You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dpbtrf.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432
  1. *> \brief \b DPBTRF
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download DPBTRF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpbtrf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpbtrf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpbtrf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE DPBTRF( UPLO, N, KD, AB, LDAB, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER UPLO
  25. * INTEGER INFO, KD, LDAB, N
  26. * ..
  27. * .. Array Arguments ..
  28. * DOUBLE PRECISION AB( LDAB, * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> DPBTRF computes the Cholesky factorization of a real symmetric
  38. *> positive definite band matrix A.
  39. *>
  40. *> The factorization has the form
  41. *> A = U**T * U, if UPLO = 'U', or
  42. *> A = L * L**T, if UPLO = 'L',
  43. *> where U is an upper triangular matrix and L is lower triangular.
  44. *> \endverbatim
  45. *
  46. * Arguments:
  47. * ==========
  48. *
  49. *> \param[in] UPLO
  50. *> \verbatim
  51. *> UPLO is CHARACTER*1
  52. *> = 'U': Upper triangle of A is stored;
  53. *> = 'L': Lower triangle of A is stored.
  54. *> \endverbatim
  55. *>
  56. *> \param[in] N
  57. *> \verbatim
  58. *> N is INTEGER
  59. *> The order of the matrix A. N >= 0.
  60. *> \endverbatim
  61. *>
  62. *> \param[in] KD
  63. *> \verbatim
  64. *> KD is INTEGER
  65. *> The number of superdiagonals of the matrix A if UPLO = 'U',
  66. *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
  67. *> \endverbatim
  68. *>
  69. *> \param[in,out] AB
  70. *> \verbatim
  71. *> AB is DOUBLE PRECISION array, dimension (LDAB,N)
  72. *> On entry, the upper or lower triangle of the symmetric band
  73. *> matrix A, stored in the first KD+1 rows of the array. The
  74. *> j-th column of A is stored in the j-th column of the array AB
  75. *> as follows:
  76. *> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
  77. *> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
  78. *>
  79. *> On exit, if INFO = 0, the triangular factor U or L from the
  80. *> Cholesky factorization A = U**T*U or A = L*L**T of the band
  81. *> matrix A, in the same storage format as A.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] LDAB
  85. *> \verbatim
  86. *> LDAB is INTEGER
  87. *> The leading dimension of the array AB. LDAB >= KD+1.
  88. *> \endverbatim
  89. *>
  90. *> \param[out] INFO
  91. *> \verbatim
  92. *> INFO is INTEGER
  93. *> = 0: successful exit
  94. *> < 0: if INFO = -i, the i-th argument had an illegal value
  95. *> > 0: if INFO = i, the leading minor of order i is not
  96. *> positive definite, and the factorization could not be
  97. *> completed.
  98. *> \endverbatim
  99. *
  100. * Authors:
  101. * ========
  102. *
  103. *> \author Univ. of Tennessee
  104. *> \author Univ. of California Berkeley
  105. *> \author Univ. of Colorado Denver
  106. *> \author NAG Ltd.
  107. *
  108. *> \ingroup doubleOTHERcomputational
  109. *
  110. *> \par Further Details:
  111. * =====================
  112. *>
  113. *> \verbatim
  114. *>
  115. *> The band storage scheme is illustrated by the following example, when
  116. *> N = 6, KD = 2, and UPLO = 'U':
  117. *>
  118. *> On entry: On exit:
  119. *>
  120. *> * * a13 a24 a35 a46 * * u13 u24 u35 u46
  121. *> * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56
  122. *> a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66
  123. *>
  124. *> Similarly, if UPLO = 'L' the format of A is as follows:
  125. *>
  126. *> On entry: On exit:
  127. *>
  128. *> a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66
  129. *> a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 *
  130. *> a31 a42 a53 a64 * * l31 l42 l53 l64 * *
  131. *>
  132. *> Array elements marked * are not used by the routine.
  133. *> \endverbatim
  134. *
  135. *> \par Contributors:
  136. * ==================
  137. *>
  138. *> Peter Mayes and Giuseppe Radicati, IBM ECSEC, Rome, March 23, 1989
  139. *
  140. * =====================================================================
  141. SUBROUTINE DPBTRF( UPLO, N, KD, AB, LDAB, INFO )
  142. *
  143. * -- LAPACK computational routine --
  144. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  145. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  146. *
  147. * .. Scalar Arguments ..
  148. CHARACTER UPLO
  149. INTEGER INFO, KD, LDAB, N
  150. * ..
  151. * .. Array Arguments ..
  152. DOUBLE PRECISION AB( LDAB, * )
  153. * ..
  154. *
  155. * =====================================================================
  156. *
  157. * .. Parameters ..
  158. DOUBLE PRECISION ONE, ZERO
  159. PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
  160. INTEGER NBMAX, LDWORK
  161. PARAMETER ( NBMAX = 32, LDWORK = NBMAX+1 )
  162. * ..
  163. * .. Local Scalars ..
  164. INTEGER I, I2, I3, IB, II, J, JJ, NB
  165. * ..
  166. * .. Local Arrays ..
  167. DOUBLE PRECISION WORK( LDWORK, NBMAX )
  168. * ..
  169. * .. External Functions ..
  170. LOGICAL LSAME
  171. INTEGER ILAENV
  172. EXTERNAL LSAME, ILAENV
  173. * ..
  174. * .. External Subroutines ..
  175. EXTERNAL DGEMM, DPBTF2, DPOTF2, DSYRK, DTRSM, XERBLA
  176. * ..
  177. * .. Intrinsic Functions ..
  178. INTRINSIC MIN
  179. * ..
  180. * .. Executable Statements ..
  181. *
  182. * Test the input parameters.
  183. *
  184. INFO = 0
  185. IF( ( .NOT.LSAME( UPLO, 'U' ) ) .AND.
  186. $ ( .NOT.LSAME( UPLO, 'L' ) ) ) THEN
  187. INFO = -1
  188. ELSE IF( N.LT.0 ) THEN
  189. INFO = -2
  190. ELSE IF( KD.LT.0 ) THEN
  191. INFO = -3
  192. ELSE IF( LDAB.LT.KD+1 ) THEN
  193. INFO = -5
  194. END IF
  195. IF( INFO.NE.0 ) THEN
  196. CALL XERBLA( 'DPBTRF', -INFO )
  197. RETURN
  198. END IF
  199. *
  200. * Quick return if possible
  201. *
  202. IF( N.EQ.0 )
  203. $ RETURN
  204. *
  205. * Determine the block size for this environment
  206. *
  207. NB = ILAENV( 1, 'DPBTRF', UPLO, N, KD, -1, -1 )
  208. *
  209. * The block size must not exceed the semi-bandwidth KD, and must not
  210. * exceed the limit set by the size of the local array WORK.
  211. *
  212. NB = MIN( NB, NBMAX )
  213. *
  214. IF( NB.LE.1 .OR. NB.GT.KD ) THEN
  215. *
  216. * Use unblocked code
  217. *
  218. CALL DPBTF2( UPLO, N, KD, AB, LDAB, INFO )
  219. ELSE
  220. *
  221. * Use blocked code
  222. *
  223. IF( LSAME( UPLO, 'U' ) ) THEN
  224. *
  225. * Compute the Cholesky factorization of a symmetric band
  226. * matrix, given the upper triangle of the matrix in band
  227. * storage.
  228. *
  229. * Zero the upper triangle of the work array.
  230. *
  231. DO 20 J = 1, NB
  232. DO 10 I = 1, J - 1
  233. WORK( I, J ) = ZERO
  234. 10 CONTINUE
  235. 20 CONTINUE
  236. *
  237. * Process the band matrix one diagonal block at a time.
  238. *
  239. DO 70 I = 1, N, NB
  240. IB = MIN( NB, N-I+1 )
  241. *
  242. * Factorize the diagonal block
  243. *
  244. CALL DPOTF2( UPLO, IB, AB( KD+1, I ), LDAB-1, II )
  245. IF( II.NE.0 ) THEN
  246. INFO = I + II - 1
  247. GO TO 150
  248. END IF
  249. IF( I+IB.LE.N ) THEN
  250. *
  251. * Update the relevant part of the trailing submatrix.
  252. * If A11 denotes the diagonal block which has just been
  253. * factorized, then we need to update the remaining
  254. * blocks in the diagram:
  255. *
  256. * A11 A12 A13
  257. * A22 A23
  258. * A33
  259. *
  260. * The numbers of rows and columns in the partitioning
  261. * are IB, I2, I3 respectively. The blocks A12, A22 and
  262. * A23 are empty if IB = KD. The upper triangle of A13
  263. * lies outside the band.
  264. *
  265. I2 = MIN( KD-IB, N-I-IB+1 )
  266. I3 = MIN( IB, N-I-KD+1 )
  267. *
  268. IF( I2.GT.0 ) THEN
  269. *
  270. * Update A12
  271. *
  272. CALL DTRSM( 'Left', 'Upper', 'Transpose',
  273. $ 'Non-unit', IB, I2, ONE, AB( KD+1, I ),
  274. $ LDAB-1, AB( KD+1-IB, I+IB ), LDAB-1 )
  275. *
  276. * Update A22
  277. *
  278. CALL DSYRK( 'Upper', 'Transpose', I2, IB, -ONE,
  279. $ AB( KD+1-IB, I+IB ), LDAB-1, ONE,
  280. $ AB( KD+1, I+IB ), LDAB-1 )
  281. END IF
  282. *
  283. IF( I3.GT.0 ) THEN
  284. *
  285. * Copy the lower triangle of A13 into the work array.
  286. *
  287. DO 40 JJ = 1, I3
  288. DO 30 II = JJ, IB
  289. WORK( II, JJ ) = AB( II-JJ+1, JJ+I+KD-1 )
  290. 30 CONTINUE
  291. 40 CONTINUE
  292. *
  293. * Update A13 (in the work array).
  294. *
  295. CALL DTRSM( 'Left', 'Upper', 'Transpose',
  296. $ 'Non-unit', IB, I3, ONE, AB( KD+1, I ),
  297. $ LDAB-1, WORK, LDWORK )
  298. *
  299. * Update A23
  300. *
  301. IF( I2.GT.0 )
  302. $ CALL DGEMM( 'Transpose', 'No Transpose', I2, I3,
  303. $ IB, -ONE, AB( KD+1-IB, I+IB ),
  304. $ LDAB-1, WORK, LDWORK, ONE,
  305. $ AB( 1+IB, I+KD ), LDAB-1 )
  306. *
  307. * Update A33
  308. *
  309. CALL DSYRK( 'Upper', 'Transpose', I3, IB, -ONE,
  310. $ WORK, LDWORK, ONE, AB( KD+1, I+KD ),
  311. $ LDAB-1 )
  312. *
  313. * Copy the lower triangle of A13 back into place.
  314. *
  315. DO 60 JJ = 1, I3
  316. DO 50 II = JJ, IB
  317. AB( II-JJ+1, JJ+I+KD-1 ) = WORK( II, JJ )
  318. 50 CONTINUE
  319. 60 CONTINUE
  320. END IF
  321. END IF
  322. 70 CONTINUE
  323. ELSE
  324. *
  325. * Compute the Cholesky factorization of a symmetric band
  326. * matrix, given the lower triangle of the matrix in band
  327. * storage.
  328. *
  329. * Zero the lower triangle of the work array.
  330. *
  331. DO 90 J = 1, NB
  332. DO 80 I = J + 1, NB
  333. WORK( I, J ) = ZERO
  334. 80 CONTINUE
  335. 90 CONTINUE
  336. *
  337. * Process the band matrix one diagonal block at a time.
  338. *
  339. DO 140 I = 1, N, NB
  340. IB = MIN( NB, N-I+1 )
  341. *
  342. * Factorize the diagonal block
  343. *
  344. CALL DPOTF2( UPLO, IB, AB( 1, I ), LDAB-1, II )
  345. IF( II.NE.0 ) THEN
  346. INFO = I + II - 1
  347. GO TO 150
  348. END IF
  349. IF( I+IB.LE.N ) THEN
  350. *
  351. * Update the relevant part of the trailing submatrix.
  352. * If A11 denotes the diagonal block which has just been
  353. * factorized, then we need to update the remaining
  354. * blocks in the diagram:
  355. *
  356. * A11
  357. * A21 A22
  358. * A31 A32 A33
  359. *
  360. * The numbers of rows and columns in the partitioning
  361. * are IB, I2, I3 respectively. The blocks A21, A22 and
  362. * A32 are empty if IB = KD. The lower triangle of A31
  363. * lies outside the band.
  364. *
  365. I2 = MIN( KD-IB, N-I-IB+1 )
  366. I3 = MIN( IB, N-I-KD+1 )
  367. *
  368. IF( I2.GT.0 ) THEN
  369. *
  370. * Update A21
  371. *
  372. CALL DTRSM( 'Right', 'Lower', 'Transpose',
  373. $ 'Non-unit', I2, IB, ONE, AB( 1, I ),
  374. $ LDAB-1, AB( 1+IB, I ), LDAB-1 )
  375. *
  376. * Update A22
  377. *
  378. CALL DSYRK( 'Lower', 'No Transpose', I2, IB, -ONE,
  379. $ AB( 1+IB, I ), LDAB-1, ONE,
  380. $ AB( 1, I+IB ), LDAB-1 )
  381. END IF
  382. *
  383. IF( I3.GT.0 ) THEN
  384. *
  385. * Copy the upper triangle of A31 into the work array.
  386. *
  387. DO 110 JJ = 1, IB
  388. DO 100 II = 1, MIN( JJ, I3 )
  389. WORK( II, JJ ) = AB( KD+1-JJ+II, JJ+I-1 )
  390. 100 CONTINUE
  391. 110 CONTINUE
  392. *
  393. * Update A31 (in the work array).
  394. *
  395. CALL DTRSM( 'Right', 'Lower', 'Transpose',
  396. $ 'Non-unit', I3, IB, ONE, AB( 1, I ),
  397. $ LDAB-1, WORK, LDWORK )
  398. *
  399. * Update A32
  400. *
  401. IF( I2.GT.0 )
  402. $ CALL DGEMM( 'No transpose', 'Transpose', I3, I2,
  403. $ IB, -ONE, WORK, LDWORK,
  404. $ AB( 1+IB, I ), LDAB-1, ONE,
  405. $ AB( 1+KD-IB, I+IB ), LDAB-1 )
  406. *
  407. * Update A33
  408. *
  409. CALL DSYRK( 'Lower', 'No Transpose', I3, IB, -ONE,
  410. $ WORK, LDWORK, ONE, AB( 1, I+KD ),
  411. $ LDAB-1 )
  412. *
  413. * Copy the upper triangle of A31 back into place.
  414. *
  415. DO 130 JJ = 1, IB
  416. DO 120 II = 1, MIN( JJ, I3 )
  417. AB( KD+1-JJ+II, JJ+I-1 ) = WORK( II, JJ )
  418. 120 CONTINUE
  419. 130 CONTINUE
  420. END IF
  421. END IF
  422. 140 CONTINUE
  423. END IF
  424. END IF
  425. RETURN
  426. *
  427. 150 CONTINUE
  428. RETURN
  429. *
  430. * End of DPBTRF
  431. *
  432. END