You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

clangt.f 6.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205
  1. *> \brief \b CLANGT returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of a general tridiagonal matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLANGT + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clangt.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clangt.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clangt.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * REAL FUNCTION CLANGT( NORM, N, DL, D, DU )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER NORM
  25. * INTEGER N
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX D( * ), DL( * ), DU( * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CLANGT returns the value of the one norm, or the Frobenius norm, or
  38. *> the infinity norm, or the element of largest absolute value of a
  39. *> complex tridiagonal matrix A.
  40. *> \endverbatim
  41. *>
  42. *> \return CLANGT
  43. *> \verbatim
  44. *>
  45. *> CLANGT = ( max(abs(A(i,j))), NORM = 'M' or 'm'
  46. *> (
  47. *> ( norm1(A), NORM = '1', 'O' or 'o'
  48. *> (
  49. *> ( normI(A), NORM = 'I' or 'i'
  50. *> (
  51. *> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
  52. *>
  53. *> where norm1 denotes the one norm of a matrix (maximum column sum),
  54. *> normI denotes the infinity norm of a matrix (maximum row sum) and
  55. *> normF denotes the Frobenius norm of a matrix (square root of sum of
  56. *> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
  57. *> \endverbatim
  58. *
  59. * Arguments:
  60. * ==========
  61. *
  62. *> \param[in] NORM
  63. *> \verbatim
  64. *> NORM is CHARACTER*1
  65. *> Specifies the value to be returned in CLANGT as described
  66. *> above.
  67. *> \endverbatim
  68. *>
  69. *> \param[in] N
  70. *> \verbatim
  71. *> N is INTEGER
  72. *> The order of the matrix A. N >= 0. When N = 0, CLANGT is
  73. *> set to zero.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] DL
  77. *> \verbatim
  78. *> DL is COMPLEX array, dimension (N-1)
  79. *> The (n-1) sub-diagonal elements of A.
  80. *> \endverbatim
  81. *>
  82. *> \param[in] D
  83. *> \verbatim
  84. *> D is COMPLEX array, dimension (N)
  85. *> The diagonal elements of A.
  86. *> \endverbatim
  87. *>
  88. *> \param[in] DU
  89. *> \verbatim
  90. *> DU is COMPLEX array, dimension (N-1)
  91. *> The (n-1) super-diagonal elements of A.
  92. *> \endverbatim
  93. *
  94. * Authors:
  95. * ========
  96. *
  97. *> \author Univ. of Tennessee
  98. *> \author Univ. of California Berkeley
  99. *> \author Univ. of Colorado Denver
  100. *> \author NAG Ltd.
  101. *
  102. *> \ingroup complexOTHERauxiliary
  103. *
  104. * =====================================================================
  105. REAL FUNCTION CLANGT( NORM, N, DL, D, DU )
  106. *
  107. * -- LAPACK auxiliary routine --
  108. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  109. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  110. *
  111. * .. Scalar Arguments ..
  112. CHARACTER NORM
  113. INTEGER N
  114. * ..
  115. * .. Array Arguments ..
  116. COMPLEX D( * ), DL( * ), DU( * )
  117. * ..
  118. *
  119. * =====================================================================
  120. *
  121. * .. Parameters ..
  122. REAL ONE, ZERO
  123. PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
  124. * ..
  125. * .. Local Scalars ..
  126. INTEGER I
  127. REAL ANORM, SCALE, SUM, TEMP
  128. * ..
  129. * .. External Functions ..
  130. LOGICAL LSAME, SISNAN
  131. EXTERNAL LSAME, SISNAN
  132. * ..
  133. * .. External Subroutines ..
  134. EXTERNAL CLASSQ
  135. * ..
  136. * .. Intrinsic Functions ..
  137. INTRINSIC ABS, SQRT
  138. * ..
  139. * .. Executable Statements ..
  140. *
  141. IF( N.LE.0 ) THEN
  142. ANORM = ZERO
  143. ELSE IF( LSAME( NORM, 'M' ) ) THEN
  144. *
  145. * Find max(abs(A(i,j))).
  146. *
  147. ANORM = ABS( D( N ) )
  148. DO 10 I = 1, N - 1
  149. IF( ANORM.LT.ABS( DL( I ) ) .OR. SISNAN( ABS( DL( I ) ) ) )
  150. $ ANORM = ABS(DL(I))
  151. IF( ANORM.LT.ABS( D( I ) ) .OR. SISNAN( ABS( D( I ) ) ) )
  152. $ ANORM = ABS(D(I))
  153. IF( ANORM.LT.ABS( DU( I ) ) .OR. SISNAN (ABS( DU( I ) ) ) )
  154. $ ANORM = ABS(DU(I))
  155. 10 CONTINUE
  156. ELSE IF( LSAME( NORM, 'O' ) .OR. NORM.EQ.'1' ) THEN
  157. *
  158. * Find norm1(A).
  159. *
  160. IF( N.EQ.1 ) THEN
  161. ANORM = ABS( D( 1 ) )
  162. ELSE
  163. ANORM = ABS( D( 1 ) )+ABS( DL( 1 ) )
  164. TEMP = ABS( D( N ) )+ABS( DU( N-1 ) )
  165. IF( ANORM .LT. TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
  166. DO 20 I = 2, N - 1
  167. TEMP = ABS( D( I ) )+ABS( DL( I ) )+ABS( DU( I-1 ) )
  168. IF( ANORM .LT. TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
  169. 20 CONTINUE
  170. END IF
  171. ELSE IF( LSAME( NORM, 'I' ) ) THEN
  172. *
  173. * Find normI(A).
  174. *
  175. IF( N.EQ.1 ) THEN
  176. ANORM = ABS( D( 1 ) )
  177. ELSE
  178. ANORM = ABS( D( 1 ) )+ABS( DU( 1 ) )
  179. TEMP = ABS( D( N ) )+ABS( DL( N-1 ) )
  180. IF( ANORM .LT. TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
  181. DO 30 I = 2, N - 1
  182. TEMP = ABS( D( I ) )+ABS( DU( I ) )+ABS( DL( I-1 ) )
  183. IF( ANORM .LT. TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
  184. 30 CONTINUE
  185. END IF
  186. ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
  187. *
  188. * Find normF(A).
  189. *
  190. SCALE = ZERO
  191. SUM = ONE
  192. CALL CLASSQ( N, D, 1, SCALE, SUM )
  193. IF( N.GT.1 ) THEN
  194. CALL CLASSQ( N-1, DL, 1, SCALE, SUM )
  195. CALL CLASSQ( N-1, DU, 1, SCALE, SUM )
  196. END IF
  197. ANORM = SCALE*SQRT( SUM )
  198. END IF
  199. *
  200. CLANGT = ANORM
  201. RETURN
  202. *
  203. * End of CLANGT
  204. *
  205. END