You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

claqz2.f 14 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463
  1. *> \brief \b CLAQZ2
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CLAQZ2 + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/CLAQZ2.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/CLAQZ2.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/CLAQZ2.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CLAQZ2( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW, A, LDA, B,
  22. * $ LDB, Q, LDQ, Z, LDZ, NS, ND, ALPHA, BETA, QC, LDQC, ZC, LDZC,
  23. * $ WORK, LWORK, RWORK, REC, INFO )
  24. * IMPLICIT NONE
  25. *
  26. * Arguments
  27. * LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
  28. * INTEGER, INTENT( IN ) :: N, ILO, IHI, NW, LDA, LDB, LDQ, LDZ,
  29. * $ LDQC, LDZC, LWORK, REC
  30. *
  31. * COMPLEX, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  32. * $ Z( LDZ, * ), ALPHA( * ), BETA( * )
  33. * INTEGER, INTENT( OUT ) :: NS, ND, INFO
  34. * COMPLEX :: QC( LDQC, * ), ZC( LDZC, * ), WORK( * )
  35. * REAL :: RWORK( * )
  36. * ..
  37. *
  38. *
  39. *> \par Purpose:
  40. * =============
  41. *>
  42. *> \verbatim
  43. *>
  44. *> CLAQZ2 performs AED
  45. *> \endverbatim
  46. *
  47. * Arguments:
  48. * ==========
  49. *
  50. *> \param[in] ILSCHUR
  51. *> \verbatim
  52. *> ILSCHUR is LOGICAL
  53. *> Determines whether or not to update the full Schur form
  54. *> \endverbatim
  55. *>
  56. *> \param[in] ILQ
  57. *> \verbatim
  58. *> ILQ is LOGICAL
  59. *> Determines whether or not to update the matrix Q
  60. *> \endverbatim
  61. *>
  62. *> \param[in] ILZ
  63. *> \verbatim
  64. *> ILZ is LOGICAL
  65. *> Determines whether or not to update the matrix Z
  66. *> \endverbatim
  67. *>
  68. *> \param[in] N
  69. *> \verbatim
  70. *> N is INTEGER
  71. *> The order of the matrices A, B, Q, and Z. N >= 0.
  72. *> \endverbatim
  73. *>
  74. *> \param[in] ILO
  75. *> \verbatim
  76. *> ILO is INTEGER
  77. *> \endverbatim
  78. *>
  79. *> \param[in] IHI
  80. *> \verbatim
  81. *> IHI is INTEGER
  82. *> ILO and IHI mark the rows and columns of (A,B) which
  83. *> are to be normalized
  84. *> \endverbatim
  85. *>
  86. *> \param[in] NW
  87. *> \verbatim
  88. *> NW is INTEGER
  89. *> The desired size of the deflation window.
  90. *> \endverbatim
  91. *>
  92. *> \param[in,out] A
  93. *> \verbatim
  94. *> A is COMPLEX array, dimension (LDA, N)
  95. *> \endverbatim
  96. *>
  97. *> \param[in] LDA
  98. *> \verbatim
  99. *> LDA is INTEGER
  100. *> The leading dimension of the array A. LDA >= max( 1, N ).
  101. *> \endverbatim
  102. *>
  103. *> \param[in,out] B
  104. *> \verbatim
  105. *> B is COMPLEX array, dimension (LDB, N)
  106. *> \endverbatim
  107. *>
  108. *> \param[in] LDB
  109. *> \verbatim
  110. *> LDB is INTEGER
  111. *> The leading dimension of the array B. LDB >= max( 1, N ).
  112. *> \endverbatim
  113. *>
  114. *> \param[in,out] Q
  115. *> \verbatim
  116. *> Q is COMPLEX array, dimension (LDQ, N)
  117. *> \endverbatim
  118. *>
  119. *> \param[in] LDQ
  120. *> \verbatim
  121. *> LDQ is INTEGER
  122. *> \endverbatim
  123. *>
  124. *> \param[in,out] Z
  125. *> \verbatim
  126. *> Z is COMPLEX array, dimension (LDZ, N)
  127. *> \endverbatim
  128. *>
  129. *> \param[in] LDZ
  130. *> \verbatim
  131. *> LDZ is INTEGER
  132. *> \endverbatim
  133. *>
  134. *> \param[out] NS
  135. *> \verbatim
  136. *> NS is INTEGER
  137. *> The number of unconverged eigenvalues available to
  138. *> use as shifts.
  139. *> \endverbatim
  140. *>
  141. *> \param[out] ND
  142. *> \verbatim
  143. *> ND is INTEGER
  144. *> The number of converged eigenvalues found.
  145. *> \endverbatim
  146. *>
  147. *> \param[out] ALPHA
  148. *> \verbatim
  149. *> ALPHA is COMPLEX array, dimension (N)
  150. *> Each scalar alpha defining an eigenvalue
  151. *> of GNEP.
  152. *> \endverbatim
  153. *>
  154. *> \param[out] BETA
  155. *> \verbatim
  156. *> BETA is COMPLEX array, dimension (N)
  157. *> The scalars beta that define the eigenvalues of GNEP.
  158. *> Together, the quantities alpha = ALPHA(j) and
  159. *> beta = BETA(j) represent the j-th eigenvalue of the matrix
  160. *> pair (A,B), in one of the forms lambda = alpha/beta or
  161. *> mu = beta/alpha. Since either lambda or mu may overflow,
  162. *> they should not, in general, be computed.
  163. *> \endverbatim
  164. *>
  165. *> \param[in,out] QC
  166. *> \verbatim
  167. *> QC is COMPLEX array, dimension (LDQC, NW)
  168. *> \endverbatim
  169. *>
  170. *> \param[in] LDQC
  171. *> \verbatim
  172. *> LDQC is INTEGER
  173. *> \endverbatim
  174. *>
  175. *> \param[in,out] ZC
  176. *> \verbatim
  177. *> ZC is COMPLEX array, dimension (LDZC, NW)
  178. *> \endverbatim
  179. *>
  180. *> \param[in] LDZC
  181. *> \verbatim
  182. *> LDZ is INTEGER
  183. *> \endverbatim
  184. *>
  185. *> \param[out] WORK
  186. *> \verbatim
  187. *> WORK is COMPLEX array, dimension (MAX(1,LWORK))
  188. *> On exit, if INFO >= 0, WORK(1) returns the optimal LWORK.
  189. *> \endverbatim
  190. *>
  191. *> \param[in] LWORK
  192. *> \verbatim
  193. *> LWORK is INTEGER
  194. *> The dimension of the array WORK. LWORK >= max(1,N).
  195. *>
  196. *> If LWORK = -1, then a workspace query is assumed; the routine
  197. *> only calculates the optimal size of the WORK array, returns
  198. *> this value as the first entry of the WORK array, and no error
  199. *> message related to LWORK is issued by XERBLA.
  200. *> \endverbatim
  201. *>
  202. *> \param[out] RWORK
  203. *> \verbatim
  204. *> RWORK is REAL array, dimension (N)
  205. *> \endverbatim
  206. *>
  207. *> \param[in] REC
  208. *> \verbatim
  209. *> REC is INTEGER
  210. *> REC indicates the current recursion level. Should be set
  211. *> to 0 on first call.
  212. *>
  213. *> \param[out] INFO
  214. *> \verbatim
  215. *> INFO is INTEGER
  216. *> = 0: successful exit
  217. *> < 0: if INFO = -i, the i-th argument had an illegal value
  218. *> \endverbatim
  219. *
  220. * Authors:
  221. * ========
  222. *
  223. *> \author Thijs Steel, KU Leuven, KU Leuven
  224. *
  225. *> \date May 2020
  226. *
  227. *> \ingroup complexGEcomputational
  228. *>
  229. * =====================================================================
  230. RECURSIVE SUBROUTINE CLAQZ2( ILSCHUR, ILQ, ILZ, N, ILO, IHI, NW,
  231. $ A, LDA, B, LDB, Q, LDQ, Z, LDZ, NS,
  232. $ ND, ALPHA, BETA, QC, LDQC, ZC, LDZC,
  233. $ WORK, LWORK, RWORK, REC, INFO )
  234. IMPLICIT NONE
  235. * Arguments
  236. LOGICAL, INTENT( IN ) :: ILSCHUR, ILQ, ILZ
  237. INTEGER, INTENT( IN ) :: N, ILO, IHI, NW, LDA, LDB, LDQ, LDZ,
  238. $ LDQC, LDZC, LWORK, REC
  239. COMPLEX, INTENT( INOUT ) :: A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
  240. $ Z( LDZ, * ), ALPHA( * ), BETA( * )
  241. INTEGER, INTENT( OUT ) :: NS, ND, INFO
  242. COMPLEX :: QC( LDQC, * ), ZC( LDZC, * ), WORK( * )
  243. REAL :: RWORK( * )
  244. * Parameters
  245. COMPLEX CZERO, CONE
  246. PARAMETER ( CZERO = ( 0.0, 0.0 ), CONE = ( 1.0, 0.0 ) )
  247. REAL :: ZERO, ONE, HALF
  248. PARAMETER( ZERO = 0.0, ONE = 1.0, HALF = 0.5 )
  249. * Local Scalars
  250. INTEGER :: JW, KWTOP, KWBOT, ISTOPM, ISTARTM, K, K2, CTGEXC_INFO,
  251. $ IFST, ILST, LWORKREQ, QZ_SMALL_INFO
  252. REAL :: SMLNUM, ULP, SAFMIN, SAFMAX, C1, TEMPR
  253. COMPLEX :: S, S1, TEMP
  254. * External Functions
  255. EXTERNAL :: XERBLA, CLAQZ0, CLAQZ1, SLABAD, CLACPY, CLASET, CGEMM,
  256. $ CTGEXC, CLARTG, CROT
  257. REAL, EXTERNAL :: SLAMCH
  258. INFO = 0
  259. * Set up deflation window
  260. JW = MIN( NW, IHI-ILO+1 )
  261. KWTOP = IHI-JW+1
  262. IF ( KWTOP .EQ. ILO ) THEN
  263. S = CZERO
  264. ELSE
  265. S = A( KWTOP, KWTOP-1 )
  266. END IF
  267. * Determine required workspace
  268. IFST = 1
  269. ILST = JW
  270. CALL CLAQZ0( 'S', 'V', 'V', JW, 1, JW, A( KWTOP, KWTOP ), LDA,
  271. $ B( KWTOP, KWTOP ), LDB, ALPHA, BETA, QC, LDQC, ZC,
  272. $ LDZC, WORK, -1, RWORK, REC+1, QZ_SMALL_INFO )
  273. LWORKREQ = INT( WORK( 1 ) )+2*JW**2
  274. LWORKREQ = MAX( LWORKREQ, N*NW, 2*NW**2+N )
  275. IF ( LWORK .EQ.-1 ) THEN
  276. * workspace query, quick return
  277. WORK( 1 ) = LWORKREQ
  278. RETURN
  279. ELSE IF ( LWORK .LT. LWORKREQ ) THEN
  280. INFO = -26
  281. END IF
  282. IF( INFO.NE.0 ) THEN
  283. CALL XERBLA( 'CLAQZ2', -INFO )
  284. RETURN
  285. END IF
  286. * Get machine constants
  287. SAFMIN = SLAMCH( 'SAFE MINIMUM' )
  288. SAFMAX = ONE/SAFMIN
  289. CALL SLABAD( SAFMIN, SAFMAX )
  290. ULP = SLAMCH( 'PRECISION' )
  291. SMLNUM = SAFMIN*( REAL( N )/ULP )
  292. IF ( IHI .EQ. KWTOP ) THEN
  293. * 1 by 1 deflation window, just try a regular deflation
  294. ALPHA( KWTOP ) = A( KWTOP, KWTOP )
  295. BETA( KWTOP ) = B( KWTOP, KWTOP )
  296. NS = 1
  297. ND = 0
  298. IF ( ABS( S ) .LE. MAX( SMLNUM, ULP*ABS( A( KWTOP,
  299. $ KWTOP ) ) ) ) THEN
  300. NS = 0
  301. ND = 1
  302. IF ( KWTOP .GT. ILO ) THEN
  303. A( KWTOP, KWTOP-1 ) = CZERO
  304. END IF
  305. END IF
  306. END IF
  307. * Store window in case of convergence failure
  308. CALL CLACPY( 'ALL', JW, JW, A( KWTOP, KWTOP ), LDA, WORK, JW )
  309. CALL CLACPY( 'ALL', JW, JW, B( KWTOP, KWTOP ), LDB, WORK( JW**2+
  310. $ 1 ), JW )
  311. * Transform window to real schur form
  312. CALL CLASET( 'FULL', JW, JW, CZERO, CONE, QC, LDQC )
  313. CALL CLASET( 'FULL', JW, JW, CZERO, CONE, ZC, LDZC )
  314. CALL CLAQZ0( 'S', 'V', 'V', JW, 1, JW, A( KWTOP, KWTOP ), LDA,
  315. $ B( KWTOP, KWTOP ), LDB, ALPHA, BETA, QC, LDQC, ZC,
  316. $ LDZC, WORK( 2*JW**2+1 ), LWORK-2*JW**2, RWORK,
  317. $ REC+1, QZ_SMALL_INFO )
  318. IF( QZ_SMALL_INFO .NE. 0 ) THEN
  319. * Convergence failure, restore the window and exit
  320. ND = 0
  321. NS = JW-QZ_SMALL_INFO
  322. CALL CLACPY( 'ALL', JW, JW, WORK, JW, A( KWTOP, KWTOP ), LDA )
  323. CALL CLACPY( 'ALL', JW, JW, WORK( JW**2+1 ), JW, B( KWTOP,
  324. $ KWTOP ), LDB )
  325. RETURN
  326. END IF
  327. * Deflation detection loop
  328. IF ( KWTOP .EQ. ILO .OR. S .EQ. CZERO ) THEN
  329. KWBOT = KWTOP-1
  330. ELSE
  331. KWBOT = IHI
  332. K = 1
  333. K2 = 1
  334. DO WHILE ( K .LE. JW )
  335. * Try to deflate eigenvalue
  336. TEMPR = ABS( A( KWBOT, KWBOT ) )
  337. IF( TEMPR .EQ. ZERO ) THEN
  338. TEMPR = ABS( S )
  339. END IF
  340. IF ( ( ABS( S*QC( 1, KWBOT-KWTOP+1 ) ) ) .LE. MAX( ULP*
  341. $ TEMPR, SMLNUM ) ) THEN
  342. * Deflatable
  343. KWBOT = KWBOT-1
  344. ELSE
  345. * Not deflatable, move out of the way
  346. IFST = KWBOT-KWTOP+1
  347. ILST = K2
  348. CALL CTGEXC( .TRUE., .TRUE., JW, A( KWTOP, KWTOP ),
  349. $ LDA, B( KWTOP, KWTOP ), LDB, QC, LDQC,
  350. $ ZC, LDZC, IFST, ILST, CTGEXC_INFO )
  351. K2 = K2+1
  352. END IF
  353. K = K+1
  354. END DO
  355. END IF
  356. * Store eigenvalues
  357. ND = IHI-KWBOT
  358. NS = JW-ND
  359. K = KWTOP
  360. DO WHILE ( K .LE. IHI )
  361. ALPHA( K ) = A( K, K )
  362. BETA( K ) = B( K, K )
  363. K = K+1
  364. END DO
  365. IF ( KWTOP .NE. ILO .AND. S .NE. CZERO ) THEN
  366. * Reflect spike back, this will create optimally packed bulges
  367. A( KWTOP:KWBOT, KWTOP-1 ) = A( KWTOP, KWTOP-1 ) *CONJG( QC( 1,
  368. $ 1:JW-ND ) )
  369. DO K = KWBOT-1, KWTOP, -1
  370. CALL CLARTG( A( K, KWTOP-1 ), A( K+1, KWTOP-1 ), C1, S1,
  371. $ TEMP )
  372. A( K, KWTOP-1 ) = TEMP
  373. A( K+1, KWTOP-1 ) = CZERO
  374. K2 = MAX( KWTOP, K-1 )
  375. CALL CROT( IHI-K2+1, A( K, K2 ), LDA, A( K+1, K2 ), LDA, C1,
  376. $ S1 )
  377. CALL CROT( IHI-( K-1 )+1, B( K, K-1 ), LDB, B( K+1, K-1 ),
  378. $ LDB, C1, S1 )
  379. CALL CROT( JW, QC( 1, K-KWTOP+1 ), 1, QC( 1, K+1-KWTOP+1 ),
  380. $ 1, C1, CONJG( S1 ) )
  381. END DO
  382. * Chase bulges down
  383. ISTARTM = KWTOP
  384. ISTOPM = IHI
  385. K = KWBOT-1
  386. DO WHILE ( K .GE. KWTOP )
  387. * Move bulge down and remove it
  388. DO K2 = K, KWBOT-1
  389. CALL CLAQZ1( .TRUE., .TRUE., K2, KWTOP, KWTOP+JW-1,
  390. $ KWBOT, A, LDA, B, LDB, JW, KWTOP, QC, LDQC,
  391. $ JW, KWTOP, ZC, LDZC )
  392. END DO
  393. K = K-1
  394. END DO
  395. END IF
  396. * Apply Qc and Zc to rest of the matrix
  397. IF ( ILSCHUR ) THEN
  398. ISTARTM = 1
  399. ISTOPM = N
  400. ELSE
  401. ISTARTM = ILO
  402. ISTOPM = IHI
  403. END IF
  404. IF ( ISTOPM-IHI > 0 ) THEN
  405. CALL CGEMM( 'C', 'N', JW, ISTOPM-IHI, JW, CONE, QC, LDQC,
  406. $ A( KWTOP, IHI+1 ), LDA, CZERO, WORK, JW )
  407. CALL CLACPY( 'ALL', JW, ISTOPM-IHI, WORK, JW, A( KWTOP,
  408. $ IHI+1 ), LDA )
  409. CALL CGEMM( 'C', 'N', JW, ISTOPM-IHI, JW, CONE, QC, LDQC,
  410. $ B( KWTOP, IHI+1 ), LDB, CZERO, WORK, JW )
  411. CALL CLACPY( 'ALL', JW, ISTOPM-IHI, WORK, JW, B( KWTOP,
  412. $ IHI+1 ), LDB )
  413. END IF
  414. IF ( ILQ ) THEN
  415. CALL CGEMM( 'N', 'N', N, JW, JW, CONE, Q( 1, KWTOP ), LDQ, QC,
  416. $ LDQC, CZERO, WORK, N )
  417. CALL CLACPY( 'ALL', N, JW, WORK, N, Q( 1, KWTOP ), LDQ )
  418. END IF
  419. IF ( KWTOP-1-ISTARTM+1 > 0 ) THEN
  420. CALL CGEMM( 'N', 'N', KWTOP-ISTARTM, JW, JW, CONE, A( ISTARTM,
  421. $ KWTOP ), LDA, ZC, LDZC, CZERO, WORK,
  422. $ KWTOP-ISTARTM )
  423. CALL CLACPY( 'ALL', KWTOP-ISTARTM, JW, WORK, KWTOP-ISTARTM,
  424. $ A( ISTARTM, KWTOP ), LDA )
  425. CALL CGEMM( 'N', 'N', KWTOP-ISTARTM, JW, JW, CONE, B( ISTARTM,
  426. $ KWTOP ), LDB, ZC, LDZC, CZERO, WORK,
  427. $ KWTOP-ISTARTM )
  428. CALL CLACPY( 'ALL', KWTOP-ISTARTM, JW, WORK, KWTOP-ISTARTM,
  429. $ B( ISTARTM, KWTOP ), LDB )
  430. END IF
  431. IF ( ILZ ) THEN
  432. CALL CGEMM( 'N', 'N', N, JW, JW, CONE, Z( 1, KWTOP ), LDZ, ZC,
  433. $ LDZC, CZERO, WORK, N )
  434. CALL CLACPY( 'ALL', N, JW, WORK, N, Z( 1, KWTOP ), LDZ )
  435. END IF
  436. END SUBROUTINE