You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zsyrkf.f 9.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. SUBROUTINE ZSYRKF ( UPLO, TRANS, N, K, ALPHA, A, LDA,
  2. $ BETA, C, LDC )
  3. * .. Scalar Arguments ..
  4. CHARACTER*1 UPLO, TRANS
  5. INTEGER N, K, LDA, LDC
  6. COMPLEX*16 ALPHA, BETA
  7. * .. Array Arguments ..
  8. COMPLEX*16 A( LDA, * ), C( LDC, * )
  9. * ..
  10. *
  11. * Purpose
  12. * =======
  13. *
  14. * ZSYRK performs one of the symmetric rank k operations
  15. *
  16. * C := alpha*A*A' + beta*C,
  17. *
  18. * or
  19. *
  20. * C := alpha*A'*A + beta*C,
  21. *
  22. * where alpha and beta are scalars, C is an n by n symmetric matrix
  23. * and A is an n by k matrix in the first case and a k by n matrix
  24. * in the second case.
  25. *
  26. * Parameters
  27. * ==========
  28. *
  29. * UPLO - CHARACTER*1.
  30. * On entry, UPLO specifies whether the upper or lower
  31. * triangular part of the array C is to be referenced as
  32. * follows:
  33. *
  34. * UPLO = 'U' or 'u' Only the upper triangular part of C
  35. * is to be referenced.
  36. *
  37. * UPLO = 'L' or 'l' Only the lower triangular part of C
  38. * is to be referenced.
  39. *
  40. * Unchanged on exit.
  41. *
  42. * TRANS - CHARACTER*1.
  43. * On entry, TRANS specifies the operation to be performed as
  44. * follows:
  45. *
  46. * TRANS = 'N' or 'n' C := alpha*A*A' + beta*C.
  47. *
  48. * TRANS = 'T' or 't' C := alpha*A'*A + beta*C.
  49. *
  50. * Unchanged on exit.
  51. *
  52. * N - INTEGER.
  53. * On entry, N specifies the order of the matrix C. N must be
  54. * at least zero.
  55. * Unchanged on exit.
  56. *
  57. * K - INTEGER.
  58. * On entry with TRANS = 'N' or 'n', K specifies the number
  59. * of columns of the matrix A, and on entry with
  60. * TRANS = 'T' or 't', K specifies the number of rows of the
  61. * matrix A. K must be at least zero.
  62. * Unchanged on exit.
  63. *
  64. * ALPHA - COMPLEX*16 .
  65. * On entry, ALPHA specifies the scalar alpha.
  66. * Unchanged on exit.
  67. *
  68. * A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
  69. * k when TRANS = 'N' or 'n', and is n otherwise.
  70. * Before entry with TRANS = 'N' or 'n', the leading n by k
  71. * part of the array A must contain the matrix A, otherwise
  72. * the leading k by n part of the array A must contain the
  73. * matrix A.
  74. * Unchanged on exit.
  75. *
  76. * LDA - INTEGER.
  77. * On entry, LDA specifies the first dimension of A as declared
  78. * in the calling (sub) program. When TRANS = 'N' or 'n'
  79. * then LDA must be at least max( 1, n ), otherwise LDA must
  80. * be at least max( 1, k ).
  81. * Unchanged on exit.
  82. *
  83. * BETA - COMPLEX*16 .
  84. * On entry, BETA specifies the scalar beta.
  85. * Unchanged on exit.
  86. *
  87. * C - COMPLEX*16 array of DIMENSION ( LDC, n ).
  88. * Before entry with UPLO = 'U' or 'u', the leading n by n
  89. * upper triangular part of the array C must contain the upper
  90. * triangular part of the symmetric matrix and the strictly
  91. * lower triangular part of C is not referenced. On exit, the
  92. * upper triangular part of the array C is overwritten by the
  93. * upper triangular part of the updated matrix.
  94. * Before entry with UPLO = 'L' or 'l', the leading n by n
  95. * lower triangular part of the array C must contain the lower
  96. * triangular part of the symmetric matrix and the strictly
  97. * upper triangular part of C is not referenced. On exit, the
  98. * lower triangular part of the array C is overwritten by the
  99. * lower triangular part of the updated matrix.
  100. *
  101. * LDC - INTEGER.
  102. * On entry, LDC specifies the first dimension of C as declared
  103. * in the calling (sub) program. LDC must be at least
  104. * max( 1, n ).
  105. * Unchanged on exit.
  106. *
  107. *
  108. * Level 3 Blas routine.
  109. *
  110. * -- Written on 8-February-1989.
  111. * Jack Dongarra, Argonne National Laboratory.
  112. * Iain Duff, AERE Harwell.
  113. * Jeremy Du Croz, Numerical Algorithms Group Ltd.
  114. * Sven Hammarling, Numerical Algorithms Group Ltd.
  115. *
  116. *
  117. * .. External Functions ..
  118. LOGICAL LSAME
  119. EXTERNAL LSAME
  120. * .. External Subroutines ..
  121. EXTERNAL XERBLA
  122. * .. Intrinsic Functions ..
  123. INTRINSIC MAX
  124. * .. Local Scalars ..
  125. LOGICAL UPPER
  126. INTEGER I, INFO, J, L, NROWA
  127. COMPLEX*16 TEMP
  128. * .. Parameters ..
  129. COMPLEX*16 ONE
  130. PARAMETER ( ONE = ( 1.0D+0, 0.0D+0 ) )
  131. COMPLEX*16 ZERO
  132. PARAMETER ( ZERO = ( 0.0D+0, 0.0D+0 ) )
  133. * ..
  134. * .. Executable Statements ..
  135. *
  136. * Test the input parameters.
  137. *
  138. IF( LSAME( TRANS, 'N' ) )THEN
  139. NROWA = N
  140. ELSE
  141. NROWA = K
  142. END IF
  143. UPPER = LSAME( UPLO, 'U' )
  144. *
  145. INFO = 0
  146. IF( ( .NOT.UPPER ).AND.
  147. $ ( .NOT.LSAME( UPLO , 'L' ) ) )THEN
  148. INFO = 1
  149. ELSE IF( ( .NOT.LSAME( TRANS, 'N' ) ).AND.
  150. $ ( .NOT.LSAME( TRANS, 'T' ) ) )THEN
  151. INFO = 2
  152. ELSE IF( N .LT.0 )THEN
  153. INFO = 3
  154. ELSE IF( K .LT.0 )THEN
  155. INFO = 4
  156. ELSE IF( LDA.LT.MAX( 1, NROWA ) )THEN
  157. INFO = 7
  158. ELSE IF( LDC.LT.MAX( 1, N ) )THEN
  159. INFO = 10
  160. END IF
  161. IF( INFO.NE.0 )THEN
  162. CALL XERBLA( 'ZSYRK ', INFO )
  163. RETURN
  164. END IF
  165. *
  166. * Quick return if possible.
  167. *
  168. IF( ( N.EQ.0 ).OR.
  169. $ ( ( ( ALPHA.EQ.ZERO ).OR.( K.EQ.0 ) ).AND.( BETA.EQ.ONE ) ) )
  170. $ RETURN
  171. *
  172. * And when alpha.eq.zero.
  173. *
  174. IF( ALPHA.EQ.ZERO )THEN
  175. IF( UPPER )THEN
  176. IF( BETA.EQ.ZERO )THEN
  177. DO 20, J = 1, N
  178. DO 10, I = 1, J
  179. C( I, J ) = ZERO
  180. 10 CONTINUE
  181. 20 CONTINUE
  182. ELSE
  183. DO 40, J = 1, N
  184. DO 30, I = 1, J
  185. C( I, J ) = BETA*C( I, J )
  186. 30 CONTINUE
  187. 40 CONTINUE
  188. END IF
  189. ELSE
  190. IF( BETA.EQ.ZERO )THEN
  191. DO 60, J = 1, N
  192. DO 50, I = J, N
  193. C( I, J ) = ZERO
  194. 50 CONTINUE
  195. 60 CONTINUE
  196. ELSE
  197. DO 80, J = 1, N
  198. DO 70, I = J, N
  199. C( I, J ) = BETA*C( I, J )
  200. 70 CONTINUE
  201. 80 CONTINUE
  202. END IF
  203. END IF
  204. RETURN
  205. END IF
  206. *
  207. * Start the operations.
  208. *
  209. IF( LSAME( TRANS, 'N' ) )THEN
  210. *
  211. * Form C := alpha*A*A' + beta*C.
  212. *
  213. IF( UPPER )THEN
  214. DO 130, J = 1, N
  215. IF( BETA.EQ.ZERO )THEN
  216. DO 90, I = 1, J
  217. C( I, J ) = ZERO
  218. 90 CONTINUE
  219. ELSE IF( BETA.NE.ONE )THEN
  220. DO 100, I = 1, J
  221. C( I, J ) = BETA*C( I, J )
  222. 100 CONTINUE
  223. END IF
  224. DO 120, L = 1, K
  225. IF( A( J, L ).NE.ZERO )THEN
  226. TEMP = ALPHA*A( J, L )
  227. DO 110, I = 1, J
  228. C( I, J ) = C( I, J ) + TEMP*A( I, L )
  229. 110 CONTINUE
  230. END IF
  231. 120 CONTINUE
  232. 130 CONTINUE
  233. ELSE
  234. DO 180, J = 1, N
  235. IF( BETA.EQ.ZERO )THEN
  236. DO 140, I = J, N
  237. C( I, J ) = ZERO
  238. 140 CONTINUE
  239. ELSE IF( BETA.NE.ONE )THEN
  240. DO 150, I = J, N
  241. C( I, J ) = BETA*C( I, J )
  242. 150 CONTINUE
  243. END IF
  244. DO 170, L = 1, K
  245. IF( A( J, L ).NE.ZERO )THEN
  246. TEMP = ALPHA*A( J, L )
  247. DO 160, I = J, N
  248. C( I, J ) = C( I, J ) + TEMP*A( I, L )
  249. 160 CONTINUE
  250. END IF
  251. 170 CONTINUE
  252. 180 CONTINUE
  253. END IF
  254. ELSE
  255. *
  256. * Form C := alpha*A'*A + beta*C.
  257. *
  258. IF( UPPER )THEN
  259. DO 210, J = 1, N
  260. DO 200, I = 1, J
  261. TEMP = ZERO
  262. DO 190, L = 1, K
  263. TEMP = TEMP + A( L, I )*A( L, J )
  264. 190 CONTINUE
  265. IF( BETA.EQ.ZERO )THEN
  266. C( I, J ) = ALPHA*TEMP
  267. ELSE
  268. C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
  269. END IF
  270. 200 CONTINUE
  271. 210 CONTINUE
  272. ELSE
  273. DO 240, J = 1, N
  274. DO 230, I = J, N
  275. TEMP = ZERO
  276. DO 220, L = 1, K
  277. TEMP = TEMP + A( L, I )*A( L, J )
  278. 220 CONTINUE
  279. IF( BETA.EQ.ZERO )THEN
  280. C( I, J ) = ALPHA*TEMP
  281. ELSE
  282. C( I, J ) = ALPHA*TEMP + BETA*C( I, J )
  283. END IF
  284. 230 CONTINUE
  285. 240 CONTINUE
  286. END IF
  287. END IF
  288. *
  289. RETURN
  290. *
  291. * End of ZSYRK .
  292. *
  293. END