|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578 |
- *> \brief \b DDRVPT
- *
- * =========== DOCUMENTATION ===========
- *
- * Online html documentation available at
- * http://www.netlib.org/lapack/explore-html/
- *
- * Definition:
- * ===========
- *
- * SUBROUTINE DDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, D,
- * E, B, X, XACT, WORK, RWORK, NOUT )
- *
- * .. Scalar Arguments ..
- * LOGICAL TSTERR
- * INTEGER NN, NOUT, NRHS
- * DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- * LOGICAL DOTYPE( * )
- * INTEGER NVAL( * )
- * DOUBLE PRECISION A( * ), B( * ), D( * ), E( * ), RWORK( * ),
- * $ WORK( * ), X( * ), XACT( * )
- * ..
- *
- *
- *> \par Purpose:
- * =============
- *>
- *> \verbatim
- *>
- *> DDRVPT tests DPTSV and -SVX.
- *> \endverbatim
- *
- * Arguments:
- * ==========
- *
- *> \param[in] DOTYPE
- *> \verbatim
- *> DOTYPE is LOGICAL array, dimension (NTYPES)
- *> The matrix types to be used for testing. Matrices of type j
- *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
- *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
- *> \endverbatim
- *>
- *> \param[in] NN
- *> \verbatim
- *> NN is INTEGER
- *> The number of values of N contained in the vector NVAL.
- *> \endverbatim
- *>
- *> \param[in] NVAL
- *> \verbatim
- *> NVAL is INTEGER array, dimension (NN)
- *> The values of the matrix dimension N.
- *> \endverbatim
- *>
- *> \param[in] NRHS
- *> \verbatim
- *> NRHS is INTEGER
- *> The number of right hand side vectors to be generated for
- *> each linear system.
- *> \endverbatim
- *>
- *> \param[in] THRESH
- *> \verbatim
- *> THRESH is DOUBLE PRECISION
- *> The threshold value for the test ratios. A result is
- *> included in the output file if RESULT >= THRESH. To have
- *> every test ratio printed, use THRESH = 0.
- *> \endverbatim
- *>
- *> \param[in] TSTERR
- *> \verbatim
- *> TSTERR is LOGICAL
- *> Flag that indicates whether error exits are to be tested.
- *> \endverbatim
- *>
- *> \param[out] A
- *> \verbatim
- *> A is DOUBLE PRECISION array, dimension (NMAX*2)
- *> \endverbatim
- *>
- *> \param[out] D
- *> \verbatim
- *> D is DOUBLE PRECISION array, dimension (NMAX*2)
- *> \endverbatim
- *>
- *> \param[out] E
- *> \verbatim
- *> E is DOUBLE PRECISION array, dimension (NMAX*2)
- *> \endverbatim
- *>
- *> \param[out] B
- *> \verbatim
- *> B is DOUBLE PRECISION array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] X
- *> \verbatim
- *> X is DOUBLE PRECISION array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] XACT
- *> \verbatim
- *> XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS)
- *> \endverbatim
- *>
- *> \param[out] WORK
- *> \verbatim
- *> WORK is DOUBLE PRECISION array, dimension
- *> (NMAX*max(3,NRHS))
- *> \endverbatim
- *>
- *> \param[out] RWORK
- *> \verbatim
- *> RWORK is DOUBLE PRECISION array, dimension
- *> (max(NMAX,2*NRHS))
- *> \endverbatim
- *>
- *> \param[in] NOUT
- *> \verbatim
- *> NOUT is INTEGER
- *> The unit number for output.
- *> \endverbatim
- *
- * Authors:
- * ========
- *
- *> \author Univ. of Tennessee
- *> \author Univ. of California Berkeley
- *> \author Univ. of Colorado Denver
- *> \author NAG Ltd.
- *
- *> \date December 2016
- *
- *> \ingroup double_lin
- *
- * =====================================================================
- SUBROUTINE DDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, D,
- $ E, B, X, XACT, WORK, RWORK, NOUT )
- *
- * -- LAPACK test routine (version 3.7.0) --
- * -- LAPACK is a software package provided by Univ. of Tennessee, --
- * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
- * December 2016
- *
- * .. Scalar Arguments ..
- LOGICAL TSTERR
- INTEGER NN, NOUT, NRHS
- DOUBLE PRECISION THRESH
- * ..
- * .. Array Arguments ..
- LOGICAL DOTYPE( * )
- INTEGER NVAL( * )
- DOUBLE PRECISION A( * ), B( * ), D( * ), E( * ), RWORK( * ),
- $ WORK( * ), X( * ), XACT( * )
- * ..
- *
- * =====================================================================
- *
- * .. Parameters ..
- DOUBLE PRECISION ONE, ZERO
- PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
- INTEGER NTYPES
- PARAMETER ( NTYPES = 12 )
- INTEGER NTESTS
- PARAMETER ( NTESTS = 6 )
- * ..
- * .. Local Scalars ..
- LOGICAL ZEROT
- CHARACTER DIST, FACT, TYPE
- CHARACTER*3 PATH
- INTEGER I, IA, IFACT, IMAT, IN, INFO, IX, IZERO, J, K,
- $ K1, KL, KU, LDA, MODE, N, NERRS, NFAIL, NIMAT,
- $ NRUN, NT
- DOUBLE PRECISION AINVNM, ANORM, COND, DMAX, RCOND, RCONDC
- * ..
- * .. Local Arrays ..
- INTEGER ISEED( 4 ), ISEEDY( 4 )
- DOUBLE PRECISION RESULT( NTESTS ), Z( 3 )
- * ..
- * .. External Functions ..
- INTEGER IDAMAX
- DOUBLE PRECISION DASUM, DGET06, DLANST
- EXTERNAL IDAMAX, DASUM, DGET06, DLANST
- * ..
- * .. External Subroutines ..
- EXTERNAL ALADHD, ALAERH, ALASVM, DCOPY, DERRVX, DGET04,
- $ DLACPY, DLAPTM, DLARNV, DLASET, DLATB4, DLATMS,
- $ DPTSV, DPTSVX, DPTT01, DPTT02, DPTT05, DPTTRF,
- $ DPTTRS, DSCAL
- * ..
- * .. Intrinsic Functions ..
- INTRINSIC ABS, MAX
- * ..
- * .. Scalars in Common ..
- LOGICAL LERR, OK
- CHARACTER*32 SRNAMT
- INTEGER INFOT, NUNIT
- * ..
- * .. Common blocks ..
- COMMON / INFOC / INFOT, NUNIT, OK, LERR
- COMMON / SRNAMC / SRNAMT
- * ..
- * .. Data statements ..
- DATA ISEEDY / 0, 0, 0, 1 /
- * ..
- * .. Executable Statements ..
- *
- PATH( 1: 1 ) = 'Double precision'
- PATH( 2: 3 ) = 'PT'
- NRUN = 0
- NFAIL = 0
- NERRS = 0
- DO 10 I = 1, 4
- ISEED( I ) = ISEEDY( I )
- 10 CONTINUE
- *
- * Test the error exits
- *
- IF( TSTERR )
- $ CALL DERRVX( PATH, NOUT )
- INFOT = 0
- *
- DO 120 IN = 1, NN
- *
- * Do for each value of N in NVAL.
- *
- N = NVAL( IN )
- LDA = MAX( 1, N )
- NIMAT = NTYPES
- IF( N.LE.0 )
- $ NIMAT = 1
- *
- DO 110 IMAT = 1, NIMAT
- *
- * Do the tests only if DOTYPE( IMAT ) is true.
- *
- IF( N.GT.0 .AND. .NOT.DOTYPE( IMAT ) )
- $ GO TO 110
- *
- * Set up parameters with DLATB4.
- *
- CALL DLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
- $ COND, DIST )
- *
- ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
- IF( IMAT.LE.6 ) THEN
- *
- * Type 1-6: generate a symmetric tridiagonal matrix of
- * known condition number in lower triangular band storage.
- *
- SRNAMT = 'DLATMS'
- CALL DLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
- $ ANORM, KL, KU, 'B', A, 2, WORK, INFO )
- *
- * Check the error code from DLATMS.
- *
- IF( INFO.NE.0 ) THEN
- CALL ALAERH( PATH, 'DLATMS', INFO, 0, ' ', N, N, KL,
- $ KU, -1, IMAT, NFAIL, NERRS, NOUT )
- GO TO 110
- END IF
- IZERO = 0
- *
- * Copy the matrix to D and E.
- *
- IA = 1
- DO 20 I = 1, N - 1
- D( I ) = A( IA )
- E( I ) = A( IA+1 )
- IA = IA + 2
- 20 CONTINUE
- IF( N.GT.0 )
- $ D( N ) = A( IA )
- ELSE
- *
- * Type 7-12: generate a diagonally dominant matrix with
- * unknown condition number in the vectors D and E.
- *
- IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
- *
- * Let D and E have values from [-1,1].
- *
- CALL DLARNV( 2, ISEED, N, D )
- CALL DLARNV( 2, ISEED, N-1, E )
- *
- * Make the tridiagonal matrix diagonally dominant.
- *
- IF( N.EQ.1 ) THEN
- D( 1 ) = ABS( D( 1 ) )
- ELSE
- D( 1 ) = ABS( D( 1 ) ) + ABS( E( 1 ) )
- D( N ) = ABS( D( N ) ) + ABS( E( N-1 ) )
- DO 30 I = 2, N - 1
- D( I ) = ABS( D( I ) ) + ABS( E( I ) ) +
- $ ABS( E( I-1 ) )
- 30 CONTINUE
- END IF
- *
- * Scale D and E so the maximum element is ANORM.
- *
- IX = IDAMAX( N, D, 1 )
- DMAX = D( IX )
- CALL DSCAL( N, ANORM / DMAX, D, 1 )
- IF( N.GT.1 )
- $ CALL DSCAL( N-1, ANORM / DMAX, E, 1 )
- *
- ELSE IF( IZERO.GT.0 ) THEN
- *
- * Reuse the last matrix by copying back the zeroed out
- * elements.
- *
- IF( IZERO.EQ.1 ) THEN
- D( 1 ) = Z( 2 )
- IF( N.GT.1 )
- $ E( 1 ) = Z( 3 )
- ELSE IF( IZERO.EQ.N ) THEN
- E( N-1 ) = Z( 1 )
- D( N ) = Z( 2 )
- ELSE
- E( IZERO-1 ) = Z( 1 )
- D( IZERO ) = Z( 2 )
- E( IZERO ) = Z( 3 )
- END IF
- END IF
- *
- * For types 8-10, set one row and column of the matrix to
- * zero.
- *
- IZERO = 0
- IF( IMAT.EQ.8 ) THEN
- IZERO = 1
- Z( 2 ) = D( 1 )
- D( 1 ) = ZERO
- IF( N.GT.1 ) THEN
- Z( 3 ) = E( 1 )
- E( 1 ) = ZERO
- END IF
- ELSE IF( IMAT.EQ.9 ) THEN
- IZERO = N
- IF( N.GT.1 ) THEN
- Z( 1 ) = E( N-1 )
- E( N-1 ) = ZERO
- END IF
- Z( 2 ) = D( N )
- D( N ) = ZERO
- ELSE IF( IMAT.EQ.10 ) THEN
- IZERO = ( N+1 ) / 2
- IF( IZERO.GT.1 ) THEN
- Z( 1 ) = E( IZERO-1 )
- Z( 3 ) = E( IZERO )
- E( IZERO-1 ) = ZERO
- E( IZERO ) = ZERO
- END IF
- Z( 2 ) = D( IZERO )
- D( IZERO ) = ZERO
- END IF
- END IF
- *
- * Generate NRHS random solution vectors.
- *
- IX = 1
- DO 40 J = 1, NRHS
- CALL DLARNV( 2, ISEED, N, XACT( IX ) )
- IX = IX + LDA
- 40 CONTINUE
- *
- * Set the right hand side.
- *
- CALL DLAPTM( N, NRHS, ONE, D, E, XACT, LDA, ZERO, B, LDA )
- *
- DO 100 IFACT = 1, 2
- IF( IFACT.EQ.1 ) THEN
- FACT = 'F'
- ELSE
- FACT = 'N'
- END IF
- *
- * Compute the condition number for comparison with
- * the value returned by DPTSVX.
- *
- IF( ZEROT ) THEN
- IF( IFACT.EQ.1 )
- $ GO TO 100
- RCONDC = ZERO
- *
- ELSE IF( IFACT.EQ.1 ) THEN
- *
- * Compute the 1-norm of A.
- *
- ANORM = DLANST( '1', N, D, E )
- *
- CALL DCOPY( N, D, 1, D( N+1 ), 1 )
- IF( N.GT.1 )
- $ CALL DCOPY( N-1, E, 1, E( N+1 ), 1 )
- *
- * Factor the matrix A.
- *
- CALL DPTTRF( N, D( N+1 ), E( N+1 ), INFO )
- *
- * Use DPTTRS to solve for one column at a time of
- * inv(A), computing the maximum column sum as we go.
- *
- AINVNM = ZERO
- DO 60 I = 1, N
- DO 50 J = 1, N
- X( J ) = ZERO
- 50 CONTINUE
- X( I ) = ONE
- CALL DPTTRS( N, 1, D( N+1 ), E( N+1 ), X, LDA,
- $ INFO )
- AINVNM = MAX( AINVNM, DASUM( N, X, 1 ) )
- 60 CONTINUE
- *
- * Compute the 1-norm condition number of A.
- *
- IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
- RCONDC = ONE
- ELSE
- RCONDC = ( ONE / ANORM ) / AINVNM
- END IF
- END IF
- *
- IF( IFACT.EQ.2 ) THEN
- *
- * --- Test DPTSV --
- *
- CALL DCOPY( N, D, 1, D( N+1 ), 1 )
- IF( N.GT.1 )
- $ CALL DCOPY( N-1, E, 1, E( N+1 ), 1 )
- CALL DLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
- *
- * Factor A as L*D*L' and solve the system A*X = B.
- *
- SRNAMT = 'DPTSV '
- CALL DPTSV( N, NRHS, D( N+1 ), E( N+1 ), X, LDA,
- $ INFO )
- *
- * Check error code from DPTSV .
- *
- IF( INFO.NE.IZERO )
- $ CALL ALAERH( PATH, 'DPTSV ', INFO, IZERO, ' ', N,
- $ N, 1, 1, NRHS, IMAT, NFAIL, NERRS,
- $ NOUT )
- NT = 0
- IF( IZERO.EQ.0 ) THEN
- *
- * Check the factorization by computing the ratio
- * norm(L*D*L' - A) / (n * norm(A) * EPS )
- *
- CALL DPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
- $ RESULT( 1 ) )
- *
- * Compute the residual in the solution.
- *
- CALL DLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
- CALL DPTT02( N, NRHS, D, E, X, LDA, WORK, LDA,
- $ RESULT( 2 ) )
- *
- * Check solution from generated exact solution.
- *
- CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 3 ) )
- NT = 3
- END IF
- *
- * Print information about the tests that did not pass
- * the threshold.
- *
- DO 70 K = 1, NT
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9999 )'DPTSV ', N, IMAT, K,
- $ RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 70 CONTINUE
- NRUN = NRUN + NT
- END IF
- *
- * --- Test DPTSVX ---
- *
- IF( IFACT.GT.1 ) THEN
- *
- * Initialize D( N+1:2*N ) and E( N+1:2*N ) to zero.
- *
- DO 80 I = 1, N - 1
- D( N+I ) = ZERO
- E( N+I ) = ZERO
- 80 CONTINUE
- IF( N.GT.0 )
- $ D( N+N ) = ZERO
- END IF
- *
- CALL DLASET( 'Full', N, NRHS, ZERO, ZERO, X, LDA )
- *
- * Solve the system and compute the condition number and
- * error bounds using DPTSVX.
- *
- SRNAMT = 'DPTSVX'
- CALL DPTSVX( FACT, N, NRHS, D, E, D( N+1 ), E( N+1 ), B,
- $ LDA, X, LDA, RCOND, RWORK, RWORK( NRHS+1 ),
- $ WORK, INFO )
- *
- * Check the error code from DPTSVX.
- *
- IF( INFO.NE.IZERO )
- $ CALL ALAERH( PATH, 'DPTSVX', INFO, IZERO, FACT, N, N,
- $ 1, 1, NRHS, IMAT, NFAIL, NERRS, NOUT )
- IF( IZERO.EQ.0 ) THEN
- IF( IFACT.EQ.2 ) THEN
- *
- * Check the factorization by computing the ratio
- * norm(L*D*L' - A) / (n * norm(A) * EPS )
- *
- K1 = 1
- CALL DPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
- $ RESULT( 1 ) )
- ELSE
- K1 = 2
- END IF
- *
- * Compute the residual in the solution.
- *
- CALL DLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
- CALL DPTT02( N, NRHS, D, E, X, LDA, WORK, LDA,
- $ RESULT( 2 ) )
- *
- * Check solution from generated exact solution.
- *
- CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
- $ RESULT( 3 ) )
- *
- * Check error bounds from iterative refinement.
- *
- CALL DPTT05( N, NRHS, D, E, B, LDA, X, LDA, XACT, LDA,
- $ RWORK, RWORK( NRHS+1 ), RESULT( 4 ) )
- ELSE
- K1 = 6
- END IF
- *
- * Check the reciprocal of the condition number.
- *
- RESULT( 6 ) = DGET06( RCOND, RCONDC )
- *
- * Print information about the tests that did not pass
- * the threshold.
- *
- DO 90 K = K1, 6
- IF( RESULT( K ).GE.THRESH ) THEN
- IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
- $ CALL ALADHD( NOUT, PATH )
- WRITE( NOUT, FMT = 9998 )'DPTSVX', FACT, N, IMAT,
- $ K, RESULT( K )
- NFAIL = NFAIL + 1
- END IF
- 90 CONTINUE
- NRUN = NRUN + 7 - K1
- 100 CONTINUE
- 110 CONTINUE
- 120 CONTINUE
- *
- * Print a summary of the results.
- *
- CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
- *
- 9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test ', I2,
- $ ', ratio = ', G12.5 )
- 9998 FORMAT( 1X, A, ', FACT=''', A1, ''', N =', I5, ', type ', I2,
- $ ', test ', I2, ', ratio = ', G12.5 )
- RETURN
- *
- * End of DDRVPT
- *
- END
|