )
  420. IF( NN( J ).LT.0 )
  421. $ BADNN = .TRUE.
  422. 10 CONTINUE
  423. *
  424. * Check for errors
  425. *
  426. IF( NSIZES.LT.0 ) THEN
  427. INFO = -1
  428. ELSE IF( BADNN ) THEN
  429. INFO = -2
  430. ELSE IF( NTYPES.LT.0 ) THEN
  431. INFO = -3
  432. ELSE IF( LDA.LT.NMAX ) THEN
  433. INFO = -9
  434. ELSE IF( LDU.LT.NMAX ) THEN
  435. INFO = -16
  436. ELSE IF( 2*MAX( 2, NMAX )**2.GT.LWORK ) THEN
  437. INFO = -22
  438. END IF
  439. *
  440. IF( INFO.NE.0 ) THEN
  441. CALL XERBLA( 'ZDRVST', -INFO )
  442. RETURN
  443. END IF
  444. *
  445. * Quick return if nothing to do
  446. *
  447. IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
  448. $ RETURN
  449. *
  450. * More Important constants
  451. *
  452. UNFL = DLAMCH( 'Safe minimum' )
  453. OVFL = DLAMCH( 'Overflow' )
  454. ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
  455. ULPINV = ONE / ULP
  456. RTUNFL = SQRT( UNFL )
  457. RTOVFL = SQRT( OVFL )
  458. *
  459. * Loop over sizes, types
  460. *
  461. DO 20 I = 1, 4
  462. ISEED2( I ) = ISEED( I )
  463. ISEED3( I ) = ISEED( I )
  464. 20 CONTINUE
  465. *
  466. NERRS = 0
  467. NMATS = 0
  468. *
  469. DO 1220 JSIZE = 1, NSIZES
  470. N = NN( JSIZE )
  471. IF( N.GT.0 ) THEN
  472. LGN = INT( LOG( DBLE( N ) ) / LOG( TWO ) )
  473. IF( 2**LGN.LT.N )
  474. $ LGN = LGN + 1
  475. IF( 2**LGN.LT.N )
  476. $ LGN = LGN + 1
  477. LWEDC = MAX( 2*N+N*N, 2*N*N )
  478. LRWEDC = 1 + 4*N + 2*N*LGN + 3*N**2
  479. LIWEDC = 3 + 5*N
  480. ELSE
  481. LWEDC = 2
  482. LRWEDC = 8
  483. LIWEDC = 8
  484. END IF
  485. ANINV = ONE / DBLE( MAX( 1, N ) )
  486. *
  487. IF( NSIZES.NE.1 ) THEN
  488. MTYPES = MIN( MAXTYP, NTYPES )
  489. ELSE
  490. MTYPES = MIN( MAXTYP+1, NTYPES )
  491. END IF
  492. *
  493. DO 1210 JTYPE = 1, MTYPES
  494. IF( .NOT.DOTYPE( JTYPE ) )
  495. $ GO TO 1210
  496. NMATS = NMATS + 1
  497. NTEST = 0
  498. *
  499. DO 30 J = 1, 4
  500. IOLDSD( J ) = ISEED( J )
  501. 30 CONTINUE
  502. *
  503. * 2) Compute "A"
  504. *
  505. * Control parameters:
  506. *
  507. * KMAGN KMODE KTYPE
  508. * =1 O(1) clustered 1 zero
  509. * =2 large clustered 2 identity
  510. * =3 small exponential (none)
  511. * =4 arithmetic diagonal, (w/ eigenvalues)
  512. * =5 random log Hermitian, w/ eigenvalues
  513. * =6 random (none)
  514. * =7 random diagonal
  515. * =8 random Hermitian
  516. * =9 band Hermitian, w/ eigenvalues
  517. *
  518. IF( MTYPES.GT.MAXTYP )
  519. $ GO TO 110
  520. *
  521. ITYPE = KTYPE( JTYPE )
  522. IMODE = KMODE( JTYPE )
  523. *
  524. * Compute norm
  525. *
  526. GO TO ( 40, 50, 60 )KMAGN( JTYPE )
  527. *
  528. 40 CONTINUE
  529. ANORM = ONE
  530. GO TO 70
  531. *
  532. 50 CONTINUE
  533. ANORM = ( RTOVFL*ULP )*ANINV
  534. GO TO 70
  535. *
  536. 60 CONTINUE
  537. ANORM = RTUNFL*N*ULPINV
  538. GO TO 70
  539. *
  540. 70 CONTINUE
  541. *
  542. CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
  543. IINFO = 0
  544. COND = ULPINV
  545. *
  546. * Special Matrices -- Identity & Jordan block
  547. *
  548. * Zero
  549. *
  550. IF( ITYPE.EQ.1 ) THEN
  551. IINFO = 0
  552. *
  553. ELSE IF( ITYPE.EQ.2 ) THEN
  554. *
  555. * Identity
  556. *
  557. DO 80 JCOL = 1, N
  558. A( JCOL, JCOL ) = ANORM
  559. 80 CONTINUE
  560. *
  561. ELSE IF( ITYPE.EQ.4 ) THEN
  562. *
  563. * Diagonal Matrix, [Eigen]values Specified
  564. *
  565. CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
  566. $ ANORM, 0, 0, 'N', A, LDA, WORK, IINFO )
  567. *
  568. ELSE IF( ITYPE.EQ.5 ) THEN
  569. *
  570. * Hermitian, eigenvalues specified
  571. *
  572. CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
  573. $ ANORM, N, N, 'N', A, LDA, WORK, IINFO )
  574. *
  575. ELSE IF( ITYPE.EQ.7 ) THEN
  576. *
  577. * Diagonal, random eigenvalues
  578. *
  579. CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
  580. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  581. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, 0, 0,
  582. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  583. *
  584. ELSE IF( ITYPE.EQ.8 ) THEN
  585. *
  586. * Hermitian, random eigenvalues
  587. *
  588. CALL ZLATMR( N, N, 'S', ISEED, 'H', WORK, 6, ONE, CONE,
  589. $ 'T', 'N', WORK( N+1 ), 1, ONE,
  590. $ WORK( 2*N+1 ), 1, ONE, 'N', IDUMMA, N, N,
  591. $ ZERO, ANORM, 'NO', A, LDA, IWORK, IINFO )
  592. *
  593. ELSE IF( ITYPE.EQ.9 ) THEN
  594. *
  595. * Hermitian banded, eigenvalues specified
  596. *
  597. IHBW = INT( ( N-1 )*DLARND( 1, ISEED3 ) )
  598. CALL ZLATMS( N, N, 'S', ISEED, 'H', RWORK, IMODE, COND,
  599. $ ANORM, IHBW, IHBW, 'Z', U, LDU, WORK,
  600. $ IINFO )
  601. *
  602. * Store as dense matrix for most routines.
  603. *
  604. CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
  605. DO 100 IDIAG = -IHBW, IHBW
  606. IROW = IHBW - IDIAG + 1
  607. J1 = MAX( 1, IDIAG+1 )
  608. J2 = MIN( N, N+IDIAG )
  609. DO 90 J = J1, J2
  610. I = J - IDIAG
  611. A( I, J ) = U( IROW, J )
  612. 90 CONTINUE
  613. 100 CONTINUE
  614. ELSE
  615. IINFO = 1
  616. END IF
  617. *
  618. IF( IINFO.NE.0 ) THEN
  619. WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
  620. $ IOLDSD
  621. INFO = ABS( IINFO )
  622. RETURN
  623. END IF
  624. *
  625. 110 CONTINUE
  626. *
  627. ABSTOL = UNFL + UNFL
  628. IF( N.LE.1 ) THEN
  629. IL = 1
  630. IU = N
  631. ELSE
  632. IL = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
  633. IU = 1 + INT( ( N-1 )*DLARND( 1, ISEED2 ) )
  634. IF( IL.GT.IU ) THEN
  635. ITEMP = IL
  636. IL = IU
  637. IU = ITEMP
  638. END IF
  639. END IF
  640. *
  641. * Perform tests storing upper or lower triangular
  642. * part of matrix.
  643. *
  644. DO 1200 IUPLO = 0, 1
  645. IF( IUPLO.EQ.0 ) THEN
  646. UPLO = 'L'
  647. ELSE
  648. UPLO = 'U'
  649. END IF
  650. *
  651. * Call ZHEEVD and CHEEVX.
  652. *
  653. CALL ZLACPY( ' ', N, N, A, LDA, V, LDU )
  654. *
  655. NTEST = NTEST + 1
  656. CALL ZHEEVD( 'V', UPLO, N, A, LDU, D1, WORK, LWEDC,
  657. $ RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
  658. IF( IINFO.NE.0 ) THEN
  659. WRITE( NOUNIT, FMT = 9999 )'ZHEEVD(V,' // UPLO //
  660. $ ')', IINFO, N, JTYPE, IOLDSD
  661. INFO = ABS( IINFO )
  662. IF( IINFO.LT.0 ) THEN
  663. RETURN
  664. ELSE
  665. RESULT( NTEST ) = ULPINV
  666. RESULT( NTEST+1 ) = ULPINV
  667. RESULT( NTEST+2 ) = ULPINV
  668. GO TO 130
  669. END IF
  670. END IF
  671. *
  672. * Do tests 1 and 2.
  673. *
  674. CALL ZHET21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
  675. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  676. *
  677. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  678. *
  679. NTEST = NTEST + 2
  680. CALL ZHEEVD( 'N', UPLO, N, A, LDU, D3, WORK, LWEDC,
  681. $ RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
  682. IF( IINFO.NE.0 ) THEN
  683. WRITE( NOUNIT, FMT = 9999 )'ZHEEVD(N,' // UPLO //
  684. $ ')', IINFO, N, JTYPE, IOLDSD
  685. INFO = ABS( IINFO )
  686. IF( IINFO.LT.0 ) THEN
  687. RETURN
  688. ELSE
  689. RESULT( NTEST ) = ULPINV
  690. GO TO 130
  691. END IF
  692. END IF
  693. *
  694. * Do test 3.
  695. *
  696. TEMP1 = ZERO
  697. TEMP2 = ZERO
  698. DO 120 J = 1, N
  699. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
  700. TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
  701. 120 CONTINUE
  702. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  703. $ ULP*MAX( TEMP1, TEMP2 ) )
  704. *
  705. 130 CONTINUE
  706. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  707. *
  708. NTEST = NTEST + 1
  709. *
  710. IF( N.GT.0 ) THEN
  711. TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
  712. IF( IL.NE.1 ) THEN
  713. VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
  714. $ TEN*ULP*TEMP3, TEN*RTUNFL )
  715. ELSE IF( N.GT.0 ) THEN
  716. VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
  717. $ TEN*ULP*TEMP3, TEN*RTUNFL )
  718. END IF
  719. IF( IU.NE.N ) THEN
  720. VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
  721. $ TEN*ULP*TEMP3, TEN*RTUNFL )
  722. ELSE IF( N.GT.0 ) THEN
  723. VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
  724. $ TEN*ULP*TEMP3, TEN*RTUNFL )
  725. END IF
  726. ELSE
  727. TEMP3 = ZERO
  728. VL = ZERO
  729. VU = ONE
  730. END IF
  731. *
  732. CALL ZHEEVX( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
  733. $ ABSTOL, M, WA1, Z, LDU, WORK, LWORK, RWORK,
  734. $ IWORK, IWORK( 5*N+1 ), IINFO )
  735. IF( IINFO.NE.0 ) THEN
  736. WRITE( NOUNIT, FMT = 9999 )'ZHEEVX(V,A,' // UPLO //
  737. $ ')', IINFO, N, JTYPE, IOLDSD
  738. INFO = ABS( IINFO )
  739. IF( IINFO.LT.0 ) THEN
  740. RETURN
  741. ELSE
  742. RESULT( NTEST ) = ULPINV
  743. RESULT( NTEST+1 ) = ULPINV
  744. RESULT( NTEST+2 ) = ULPINV
  745. GO TO 150
  746. END IF
  747. END IF
  748. *
  749. * Do tests 4 and 5.
  750. *
  751. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  752. *
  753. CALL ZHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
  754. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  755. *
  756. NTEST = NTEST + 2
  757. CALL ZHEEVX( 'N', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
  758. $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK,
  759. $ IWORK, IWORK( 5*N+1 ), IINFO )
  760. IF( IINFO.NE.0 ) THEN
  761. WRITE( NOUNIT, FMT = 9999 )'ZHEEVX(N,A,' // UPLO //
  762. $ ')', IINFO, N, JTYPE, IOLDSD
  763. INFO = ABS( IINFO )
  764. IF( IINFO.LT.0 ) THEN
  765. RETURN
  766. ELSE
  767. RESULT( NTEST ) = ULPINV
  768. GO TO 150
  769. END IF
  770. END IF
  771. *
  772. * Do test 6.
  773. *
  774. TEMP1 = ZERO
  775. TEMP2 = ZERO
  776. DO 140 J = 1, N
  777. TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
  778. TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
  779. 140 CONTINUE
  780. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  781. $ ULP*MAX( TEMP1, TEMP2 ) )
  782. *
  783. 150 CONTINUE
  784. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  785. *
  786. NTEST = NTEST + 1
  787. *
  788. CALL ZHEEVX( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
  789. $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK,
  790. $ IWORK, IWORK( 5*N+1 ), IINFO )
  791. IF( IINFO.NE.0 ) THEN
  792. WRITE( NOUNIT, FMT = 9999 )'ZHEEVX(V,I,' // UPLO //
  793. $ ')', IINFO, N, JTYPE, IOLDSD
  794. INFO = ABS( IINFO )
  795. IF( IINFO.LT.0 ) THEN
  796. RETURN
  797. ELSE
  798. RESULT( NTEST ) = ULPINV
  799. GO TO 160
  800. END IF
  801. END IF
  802. *
  803. * Do tests 7 and 8.
  804. *
  805. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  806. *
  807. CALL ZHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
  808. $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  809. *
  810. NTEST = NTEST + 2
  811. *
  812. CALL ZHEEVX( 'N', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
  813. $ ABSTOL, M3, WA3, Z, LDU, WORK, LWORK, RWORK,
  814. $ IWORK, IWORK( 5*N+1 ), IINFO )
  815. IF( IINFO.NE.0 ) THEN
  816. WRITE( NOUNIT, FMT = 9999 )'ZHEEVX(N,I,' // UPLO //
  817. $ ')', IINFO, N, JTYPE, IOLDSD
  818. INFO = ABS( IINFO )
  819. IF( IINFO.LT.0 ) THEN
  820. RETURN
  821. ELSE
  822. RESULT( NTEST ) = ULPINV
  823. GO TO 160
  824. END IF
  825. END IF
  826. *
  827. * Do test 9.
  828. *
  829. TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  830. TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  831. IF( N.GT.0 ) THEN
  832. TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
  833. ELSE
  834. TEMP3 = ZERO
  835. END IF
  836. RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
  837. $ MAX( UNFL, TEMP3*ULP )
  838. *
  839. 160 CONTINUE
  840. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  841. *
  842. NTEST = NTEST + 1
  843. *
  844. CALL ZHEEVX( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
  845. $ ABSTOL, M2, WA2, Z, LDU, WORK, LWORK, RWORK,
  846. $ IWORK, IWORK( 5*N+1 ), IINFO )
  847. IF( IINFO.NE.0 ) THEN
  848. WRITE( NOUNIT, FMT = 9999 )'ZHEEVX(V,V,' // UPLO //
  849. $ ')', IINFO, N, JTYPE, IOLDSD
  850. INFO = ABS( IINFO )
  851. IF( IINFO.LT.0 ) THEN
  852. RETURN
  853. ELSE
  854. RESULT( NTEST ) = ULPINV
  855. GO TO 170
  856. END IF
  857. END IF
  858. *
  859. * Do tests 10 and 11.
  860. *
  861. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  862. *
  863. CALL ZHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
  864. $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  865. *
  866. NTEST = NTEST + 2
  867. *
  868. CALL ZHEEVX( 'N', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
  869. $ ABSTOL, M3, WA3, Z, LDU, WORK, LWORK, RWORK,
  870. $ IWORK, IWORK( 5*N+1 ), IINFO )
  871. IF( IINFO.NE.0 ) THEN
  872. WRITE( NOUNIT, FMT = 9999 )'ZHEEVX(N,V,' // UPLO //
  873. $ ')', IINFO, N, JTYPE, IOLDSD
  874. INFO = ABS( IINFO )
  875. IF( IINFO.LT.0 ) THEN
  876. RETURN
  877. ELSE
  878. RESULT( NTEST ) = ULPINV
  879. GO TO 170
  880. END IF
  881. END IF
  882. *
  883. IF( M3.EQ.0 .AND. N.GT.0 ) THEN
  884. RESULT( NTEST ) = ULPINV
  885. GO TO 170
  886. END IF
  887. *
  888. * Do test 12.
  889. *
  890. TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  891. TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  892. IF( N.GT.0 ) THEN
  893. TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
  894. ELSE
  895. TEMP3 = ZERO
  896. END IF
  897. RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
  898. $ MAX( UNFL, TEMP3*ULP )
  899. *
  900. 170 CONTINUE
  901. *
  902. * Call ZHPEVD and CHPEVX.
  903. *
  904. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  905. *
  906. * Load array WORK with the upper or lower triangular
  907. * part of the matrix in packed form.
  908. *
  909. IF( IUPLO.EQ.1 ) THEN
  910. INDX = 1
  911. DO 190 J = 1, N
  912. DO 180 I = 1, J
  913. WORK( INDX ) = A( I, J )
  914. INDX = INDX + 1
  915. 180 CONTINUE
  916. 190 CONTINUE
  917. ELSE
  918. INDX = 1
  919. DO 210 J = 1, N
  920. DO 200 I = J, N
  921. WORK( INDX ) = A( I, J )
  922. INDX = INDX + 1
  923. 200 CONTINUE
  924. 210 CONTINUE
  925. END IF
  926. *
  927. NTEST = NTEST + 1
  928. INDWRK = N*( N+1 ) / 2 + 1
  929. CALL ZHPEVD( 'V', UPLO, N, WORK, D1, Z, LDU,
  930. $ WORK( INDWRK ), LWEDC, RWORK, LRWEDC, IWORK,
  931. $ LIWEDC, IINFO )
  932. IF( IINFO.NE.0 ) THEN
  933. WRITE( NOUNIT, FMT = 9999 )'ZHPEVD(V,' // UPLO //
  934. $ ')', IINFO, N, JTYPE, IOLDSD
  935. INFO = ABS( IINFO )
  936. IF( IINFO.LT.0 ) THEN
  937. RETURN
  938. ELSE
  939. RESULT( NTEST ) = ULPINV
  940. RESULT( NTEST+1 ) = ULPINV
  941. RESULT( NTEST+2 ) = ULPINV
  942. GO TO 270
  943. END IF
  944. END IF
  945. *
  946. * Do tests 13 and 14.
  947. *
  948. CALL ZHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
  949. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  950. *
  951. IF( IUPLO.EQ.1 ) THEN
  952. INDX = 1
  953. DO 230 J = 1, N
  954. DO 220 I = 1, J
  955. WORK( INDX ) = A( I, J )
  956. INDX = INDX + 1
  957. 220 CONTINUE
  958. 230 CONTINUE
  959. ELSE
  960. INDX = 1
  961. DO 250 J = 1, N
  962. DO 240 I = J, N
  963. WORK( INDX ) = A( I, J )
  964. INDX = INDX + 1
  965. 240 CONTINUE
  966. 250 CONTINUE
  967. END IF
  968. *
  969. NTEST = NTEST + 2
  970. INDWRK = N*( N+1 ) / 2 + 1
  971. CALL ZHPEVD( 'N', UPLO, N, WORK, D3, Z, LDU,
  972. $ WORK( INDWRK ), LWEDC, RWORK, LRWEDC, IWORK,
  973. $ LIWEDC, IINFO )
  974. IF( IINFO.NE.0 ) THEN
  975. WRITE( NOUNIT, FMT = 9999 )'ZHPEVD(N,' // UPLO //
  976. $ ')', IINFO, N, JTYPE, IOLDSD
  977. INFO = ABS( IINFO )
  978. IF( IINFO.LT.0 ) THEN
  979. RETURN
  980. ELSE
  981. RESULT( NTEST ) = ULPINV
  982. GO TO 270
  983. END IF
  984. END IF
  985. *
  986. * Do test 15.
  987. *
  988. TEMP1 = ZERO
  989. TEMP2 = ZERO
  990. DO 260 J = 1, N
  991. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
  992. TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
  993. 260 CONTINUE
  994. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  995. $ ULP*MAX( TEMP1, TEMP2 ) )
  996. *
  997. * Load array WORK with the upper or lower triangular part
  998. * of the matrix in packed form.
  999. *
  1000. 270 CONTINUE
  1001. IF( IUPLO.EQ.1 ) THEN
  1002. INDX = 1
  1003. DO 290 J = 1, N
  1004. DO 280 I = 1, J
  1005. WORK( INDX ) = A( I, J )
  1006. INDX = INDX + 1
  1007. 280 CONTINUE
  1008. 290 CONTINUE
  1009. ELSE
  1010. INDX = 1
  1011. DO 310 J = 1, N
  1012. DO 300 I = J, N
  1013. WORK( INDX ) = A( I, J )
  1014. INDX = INDX + 1
  1015. 300 CONTINUE
  1016. 310 CONTINUE
  1017. END IF
  1018. *
  1019. NTEST = NTEST + 1
  1020. *
  1021. IF( N.GT.0 ) THEN
  1022. TEMP3 = MAX( ABS( D1( 1 ) ), ABS( D1( N ) ) )
  1023. IF( IL.NE.1 ) THEN
  1024. VL = D1( IL ) - MAX( HALF*( D1( IL )-D1( IL-1 ) ),
  1025. $ TEN*ULP*TEMP3, TEN*RTUNFL )
  1026. ELSE IF( N.GT.0 ) THEN
  1027. VL = D1( 1 ) - MAX( HALF*( D1( N )-D1( 1 ) ),
  1028. $ TEN*ULP*TEMP3, TEN*RTUNFL )
  1029. END IF
  1030. IF( IU.NE.N ) THEN
  1031. VU = D1( IU ) + MAX( HALF*( D1( IU+1 )-D1( IU ) ),
  1032. $ TEN*ULP*TEMP3, TEN*RTUNFL )
  1033. ELSE IF( N.GT.0 ) THEN
  1034. VU = D1( N ) + MAX( HALF*( D1( N )-D1( 1 ) ),
  1035. $ TEN*ULP*TEMP3, TEN*RTUNFL )
  1036. END IF
  1037. ELSE
  1038. TEMP3 = ZERO
  1039. VL = ZERO
  1040. VU = ONE
  1041. END IF
  1042. *
  1043. CALL ZHPEVX( 'V', 'A', UPLO, N, WORK, VL, VU, IL, IU,
  1044. $ ABSTOL, M, WA1, Z, LDU, V, RWORK, IWORK,
  1045. $ IWORK( 5*N+1 ), IINFO )
  1046. IF( IINFO.NE.0 ) THEN
  1047. WRITE( NOUNIT, FMT = 9999 )'ZHPEVX(V,A,' // UPLO //
  1048. $ ')', IINFO, N, JTYPE, IOLDSD
  1049. INFO = ABS( IINFO )
  1050. IF( IINFO.LT.0 ) THEN
  1051. RETURN
  1052. ELSE
  1053. RESULT( NTEST ) = ULPINV
  1054. RESULT( NTEST+1 ) = ULPINV
  1055. RESULT( NTEST+2 ) = ULPINV
  1056. GO TO 370
  1057. END IF
  1058. END IF
  1059. *
  1060. * Do tests 16 and 17.
  1061. *
  1062. CALL ZHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
  1063. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1064. *
  1065. NTEST = NTEST + 2
  1066. *
  1067. IF( IUPLO.EQ.1 ) THEN
  1068. INDX = 1
  1069. DO 330 J = 1, N
  1070. DO 320 I = 1, J
  1071. WORK( INDX ) = A( I, J )
  1072. INDX = INDX + 1
  1073. 320 CONTINUE
  1074. 330 CONTINUE
  1075. ELSE
  1076. INDX = 1
  1077. DO 350 J = 1, N
  1078. DO 340 I = J, N
  1079. WORK( INDX ) = A( I, J )
  1080. INDX = INDX + 1
  1081. 340 CONTINUE
  1082. 350 CONTINUE
  1083. END IF
  1084. *
  1085. CALL ZHPEVX( 'N', 'A', UPLO, N, WORK, VL, VU, IL, IU,
  1086. $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
  1087. $ IWORK( 5*N+1 ), IINFO )
  1088. IF( IINFO.NE.0 ) THEN
  1089. WRITE( NOUNIT, FMT = 9999 )'ZHPEVX(N,A,' // UPLO //
  1090. $ ')', IINFO, N, JTYPE, IOLDSD
  1091. INFO = ABS( IINFO )
  1092. IF( IINFO.LT.0 ) THEN
  1093. RETURN
  1094. ELSE
  1095. RESULT( NTEST ) = ULPINV
  1096. GO TO 370
  1097. END IF
  1098. END IF
  1099. *
  1100. * Do test 18.
  1101. *
  1102. TEMP1 = ZERO
  1103. TEMP2 = ZERO
  1104. DO 360 J = 1, N
  1105. TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
  1106. TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
  1107. 360 CONTINUE
  1108. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  1109. $ ULP*MAX( TEMP1, TEMP2 ) )
  1110. *
  1111. 370 CONTINUE
  1112. NTEST = NTEST + 1
  1113. IF( IUPLO.EQ.1 ) THEN
  1114. INDX = 1
  1115. DO 390 J = 1, N
  1116. DO 380 I = 1, J
  1117. WORK( INDX ) = A( I, J )
  1118. INDX = INDX + 1
  1119. 380 CONTINUE
  1120. 390 CONTINUE
  1121. ELSE
  1122. INDX = 1
  1123. DO 410 J = 1, N
  1124. DO 400 I = J, N
  1125. WORK( INDX ) = A( I, J )
  1126. INDX = INDX + 1
  1127. 400 CONTINUE
  1128. 410 CONTINUE
  1129. END IF
  1130. *
  1131. CALL ZHPEVX( 'V', 'I', UPLO, N, WORK, VL, VU, IL, IU,
  1132. $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
  1133. $ IWORK( 5*N+1 ), IINFO )
  1134. IF( IINFO.NE.0 ) THEN
  1135. WRITE( NOUNIT, FMT = 9999 )'ZHPEVX(V,I,' // UPLO //
  1136. $ ')', IINFO, N, JTYPE, IOLDSD
  1137. INFO = ABS( IINFO )
  1138. IF( IINFO.LT.0 ) THEN
  1139. RETURN
  1140. ELSE
  1141. RESULT( NTEST ) = ULPINV
  1142. RESULT( NTEST+1 ) = ULPINV
  1143. RESULT( NTEST+2 ) = ULPINV
  1144. GO TO 460
  1145. END IF
  1146. END IF
  1147. *
  1148. * Do tests 19 and 20.
  1149. *
  1150. CALL ZHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
  1151. $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1152. *
  1153. NTEST = NTEST + 2
  1154. *
  1155. IF( IUPLO.EQ.1 ) THEN
  1156. INDX = 1
  1157. DO 430 J = 1, N
  1158. DO 420 I = 1, J
  1159. WORK( INDX ) = A( I, J )
  1160. INDX = INDX + 1
  1161. 420 CONTINUE
  1162. 430 CONTINUE
  1163. ELSE
  1164. INDX = 1
  1165. DO 450 J = 1, N
  1166. DO 440 I = J, N
  1167. WORK( INDX ) = A( I, J )
  1168. INDX = INDX + 1
  1169. 440 CONTINUE
  1170. 450 CONTINUE
  1171. END IF
  1172. *
  1173. CALL ZHPEVX( 'N', 'I', UPLO, N, WORK, VL, VU, IL, IU,
  1174. $ ABSTOL, M3, WA3, Z, LDU, V, RWORK, IWORK,
  1175. $ IWORK( 5*N+1 ), IINFO )
  1176. IF( IINFO.NE.0 ) THEN
  1177. WRITE( NOUNIT, FMT = 9999 )'ZHPEVX(N,I,' // UPLO //
  1178. $ ')', IINFO, N, JTYPE, IOLDSD
  1179. INFO = ABS( IINFO )
  1180. IF( IINFO.LT.0 ) THEN
  1181. RETURN
  1182. ELSE
  1183. RESULT( NTEST ) = ULPINV
  1184. GO TO 460
  1185. END IF
  1186. END IF
  1187. *
  1188. * Do test 21.
  1189. *
  1190. TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  1191. TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  1192. IF( N.GT.0 ) THEN
  1193. TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
  1194. ELSE
  1195. TEMP3 = ZERO
  1196. END IF
  1197. RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
  1198. $ MAX( UNFL, TEMP3*ULP )
  1199. *
  1200. 460 CONTINUE
  1201. NTEST = NTEST + 1
  1202. IF( IUPLO.EQ.1 ) THEN
  1203. INDX = 1
  1204. DO 480 J = 1, N
  1205. DO 470 I = 1, J
  1206. WORK( INDX ) = A( I, J )
  1207. INDX = INDX + 1
  1208. 470 CONTINUE
  1209. 480 CONTINUE
  1210. ELSE
  1211. INDX = 1
  1212. DO 500 J = 1, N
  1213. DO 490 I = J, N
  1214. WORK( INDX ) = A( I, J )
  1215. INDX = INDX + 1
  1216. 490 CONTINUE
  1217. 500 CONTINUE
  1218. END IF
  1219. *
  1220. CALL ZHPEVX( 'V', 'V', UPLO, N, WORK, VL, VU, IL, IU,
  1221. $ ABSTOL, M2, WA2, Z, LDU, V, RWORK, IWORK,
  1222. $ IWORK( 5*N+1 ), IINFO )
  1223. IF( IINFO.NE.0 ) THEN
  1224. WRITE( NOUNIT, FMT = 9999 )'ZHPEVX(V,V,' // UPLO //
  1225. $ ')', IINFO, N, JTYPE, IOLDSD
  1226. INFO = ABS( IINFO )
  1227. IF( IINFO.LT.0 ) THEN
  1228. RETURN
  1229. ELSE
  1230. RESULT( NTEST ) = ULPINV
  1231. RESULT( NTEST+1 ) = ULPINV
  1232. RESULT( NTEST+2 ) = ULPINV
  1233. GO TO 550
  1234. END IF
  1235. END IF
  1236. *
  1237. * Do tests 22 and 23.
  1238. *
  1239. CALL ZHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
  1240. $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1241. *
  1242. NTEST = NTEST + 2
  1243. *
  1244. IF( IUPLO.EQ.1 ) THEN
  1245. INDX = 1
  1246. DO 520 J = 1, N
  1247. DO 510 I = 1, J
  1248. WORK( INDX ) = A( I, J )
  1249. INDX = INDX + 1
  1250. 510 CONTINUE
  1251. 520 CONTINUE
  1252. ELSE
  1253. INDX = 1
  1254. DO 540 J = 1, N
  1255. DO 530 I = J, N
  1256. WORK( INDX ) = A( I, J )
  1257. INDX = INDX + 1
  1258. 530 CONTINUE
  1259. 540 CONTINUE
  1260. END IF
  1261. *
  1262. CALL ZHPEVX( 'N', 'V', UPLO, N, WORK, VL, VU, IL, IU,
  1263. $ ABSTOL, M3, WA3, Z, LDU, V, RWORK, IWORK,
  1264. $ IWORK( 5*N+1 ), IINFO )
  1265. IF( IINFO.NE.0 ) THEN
  1266. WRITE( NOUNIT, FMT = 9999 )'ZHPEVX(N,V,' // UPLO //
  1267. $ ')', IINFO, N, JTYPE, IOLDSD
  1268. INFO = ABS( IINFO )
  1269. IF( IINFO.LT.0 ) THEN
  1270. RETURN
  1271. ELSE
  1272. RESULT( NTEST ) = ULPINV
  1273. GO TO 550
  1274. END IF
  1275. END IF
  1276. *
  1277. IF( M3.EQ.0 .AND. N.GT.0 ) THEN
  1278. RESULT( NTEST ) = ULPINV
  1279. GO TO 550
  1280. END IF
  1281. *
  1282. * Do test 24.
  1283. *
  1284. TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  1285. TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  1286. IF( N.GT.0 ) THEN
  1287. TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
  1288. ELSE
  1289. TEMP3 = ZERO
  1290. END IF
  1291. RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
  1292. $ MAX( UNFL, TEMP3*ULP )
  1293. *
  1294. 550 CONTINUE
  1295. *
  1296. * Call ZHBEVD and CHBEVX.
  1297. *
  1298. IF( JTYPE.LE.7 ) THEN
  1299. KD = 0
  1300. ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
  1301. KD = MAX( N-1, 0 )
  1302. ELSE
  1303. KD = IHBW
  1304. END IF
  1305. *
  1306. * Load array V with the upper or lower triangular part
  1307. * of the matrix in band form.
  1308. *
  1309. IF( IUPLO.EQ.1 ) THEN
  1310. DO 570 J = 1, N
  1311. DO 560 I = MAX( 1, J-KD ), J
  1312. V( KD+1+I-J, J ) = A( I, J )
  1313. 560 CONTINUE
  1314. 570 CONTINUE
  1315. ELSE
  1316. DO 590 J = 1, N
  1317. DO 580 I = J, MIN( N, J+KD )
  1318. V( 1+I-J, J ) = A( I, J )
  1319. 580 CONTINUE
  1320. 590 CONTINUE
  1321. END IF
  1322. *
  1323. NTEST = NTEST + 1
  1324. CALL ZHBEVD( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
  1325. $ LWEDC, RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
  1326. IF( IINFO.NE.0 ) THEN
  1327. WRITE( NOUNIT, FMT = 9998 )'ZHBEVD(V,' // UPLO //
  1328. $ ')', IINFO, N, KD, JTYPE, IOLDSD
  1329. INFO = ABS( IINFO )
  1330. IF( IINFO.LT.0 ) THEN
  1331. RETURN
  1332. ELSE
  1333. RESULT( NTEST ) = ULPINV
  1334. RESULT( NTEST+1 ) = ULPINV
  1335. RESULT( NTEST+2 ) = ULPINV
  1336. GO TO 650
  1337. END IF
  1338. END IF
  1339. *
  1340. * Do tests 25 and 26.
  1341. *
  1342. CALL ZHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
  1343. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1344. *
  1345. IF( IUPLO.EQ.1 ) THEN
  1346. DO 610 J = 1, N
  1347. DO 600 I = MAX( 1, J-KD ), J
  1348. V( KD+1+I-J, J ) = A( I, J )
  1349. 600 CONTINUE
  1350. 610 CONTINUE
  1351. ELSE
  1352. DO 630 J = 1, N
  1353. DO 620 I = J, MIN( N, J+KD )
  1354. V( 1+I-J, J ) = A( I, J )
  1355. 620 CONTINUE
  1356. 630 CONTINUE
  1357. END IF
  1358. *
  1359. NTEST = NTEST + 2
  1360. CALL ZHBEVD( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU, WORK,
  1361. $ LWEDC, RWORK, LRWEDC, IWORK, LIWEDC, IINFO )
  1362. IF( IINFO.NE.0 ) THEN
  1363. WRITE( NOUNIT, FMT = 9998 )'ZHBEVD(N,' // UPLO //
  1364. $ ')', IINFO, N, KD, JTYPE, IOLDSD
  1365. INFO = ABS( IINFO )
  1366. IF( IINFO.LT.0 ) THEN
  1367. RETURN
  1368. ELSE
  1369. RESULT( NTEST ) = ULPINV
  1370. GO TO 650
  1371. END IF
  1372. END IF
  1373. *
  1374. * Do test 27.
  1375. *
  1376. TEMP1 = ZERO
  1377. TEMP2 = ZERO
  1378. DO 640 J = 1, N
  1379. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
  1380. TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
  1381. 640 CONTINUE
  1382. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  1383. $ ULP*MAX( TEMP1, TEMP2 ) )
  1384. *
  1385. * Load array V with the upper or lower triangular part
  1386. * of the matrix in band form.
  1387. *
  1388. 650 CONTINUE
  1389. IF( IUPLO.EQ.1 ) THEN
  1390. DO 670 J = 1, N
  1391. DO 660 I = MAX( 1, J-KD ), J
  1392. V( KD+1+I-J, J ) = A( I, J )
  1393. 660 CONTINUE
  1394. 670 CONTINUE
  1395. ELSE
  1396. DO 690 J = 1, N
  1397. DO 680 I = J, MIN( N, J+KD )
  1398. V( 1+I-J, J ) = A( I, J )
  1399. 680 CONTINUE
  1400. 690 CONTINUE
  1401. END IF
  1402. *
  1403. NTEST = NTEST + 1
  1404. CALL ZHBEVX( 'V', 'A', UPLO, N, KD, V, LDU, U, LDU, VL,
  1405. $ VU, IL, IU, ABSTOL, M, WA1, Z, LDU, WORK,
  1406. $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
  1407. IF( IINFO.NE.0 ) THEN
  1408. WRITE( NOUNIT, FMT = 9999 )'ZHBEVX(V,A,' // UPLO //
  1409. $ ')', IINFO, N, KD, JTYPE, IOLDSD
  1410. INFO = ABS( IINFO )
  1411. IF( IINFO.LT.0 ) THEN
  1412. RETURN
  1413. ELSE
  1414. RESULT( NTEST ) = ULPINV
  1415. RESULT( NTEST+1 ) = ULPINV
  1416. RESULT( NTEST+2 ) = ULPINV
  1417. GO TO 750
  1418. END IF
  1419. END IF
  1420. *
  1421. * Do tests 28 and 29.
  1422. *
  1423. CALL ZHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
  1424. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1425. *
  1426. NTEST = NTEST + 2
  1427. *
  1428. IF( IUPLO.EQ.1 ) THEN
  1429. DO 710 J = 1, N
  1430. DO 700 I = MAX( 1, J-KD ), J
  1431. V( KD+1+I-J, J ) = A( I, J )
  1432. 700 CONTINUE
  1433. 710 CONTINUE
  1434. ELSE
  1435. DO 730 J = 1, N
  1436. DO 720 I = J, MIN( N, J+KD )
  1437. V( 1+I-J, J ) = A( I, J )
  1438. 720 CONTINUE
  1439. 730 CONTINUE
  1440. END IF
  1441. *
  1442. CALL ZHBEVX( 'N', 'A', UPLO, N, KD, V, LDU, U, LDU, VL,
  1443. $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
  1444. $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
  1445. IF( IINFO.NE.0 ) THEN
  1446. WRITE( NOUNIT, FMT = 9998 )'ZHBEVX(N,A,' // UPLO //
  1447. $ ')', IINFO, N, KD, JTYPE, IOLDSD
  1448. INFO = ABS( IINFO )
  1449. IF( IINFO.LT.0 ) THEN
  1450. RETURN
  1451. ELSE
  1452. RESULT( NTEST ) = ULPINV
  1453. GO TO 750
  1454. END IF
  1455. END IF
  1456. *
  1457. * Do test 30.
  1458. *
  1459. TEMP1 = ZERO
  1460. TEMP2 = ZERO
  1461. DO 740 J = 1, N
  1462. TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
  1463. TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
  1464. 740 CONTINUE
  1465. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  1466. $ ULP*MAX( TEMP1, TEMP2 ) )
  1467. *
  1468. * Load array V with the upper or lower triangular part
  1469. * of the matrix in band form.
  1470. *
  1471. 750 CONTINUE
  1472. NTEST = NTEST + 1
  1473. IF( IUPLO.EQ.1 ) THEN
  1474. DO 770 J = 1, N
  1475. DO 760 I = MAX( 1, J-KD ), J
  1476. V( KD+1+I-J, J ) = A( I, J )
  1477. 760 CONTINUE
  1478. 770 CONTINUE
  1479. ELSE
  1480. DO 790 J = 1, N
  1481. DO 780 I = J, MIN( N, J+KD )
  1482. V( 1+I-J, J ) = A( I, J )
  1483. 780 CONTINUE
  1484. 790 CONTINUE
  1485. END IF
  1486. *
  1487. CALL ZHBEVX( 'V', 'I', UPLO, N, KD, V, LDU, U, LDU, VL,
  1488. $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
  1489. $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
  1490. IF( IINFO.NE.0 ) THEN
  1491. WRITE( NOUNIT, FMT = 9998 )'ZHBEVX(V,I,' // UPLO //
  1492. $ ')', IINFO, N, KD, JTYPE, IOLDSD
  1493. INFO = ABS( IINFO )
  1494. IF( IINFO.LT.0 ) THEN
  1495. RETURN
  1496. ELSE
  1497. RESULT( NTEST ) = ULPINV
  1498. RESULT( NTEST+1 ) = ULPINV
  1499. RESULT( NTEST+2 ) = ULPINV
  1500. GO TO 840
  1501. END IF
  1502. END IF
  1503. *
  1504. * Do tests 31 and 32.
  1505. *
  1506. CALL ZHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
  1507. $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1508. *
  1509. NTEST = NTEST + 2
  1510. *
  1511. IF( IUPLO.EQ.1 ) THEN
  1512. DO 810 J = 1, N
  1513. DO 800 I = MAX( 1, J-KD ), J
  1514. V( KD+1+I-J, J ) = A( I, J )
  1515. 800 CONTINUE
  1516. 810 CONTINUE
  1517. ELSE
  1518. DO 830 J = 1, N
  1519. DO 820 I = J, MIN( N, J+KD )
  1520. V( 1+I-J, J ) = A( I, J )
  1521. 820 CONTINUE
  1522. 830 CONTINUE
  1523. END IF
  1524. CALL ZHBEVX( 'N', 'I', UPLO, N, KD, V, LDU, U, LDU, VL,
  1525. $ VU, IL, IU, ABSTOL, M3, WA3, Z, LDU, WORK,
  1526. $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
  1527. IF( IINFO.NE.0 ) THEN
  1528. WRITE( NOUNIT, FMT = 9998 )'ZHBEVX(N,I,' // UPLO //
  1529. $ ')', IINFO, N, KD, JTYPE, IOLDSD
  1530. INFO = ABS( IINFO )
  1531. IF( IINFO.LT.0 ) THEN
  1532. RETURN
  1533. ELSE
  1534. RESULT( NTEST ) = ULPINV
  1535. GO TO 840
  1536. END IF
  1537. END IF
  1538. *
  1539. * Do test 33.
  1540. *
  1541. TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  1542. TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  1543. IF( N.GT.0 ) THEN
  1544. TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
  1545. ELSE
  1546. TEMP3 = ZERO
  1547. END IF
  1548. RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
  1549. $ MAX( UNFL, TEMP3*ULP )
  1550. *
  1551. * Load array V with the upper or lower triangular part
  1552. * of the matrix in band form.
  1553. *
  1554. 840 CONTINUE
  1555. NTEST = NTEST + 1
  1556. IF( IUPLO.EQ.1 ) THEN
  1557. DO 860 J = 1, N
  1558. DO 850 I = MAX( 1, J-KD ), J
  1559. V( KD+1+I-J, J ) = A( I, J )
  1560. 850 CONTINUE
  1561. 860 CONTINUE
  1562. ELSE
  1563. DO 880 J = 1, N
  1564. DO 870 I = J, MIN( N, J+KD )
  1565. V( 1+I-J, J ) = A( I, J )
  1566. 870 CONTINUE
  1567. 880 CONTINUE
  1568. END IF
  1569. CALL ZHBEVX( 'V', 'V', UPLO, N, KD, V, LDU, U, LDU, VL,
  1570. $ VU, IL, IU, ABSTOL, M2, WA2, Z, LDU, WORK,
  1571. $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
  1572. IF( IINFO.NE.0 ) THEN
  1573. WRITE( NOUNIT, FMT = 9998 )'ZHBEVX(V,V,' // UPLO //
  1574. $ ')', IINFO, N, KD, JTYPE, IOLDSD
  1575. INFO = ABS( IINFO )
  1576. IF( IINFO.LT.0 ) THEN
  1577. RETURN
  1578. ELSE
  1579. RESULT( NTEST ) = ULPINV
  1580. RESULT( NTEST+1 ) = ULPINV
  1581. RESULT( NTEST+2 ) = ULPINV
  1582. GO TO 930
  1583. END IF
  1584. END IF
  1585. *
  1586. * Do tests 34 and 35.
  1587. *
  1588. CALL ZHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
  1589. $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1590. *
  1591. NTEST = NTEST + 2
  1592. *
  1593. IF( IUPLO.EQ.1 ) THEN
  1594. DO 900 J = 1, N
  1595. DO 890 I = MAX( 1, J-KD ), J
  1596. V( KD+1+I-J, J ) = A( I, J )
  1597. 890 CONTINUE
  1598. 900 CONTINUE
  1599. ELSE
  1600. DO 920 J = 1, N
  1601. DO 910 I = J, MIN( N, J+KD )
  1602. V( 1+I-J, J ) = A( I, J )
  1603. 910 CONTINUE
  1604. 920 CONTINUE
  1605. END IF
  1606. CALL ZHBEVX( 'N', 'V', UPLO, N, KD, V, LDU, U, LDU, VL,
  1607. $ VU, IL, IU, ABSTOL, M3, WA3, Z, LDU, WORK,
  1608. $ RWORK, IWORK, IWORK( 5*N+1 ), IINFO )
  1609. IF( IINFO.NE.0 ) THEN
  1610. WRITE( NOUNIT, FMT = 9998 )'ZHBEVX(N,V,' // UPLO //
  1611. $ ')', IINFO, N, KD, JTYPE, IOLDSD
  1612. INFO = ABS( IINFO )
  1613. IF( IINFO.LT.0 ) THEN
  1614. RETURN
  1615. ELSE
  1616. RESULT( NTEST ) = ULPINV
  1617. GO TO 930
  1618. END IF
  1619. END IF
  1620. *
  1621. IF( M3.EQ.0 .AND. N.GT.0 ) THEN
  1622. RESULT( NTEST ) = ULPINV
  1623. GO TO 930
  1624. END IF
  1625. *
  1626. * Do test 36.
  1627. *
  1628. TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  1629. TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  1630. IF( N.GT.0 ) THEN
  1631. TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
  1632. ELSE
  1633. TEMP3 = ZERO
  1634. END IF
  1635. RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
  1636. $ MAX( UNFL, TEMP3*ULP )
  1637. *
  1638. 930 CONTINUE
  1639. *
  1640. * Call ZHEEV
  1641. *
  1642. CALL ZLACPY( ' ', N, N, A, LDA, V, LDU )
  1643. *
  1644. NTEST = NTEST + 1
  1645. CALL ZHEEV( 'V', UPLO, N, A, LDU, D1, WORK, LWORK, RWORK,
  1646. $ IINFO )
  1647. IF( IINFO.NE.0 ) THEN
  1648. WRITE( NOUNIT, FMT = 9999 )'ZHEEV(V,' // UPLO // ')',
  1649. $ IINFO, N, JTYPE, IOLDSD
  1650. INFO = ABS( IINFO )
  1651. IF( IINFO.LT.0 ) THEN
  1652. RETURN
  1653. ELSE
  1654. RESULT( NTEST ) = ULPINV
  1655. RESULT( NTEST+1 ) = ULPINV
  1656. RESULT( NTEST+2 ) = ULPINV
  1657. GO TO 950
  1658. END IF
  1659. END IF
  1660. *
  1661. * Do tests 37 and 38
  1662. *
  1663. CALL ZHET21( 1, UPLO, N, 0, V, LDU, D1, D2, A, LDU, Z,
  1664. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1665. *
  1666. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  1667. *
  1668. NTEST = NTEST + 2
  1669. CALL ZHEEV( 'N', UPLO, N, A, LDU, D3, WORK, LWORK, RWORK,
  1670. $ IINFO )
  1671. IF( IINFO.NE.0 ) THEN
  1672. WRITE( NOUNIT, FMT = 9999 )'ZHEEV(N,' // UPLO // ')',
  1673. $ IINFO, N, JTYPE, IOLDSD
  1674. INFO = ABS( IINFO )
  1675. IF( IINFO.LT.0 ) THEN
  1676. RETURN
  1677. ELSE
  1678. RESULT( NTEST ) = ULPINV
  1679. GO TO 950
  1680. END IF
  1681. END IF
  1682. *
  1683. * Do test 39
  1684. *
  1685. TEMP1 = ZERO
  1686. TEMP2 = ZERO
  1687. DO 940 J = 1, N
  1688. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
  1689. TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
  1690. 940 CONTINUE
  1691. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  1692. $ ULP*MAX( TEMP1, TEMP2 ) )
  1693. *
  1694. 950 CONTINUE
  1695. *
  1696. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  1697. *
  1698. * Call ZHPEV
  1699. *
  1700. * Load array WORK with the upper or lower triangular
  1701. * part of the matrix in packed form.
  1702. *
  1703. IF( IUPLO.EQ.1 ) THEN
  1704. INDX = 1
  1705. DO 970 J = 1, N
  1706. DO 960 I = 1, J
  1707. WORK( INDX ) = A( I, J )
  1708. INDX = INDX + 1
  1709. 960 CONTINUE
  1710. 970 CONTINUE
  1711. ELSE
  1712. INDX = 1
  1713. DO 990 J = 1, N
  1714. DO 980 I = J, N
  1715. WORK( INDX ) = A( I, J )
  1716. INDX = INDX + 1
  1717. 980 CONTINUE
  1718. 990 CONTINUE
  1719. END IF
  1720. *
  1721. NTEST = NTEST + 1
  1722. INDWRK = N*( N+1 ) / 2 + 1
  1723. CALL ZHPEV( 'V', UPLO, N, WORK, D1, Z, LDU,
  1724. $ WORK( INDWRK ), RWORK, IINFO )
  1725. IF( IINFO.NE.0 ) THEN
  1726. WRITE( NOUNIT, FMT = 9999 )'ZHPEV(V,' // UPLO // ')',
  1727. $ IINFO, N, JTYPE, IOLDSD
  1728. INFO = ABS( IINFO )
  1729. IF( IINFO.LT.0 ) THEN
  1730. RETURN
  1731. ELSE
  1732. RESULT( NTEST ) = ULPINV
  1733. RESULT( NTEST+1 ) = ULPINV
  1734. RESULT( NTEST+2 ) = ULPINV
  1735. GO TO 1050
  1736. END IF
  1737. END IF
  1738. *
  1739. * Do tests 40 and 41.
  1740. *
  1741. CALL ZHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
  1742. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1743. *
  1744. IF( IUPLO.EQ.1 ) THEN
  1745. INDX = 1
  1746. DO 1010 J = 1, N
  1747. DO 1000 I = 1, J
  1748. WORK( INDX ) = A( I, J )
  1749. INDX = INDX + 1
  1750. 1000 CONTINUE
  1751. 1010 CONTINUE
  1752. ELSE
  1753. INDX = 1
  1754. DO 1030 J = 1, N
  1755. DO 1020 I = J, N
  1756. WORK( INDX ) = A( I, J )
  1757. INDX = INDX + 1
  1758. 1020 CONTINUE
  1759. 1030 CONTINUE
  1760. END IF
  1761. *
  1762. NTEST = NTEST + 2
  1763. INDWRK = N*( N+1 ) / 2 + 1
  1764. CALL ZHPEV( 'N', UPLO, N, WORK, D3, Z, LDU,
  1765. $ WORK( INDWRK ), RWORK, IINFO )
  1766. IF( IINFO.NE.0 ) THEN
  1767. WRITE( NOUNIT, FMT = 9999 )'ZHPEV(N,' // UPLO // ')',
  1768. $ IINFO, N, JTYPE, IOLDSD
  1769. INFO = ABS( IINFO )
  1770. IF( IINFO.LT.0 ) THEN
  1771. RETURN
  1772. ELSE
  1773. RESULT( NTEST ) = ULPINV
  1774. GO TO 1050
  1775. END IF
  1776. END IF
  1777. *
  1778. * Do test 42
  1779. *
  1780. TEMP1 = ZERO
  1781. TEMP2 = ZERO
  1782. DO 1040 J = 1, N
  1783. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
  1784. TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
  1785. 1040 CONTINUE
  1786. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  1787. $ ULP*MAX( TEMP1, TEMP2 ) )
  1788. *
  1789. 1050 CONTINUE
  1790. *
  1791. * Call ZHBEV
  1792. *
  1793. IF( JTYPE.LE.7 ) THEN
  1794. KD = 0
  1795. ELSE IF( JTYPE.GE.8 .AND. JTYPE.LE.15 ) THEN
  1796. KD = MAX( N-1, 0 )
  1797. ELSE
  1798. KD = IHBW
  1799. END IF
  1800. *
  1801. * Load array V with the upper or lower triangular part
  1802. * of the matrix in band form.
  1803. *
  1804. IF( IUPLO.EQ.1 ) THEN
  1805. DO 1070 J = 1, N
  1806. DO 1060 I = MAX( 1, J-KD ), J
  1807. V( KD+1+I-J, J ) = A( I, J )
  1808. 1060 CONTINUE
  1809. 1070 CONTINUE
  1810. ELSE
  1811. DO 1090 J = 1, N
  1812. DO 1080 I = J, MIN( N, J+KD )
  1813. V( 1+I-J, J ) = A( I, J )
  1814. 1080 CONTINUE
  1815. 1090 CONTINUE
  1816. END IF
  1817. *
  1818. NTEST = NTEST + 1
  1819. CALL ZHBEV( 'V', UPLO, N, KD, V, LDU, D1, Z, LDU, WORK,
  1820. $ RWORK, IINFO )
  1821. IF( IINFO.NE.0 ) THEN
  1822. WRITE( NOUNIT, FMT = 9998 )'ZHBEV(V,' // UPLO // ')',
  1823. $ IINFO, N, KD, JTYPE, IOLDSD
  1824. INFO = ABS( IINFO )
  1825. IF( IINFO.LT.0 ) THEN
  1826. RETURN
  1827. ELSE
  1828. RESULT( NTEST ) = ULPINV
  1829. RESULT( NTEST+1 ) = ULPINV
  1830. RESULT( NTEST+2 ) = ULPINV
  1831. GO TO 1140
  1832. END IF
  1833. END IF
  1834. *
  1835. * Do tests 43 and 44.
  1836. *
  1837. CALL ZHET21( 1, UPLO, N, 0, A, LDA, D1, D2, Z, LDU, V,
  1838. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1839. *
  1840. IF( IUPLO.EQ.1 ) THEN
  1841. DO 1110 J = 1, N
  1842. DO 1100 I = MAX( 1, J-KD ), J
  1843. V( KD+1+I-J, J ) = A( I, J )
  1844. 1100 CONTINUE
  1845. 1110 CONTINUE
  1846. ELSE
  1847. DO 1130 J = 1, N
  1848. DO 1120 I = J, MIN( N, J+KD )
  1849. V( 1+I-J, J ) = A( I, J )
  1850. 1120 CONTINUE
  1851. 1130 CONTINUE
  1852. END IF
  1853. *
  1854. NTEST = NTEST + 2
  1855. CALL ZHBEV( 'N', UPLO, N, KD, V, LDU, D3, Z, LDU, WORK,
  1856. $ RWORK, IINFO )
  1857. IF( IINFO.NE.0 ) THEN
  1858. WRITE( NOUNIT, FMT = 9998 )'ZHBEV(N,' // UPLO // ')',
  1859. $ IINFO, N, KD, JTYPE, IOLDSD
  1860. INFO = ABS( IINFO )
  1861. IF( IINFO.LT.0 ) THEN
  1862. RETURN
  1863. ELSE
  1864. RESULT( NTEST ) = ULPINV
  1865. GO TO 1140
  1866. END IF
  1867. END IF
  1868. *
  1869. 1140 CONTINUE
  1870. *
  1871. * Do test 45.
  1872. *
  1873. TEMP1 = ZERO
  1874. TEMP2 = ZERO
  1875. DO 1150 J = 1, N
  1876. TEMP1 = MAX( TEMP1, ABS( D1( J ) ), ABS( D3( J ) ) )
  1877. TEMP2 = MAX( TEMP2, ABS( D1( J )-D3( J ) ) )
  1878. 1150 CONTINUE
  1879. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  1880. $ ULP*MAX( TEMP1, TEMP2 ) )
  1881. *
  1882. CALL ZLACPY( ' ', N, N, A, LDA, V, LDU )
  1883. NTEST = NTEST + 1
  1884. CALL ZHEEVR( 'V', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
  1885. $ ABSTOL, M, WA1, Z, LDU, IWORK, WORK, LWORK,
  1886. $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
  1887. $ IINFO )
  1888. IF( IINFO.NE.0 ) THEN
  1889. WRITE( NOUNIT, FMT = 9999 )'ZHEEVR(V,A,' // UPLO //
  1890. $ ')', IINFO, N, JTYPE, IOLDSD
  1891. INFO = ABS( IINFO )
  1892. IF( IINFO.LT.0 ) THEN
  1893. RETURN
  1894. ELSE
  1895. RESULT( NTEST ) = ULPINV
  1896. RESULT( NTEST+1 ) = ULPINV
  1897. RESULT( NTEST+2 ) = ULPINV
  1898. GO TO 1170
  1899. END IF
  1900. END IF
  1901. *
  1902. * Do tests 45 and 46 (or ... )
  1903. *
  1904. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  1905. *
  1906. CALL ZHET21( 1, UPLO, N, 0, A, LDU, WA1, D2, Z, LDU, V,
  1907. $ LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1908. *
  1909. NTEST = NTEST + 2
  1910. CALL ZHEEVR( 'N', 'A', UPLO, N, A, LDU, VL, VU, IL, IU,
  1911. $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
  1912. $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
  1913. $ IINFO )
  1914. IF( IINFO.NE.0 ) THEN
  1915. WRITE( NOUNIT, FMT = 9999 )'ZHEEVR(N,A,' // UPLO //
  1916. $ ')', IINFO, N, JTYPE, IOLDSD
  1917. INFO = ABS( IINFO )
  1918. IF( IINFO.LT.0 ) THEN
  1919. RETURN
  1920. ELSE
  1921. RESULT( NTEST ) = ULPINV
  1922. GO TO 1170
  1923. END IF
  1924. END IF
  1925. *
  1926. * Do test 47 (or ... )
  1927. *
  1928. TEMP1 = ZERO
  1929. TEMP2 = ZERO
  1930. DO 1160 J = 1, N
  1931. TEMP1 = MAX( TEMP1, ABS( WA1( J ) ), ABS( WA2( J ) ) )
  1932. TEMP2 = MAX( TEMP2, ABS( WA1( J )-WA2( J ) ) )
  1933. 1160 CONTINUE
  1934. RESULT( NTEST ) = TEMP2 / MAX( UNFL,
  1935. $ ULP*MAX( TEMP1, TEMP2 ) )
  1936. *
  1937. 1170 CONTINUE
  1938. *
  1939. NTEST = NTEST + 1
  1940. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  1941. CALL ZHEEVR( 'V', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
  1942. $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
  1943. $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
  1944. $ IINFO )
  1945. IF( IINFO.NE.0 ) THEN
  1946. WRITE( NOUNIT, FMT = 9999 )'ZHEEVR(V,I,' // UPLO //
  1947. $ ')', IINFO, N, JTYPE, IOLDSD
  1948. INFO = ABS( IINFO )
  1949. IF( IINFO.LT.0 ) THEN
  1950. RETURN
  1951. ELSE
  1952. RESULT( NTEST ) = ULPINV
  1953. RESULT( NTEST+1 ) = ULPINV
  1954. RESULT( NTEST+2 ) = ULPINV
  1955. GO TO 1180
  1956. END IF
  1957. END IF
  1958. *
  1959. * Do tests 48 and 49 (or +??)
  1960. *
  1961. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  1962. *
  1963. CALL ZHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
  1964. $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  1965. *
  1966. NTEST = NTEST + 2
  1967. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  1968. CALL ZHEEVR( 'N', 'I', UPLO, N, A, LDU, VL, VU, IL, IU,
  1969. $ ABSTOL, M3, WA3, Z, LDU, IWORK, WORK, LWORK,
  1970. $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
  1971. $ IINFO )
  1972. IF( IINFO.NE.0 ) THEN
  1973. WRITE( NOUNIT, FMT = 9999 )'ZHEEVR(N,I,' // UPLO //
  1974. $ ')', IINFO, N, JTYPE, IOLDSD
  1975. INFO = ABS( IINFO )
  1976. IF( IINFO.LT.0 ) THEN
  1977. RETURN
  1978. ELSE
  1979. RESULT( NTEST ) = ULPINV
  1980. GO TO 1180
  1981. END IF
  1982. END IF
  1983. *
  1984. * Do test 50 (or +??)
  1985. *
  1986. TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  1987. TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  1988. RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
  1989. $ MAX( UNFL, ULP*TEMP3 )
  1990. 1180 CONTINUE
  1991. *
  1992. NTEST = NTEST + 1
  1993. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  1994. CALL ZHEEVR( 'V', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
  1995. $ ABSTOL, M2, WA2, Z, LDU, IWORK, WORK, LWORK,
  1996. $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
  1997. $ IINFO )
  1998. IF( IINFO.NE.0 ) THEN
  1999. WRITE( NOUNIT, FMT = 9999 )'ZHEEVR(V,V,' // UPLO //
  2000. $ ')', IINFO, N, JTYPE, IOLDSD
  2001. INFO = ABS( IINFO )
  2002. IF( IINFO.LT.0 ) THEN
  2003. RETURN
  2004. ELSE
  2005. RESULT( NTEST ) = ULPINV
  2006. RESULT( NTEST+1 ) = ULPINV
  2007. RESULT( NTEST+2 ) = ULPINV
  2008. GO TO 1190
  2009. END IF
  2010. END IF
  2011. *
  2012. * Do tests 51 and 52 (or +??)
  2013. *
  2014. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  2015. *
  2016. CALL ZHET22( 1, UPLO, N, M2, 0, A, LDU, WA2, D2, Z, LDU,
  2017. $ V, LDU, TAU, WORK, RWORK, RESULT( NTEST ) )
  2018. *
  2019. NTEST = NTEST + 2
  2020. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  2021. CALL ZHEEVR( 'N', 'V', UPLO, N, A, LDU, VL, VU, IL, IU,
  2022. $ ABSTOL, M3, WA3, Z, LDU, IWORK, WORK, LWORK,
  2023. $ RWORK, LRWORK, IWORK( 2*N+1 ), LIWORK-2*N,
  2024. $ IINFO )
  2025. IF( IINFO.NE.0 ) THEN
  2026. WRITE( NOUNIT, FMT = 9999 )'ZHEEVR(N,V,' // UPLO //
  2027. $ ')', IINFO, N, JTYPE, IOLDSD
  2028. INFO = ABS( IINFO )
  2029. IF( IINFO.LT.0 ) THEN
  2030. RETURN
  2031. ELSE
  2032. RESULT( NTEST ) = ULPINV
  2033. GO TO 1190
  2034. END IF
  2035. END IF
  2036. *
  2037. IF( M3.EQ.0 .AND. N.GT.0 ) THEN
  2038. RESULT( NTEST ) = ULPINV
  2039. GO TO 1190
  2040. END IF
  2041. *
  2042. * Do test 52 (or +??)
  2043. *
  2044. TEMP1 = DSXT1( 1, WA2, M2, WA3, M3, ABSTOL, ULP, UNFL )
  2045. TEMP2 = DSXT1( 1, WA3, M3, WA2, M2, ABSTOL, ULP, UNFL )
  2046. IF( N.GT.0 ) THEN
  2047. TEMP3 = MAX( ABS( WA1( 1 ) ), ABS( WA1( N ) ) )
  2048. ELSE
  2049. TEMP3 = ZERO
  2050. END IF
  2051. RESULT( NTEST ) = ( TEMP1+TEMP2 ) /
  2052. $ MAX( UNFL, TEMP3*ULP )
  2053. *
  2054. CALL ZLACPY( ' ', N, N, V, LDU, A, LDA )
  2055. *
  2056. *
  2057. *
  2058. *
  2059. * Load array V with the upper or lower triangular part
  2060. * of the matrix in band form.
  2061. *
  2062. 1190 CONTINUE
  2063. *
  2064. 1200 CONTINUE
  2065. *
  2066. * End of Loop -- Check for RESULT(j) > THRESH
  2067. *
  2068. NTESTT = NTESTT + NTEST
  2069. CALL DLAFTS( 'ZST', N, N, JTYPE, NTEST, RESULT, IOLDSD,
  2070. $ THRESH, NOUNIT, NERRS )
  2071. *
  2072. 1210 CONTINUE
  2073. 1220 CONTINUE
  2074. *
  2075. * Summary
  2076. *
  2077. CALL ALASVM( 'ZST', NOUNIT, NERRS, NTESTT, 0 )
  2078. *
  2079. 9999 FORMAT( ' ZDRVST: ', A, ' returned INFO=', I6, / 9X, 'N=', I6,
  2080. $ ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
  2081. 9998 FORMAT( ' ZDRVST: ', A, ' returned INFO=', I6, / 9X, 'N=', I6,
  2082. $ ', KD=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
  2083. $ ')' )
  2084. *
  2085. RETURN
  2086. *
  2087. * End of ZDRVST
  2088. *
  2089. END