You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

gemm.c 23 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746
  1. /*********************************************************************/
  2. /* Copyright 2024, 2025 The OpenBLAS Project */
  3. /* Copyright 2009, 2010 The University of Texas at Austin. */
  4. /* All rights reserved. */
  5. /* */
  6. /* Redistribution and use in source and binary forms, with or */
  7. /* without modification, are permitted provided that the following */
  8. /* conditions are met: */
  9. /* */
  10. /* 1. Redistributions of source code must retain the above */
  11. /* copyright notice, this list of conditions and the following */
  12. /* disclaimer. */
  13. /* */
  14. /* 2. Redistributions in binary form must reproduce the above */
  15. /* copyright notice, this list of conditions and the following */
  16. /* disclaimer in the documentation and/or other materials */
  17. /* provided with the distribution. */
  18. /* */
  19. /* THIS SOFTWARE IS PROVIDED BY THE UNIVERSITY OF TEXAS AT */
  20. /* AUSTIN ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, */
  21. /* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF */
  22. /* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE */
  23. /* DISCLAIMED. IN NO EVENT SHALL THE UNIVERSITY OF TEXAS AT */
  24. /* AUSTIN OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, */
  25. /* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES */
  26. /* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE */
  27. /* GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR */
  28. /* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF */
  29. /* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT */
  30. /* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT */
  31. /* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE */
  32. /* POSSIBILITY OF SUCH DAMAGE. */
  33. /* */
  34. /* The views and conclusions contained in the software and */
  35. /* documentation are those of the authors and should not be */
  36. /* interpreted as representing official policies, either expressed */
  37. /* or implied, of The University of Texas at Austin. */
  38. /*********************************************************************/
  39. #include <stdio.h>
  40. #include <stdlib.h>
  41. #include <stdbool.h>
  42. #include "common.h"
  43. #ifdef FUNCTION_PROFILE
  44. #include "functable.h"
  45. #endif
  46. #ifndef COMPLEX
  47. #define SMP_THRESHOLD_MIN 65536.0
  48. #ifdef XDOUBLE
  49. #define ERROR_NAME "QGEMM "
  50. #define GEMV BLASFUNC(qgemv)
  51. #elif defined(DOUBLE)
  52. #define ERROR_NAME "DGEMM "
  53. #define GEMV BLASFUNC(dgemv)
  54. #elif defined(BFLOAT16)
  55. #ifdef BGEMM
  56. #define ERROR_NAME "BGEMM "
  57. #define GEMV BLASFUNC(bgemv)
  58. #else
  59. #define ERROR_NAME "SBGEMM "
  60. #define GEMV BLASFUNC(sbgemv)
  61. #endif
  62. #elif defined(HFLOAT16)
  63. #define ERROR_NAME "SHGEMM "
  64. #else
  65. #define ERROR_NAME "SGEMM "
  66. #define GEMV BLASFUNC(sgemv)
  67. #endif
  68. #else
  69. #define SMP_THRESHOLD_MIN 8192.0
  70. #ifndef GEMM3M
  71. #ifdef XDOUBLE
  72. #define ERROR_NAME "XGEMM "
  73. #elif defined(DOUBLE)
  74. #define ERROR_NAME "ZGEMM "
  75. #else
  76. #define ERROR_NAME "CGEMM "
  77. #endif
  78. #else
  79. #ifdef XDOUBLE
  80. #define ERROR_NAME "XGEMM3M "
  81. #elif defined(DOUBLE)
  82. #define ERROR_NAME "ZGEMM3M "
  83. #else
  84. #define ERROR_NAME "CGEMM3M "
  85. #endif
  86. #endif
  87. #endif
  88. #ifndef GEMM_MULTITHREAD_THRESHOLD
  89. #define GEMM_MULTITHREAD_THRESHOLD 4
  90. #endif
  91. static int (*gemm[])(blas_arg_t *, BLASLONG *, BLASLONG *, IFLOAT *, IFLOAT *, BLASLONG) = {
  92. #if !defined(GEMM3M) || defined(GENERIC)
  93. GEMM_NN, GEMM_TN, GEMM_RN, GEMM_CN,
  94. GEMM_NT, GEMM_TT, GEMM_RT, GEMM_CT,
  95. GEMM_NR, GEMM_TR, GEMM_RR, GEMM_CR,
  96. GEMM_NC, GEMM_TC, GEMM_RC, GEMM_CC,
  97. #if defined(SMP) && !defined(USE_SIMPLE_THREADED_LEVEL3)
  98. GEMM_THREAD_NN, GEMM_THREAD_TN, GEMM_THREAD_RN, GEMM_THREAD_CN,
  99. GEMM_THREAD_NT, GEMM_THREAD_TT, GEMM_THREAD_RT, GEMM_THREAD_CT,
  100. GEMM_THREAD_NR, GEMM_THREAD_TR, GEMM_THREAD_RR, GEMM_THREAD_CR,
  101. GEMM_THREAD_NC, GEMM_THREAD_TC, GEMM_THREAD_RC, GEMM_THREAD_CC,
  102. #endif
  103. #else
  104. GEMM3M_NN, GEMM3M_TN, GEMM3M_RN, GEMM3M_CN,
  105. GEMM3M_NT, GEMM3M_TT, GEMM3M_RT, GEMM3M_CT,
  106. GEMM3M_NR, GEMM3M_TR, GEMM3M_RR, GEMM3M_CR,
  107. GEMM3M_NC, GEMM3M_TC, GEMM3M_RC, GEMM3M_CC,
  108. #if defined(SMP) && !defined(USE_SIMPLE_THREADED_LEVEL3)
  109. GEMM3M_THREAD_NN, GEMM3M_THREAD_TN, GEMM3M_THREAD_RN, GEMM3M_THREAD_CN,
  110. GEMM3M_THREAD_NT, GEMM3M_THREAD_TT, GEMM3M_THREAD_RT, GEMM3M_THREAD_CT,
  111. GEMM3M_THREAD_NR, GEMM3M_THREAD_TR, GEMM3M_THREAD_RR, GEMM3M_THREAD_CR,
  112. GEMM3M_THREAD_NC, GEMM3M_THREAD_TC, GEMM3M_THREAD_RC, GEMM3M_THREAD_CC,
  113. #endif
  114. #endif
  115. };
  116. #if defined(SMALL_MATRIX_OPT) && !defined(GEMM3M) && !defined(XDOUBLE) &&!defined(HFLOAT16)
  117. #define USE_SMALL_MATRIX_OPT 1
  118. #else
  119. #define USE_SMALL_MATRIX_OPT 0
  120. #endif
  121. #if USE_SMALL_MATRIX_OPT
  122. #ifndef DYNAMIC_ARCH
  123. #define SMALL_KERNEL_ADDR(table, idx) ((void *)(table[idx]))
  124. #else
  125. #define SMALL_KERNEL_ADDR(table, idx) ((void *)(*(uintptr_t *)((char *)gotoblas + (size_t)(table[idx]))))
  126. #endif
  127. #ifndef COMPLEX
  128. static size_t gemm_small_kernel[] = {
  129. GEMM_SMALL_KERNEL_NN, GEMM_SMALL_KERNEL_TN, 0, 0,
  130. GEMM_SMALL_KERNEL_NT, GEMM_SMALL_KERNEL_TT, 0, 0,
  131. };
  132. static size_t gemm_small_kernel_b0[] = {
  133. GEMM_SMALL_KERNEL_B0_NN, GEMM_SMALL_KERNEL_B0_TN, 0, 0,
  134. GEMM_SMALL_KERNEL_B0_NT, GEMM_SMALL_KERNEL_B0_TT, 0, 0,
  135. };
  136. #define GEMM_SMALL_KERNEL_B0(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, IFLOAT *, BLASLONG, FLOAT, IFLOAT *, BLASLONG, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(gemm_small_kernel_b0, (idx))
  137. #define GEMM_SMALL_KERNEL(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, IFLOAT *, BLASLONG, FLOAT, IFLOAT *, BLASLONG, FLOAT, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(gemm_small_kernel, (idx))
  138. #else
  139. static size_t zgemm_small_kernel[] = {
  140. GEMM_SMALL_KERNEL_NN, GEMM_SMALL_KERNEL_TN, GEMM_SMALL_KERNEL_RN, GEMM_SMALL_KERNEL_CN,
  141. GEMM_SMALL_KERNEL_NT, GEMM_SMALL_KERNEL_TT, GEMM_SMALL_KERNEL_RT, GEMM_SMALL_KERNEL_CT,
  142. GEMM_SMALL_KERNEL_NR, GEMM_SMALL_KERNEL_TR, GEMM_SMALL_KERNEL_RR, GEMM_SMALL_KERNEL_CR,
  143. GEMM_SMALL_KERNEL_NC, GEMM_SMALL_KERNEL_TC, GEMM_SMALL_KERNEL_RC, GEMM_SMALL_KERNEL_CC,
  144. };
  145. static size_t zgemm_small_kernel_b0[] = {
  146. GEMM_SMALL_KERNEL_B0_NN, GEMM_SMALL_KERNEL_B0_TN, GEMM_SMALL_KERNEL_B0_RN, GEMM_SMALL_KERNEL_B0_CN,
  147. GEMM_SMALL_KERNEL_B0_NT, GEMM_SMALL_KERNEL_B0_TT, GEMM_SMALL_KERNEL_B0_RT, GEMM_SMALL_KERNEL_B0_CT,
  148. GEMM_SMALL_KERNEL_B0_NR, GEMM_SMALL_KERNEL_B0_TR, GEMM_SMALL_KERNEL_B0_RR, GEMM_SMALL_KERNEL_B0_CR,
  149. GEMM_SMALL_KERNEL_B0_NC, GEMM_SMALL_KERNEL_B0_TC, GEMM_SMALL_KERNEL_B0_RC, GEMM_SMALL_KERNEL_B0_CC,
  150. };
  151. #define ZGEMM_SMALL_KERNEL(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, FLOAT *, BLASLONG, FLOAT , FLOAT, FLOAT *, BLASLONG, FLOAT , FLOAT, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(zgemm_small_kernel, (idx))
  152. #define ZGEMM_SMALL_KERNEL_B0(idx) (int (*)(BLASLONG, BLASLONG, BLASLONG, FLOAT *, BLASLONG, FLOAT , FLOAT, FLOAT *, BLASLONG, FLOAT *, BLASLONG)) SMALL_KERNEL_ADDR(zgemm_small_kernel_b0, (idx))
  153. #endif
  154. #endif
  155. #if defined(__linux__) && defined(__x86_64__) && defined(BFLOAT16)
  156. #define XFEATURE_XTILEDATA 18
  157. #define ARCH_REQ_XCOMP_PERM 0x1023
  158. static int openblas_amxtile_permission = 0;
  159. static int init_amxtile_permission() {
  160. long status =
  161. syscall(SYS_arch_prctl, ARCH_REQ_XCOMP_PERM, XFEATURE_XTILEDATA);
  162. if (status != 0) {
  163. fprintf(stderr, "XTILEDATA permission not granted in your device(Linux, "
  164. "Intel Sapphier Rapids), skip sbgemm calculation\n");
  165. return -1;
  166. }
  167. openblas_amxtile_permission = 1;
  168. return 0;
  169. }
  170. #endif
  171. #ifdef SMP
  172. #ifdef DYNAMIC_ARCH
  173. extern char* gotoblas_corename(void);
  174. #endif
  175. #if defined(DYNAMIC_ARCH) || defined(NEOVERSEV1)
  176. static inline int get_gemm_optimal_nthreads_neoversev1(double MNK, int ncpu) {
  177. return
  178. MNK < 262144L ? 1
  179. : MNK < 1124864L ? MIN(ncpu, 6)
  180. : MNK < 7880599L ? MIN(ncpu, 12)
  181. : MNK < 17173512L ? MIN(ncpu, 16)
  182. : MNK < 33386248L ? MIN(ncpu, 20)
  183. : MNK < 57066625L ? MIN(ncpu, 24)
  184. : MNK < 91733851L ? MIN(ncpu, 32)
  185. : MNK < 265847707L ? MIN(ncpu, 40)
  186. : MNK < 458314011L ? MIN(ncpu, 48)
  187. : MNK < 729000000L ? MIN(ncpu, 56)
  188. : ncpu;
  189. }
  190. #endif
  191. #if defined(DYNAMIC_ARCH) || defined(NEOVERSEV2)
  192. static inline int get_gemm_optimal_nthreads_neoversev2(double MNK, int ncpu) {
  193. return
  194. MNK < 125000L ? 1
  195. : MNK < 1092727L ? MIN(ncpu, 6)
  196. : MNK < 2628072L ? MIN(ncpu, 8)
  197. : MNK < 8000000L ? MIN(ncpu, 12)
  198. : MNK < 20346417L ? MIN(ncpu, 16)
  199. : MNK < 57066625L ? MIN(ncpu, 24)
  200. : MNK < 91125000L ? MIN(ncpu, 28)
  201. : MNK < 238328000L ? MIN(ncpu, 40)
  202. : MNK < 454756609L ? MIN(ncpu, 48)
  203. : MNK < 857375000L ? MIN(ncpu, 56)
  204. : MNK < 1073741824L ? MIN(ncpu, 64)
  205. : ncpu;
  206. }
  207. #endif
  208. static inline int get_gemm_optimal_nthreads(double MNK) {
  209. int ncpu = num_cpu_avail(3);
  210. #if defined(NEOVERSEV1) && !defined(COMPLEX) && !defined(DOUBLE) && !defined(BFLOAT16) && !defined(HFLOAT16)
  211. return get_gemm_optimal_nthreads_neoversev1(MNK, ncpu);
  212. #elif defined(NEOVERSEV2) && !defined(COMPLEX) && !defined(DOUBLE) && !defined(BFLOAT16) && !defined(HFLOAT16)
  213. return get_gemm_optimal_nthreads_neoversev2(MNK, ncpu);
  214. #elif defined(DYNAMIC_ARCH) && !defined(COMPLEX) && !defined(DOUBLE) && !defined(BFLOAT16) && !defined(HFLOAT16)
  215. if (strcmp(gotoblas_corename(), "neoversev1") == 0) {
  216. return get_gemm_optimal_nthreads_neoversev1(MNK, ncpu);
  217. }
  218. if (strcmp(gotoblas_corename(), "neoversev2") == 0) {
  219. return get_gemm_optimal_nthreads_neoversev2(MNK, ncpu);
  220. }
  221. #endif
  222. if ( MNK <= (SMP_THRESHOLD_MIN * (double) GEMM_MULTITHREAD_THRESHOLD) ) {
  223. return 1;
  224. }
  225. else {
  226. if (MNK/ncpu < SMP_THRESHOLD_MIN*(double)GEMM_MULTITHREAD_THRESHOLD) {
  227. return MNK/(SMP_THRESHOLD_MIN*(double)GEMM_MULTITHREAD_THRESHOLD);
  228. }
  229. else {
  230. return ncpu;
  231. }
  232. }
  233. }
  234. #endif
  235. #ifndef CBLAS
  236. void NAME(char *TRANSA, char *TRANSB,
  237. blasint *M, blasint *N, blasint *K,
  238. FLOAT *alpha,
  239. IFLOAT *a, blasint *ldA,
  240. IFLOAT *b, blasint *ldB,
  241. FLOAT *beta,
  242. FLOAT *c, blasint *ldC){
  243. blas_arg_t args;
  244. int transa, transb, nrowa, nrowb;
  245. blasint info;
  246. char transA, transB;
  247. IFLOAT *buffer;
  248. IFLOAT *sa, *sb;
  249. #ifdef SMP
  250. double MNK;
  251. #if defined(USE_SIMPLE_THREADED_LEVEL3) || !defined(NO_AFFINITY)
  252. #ifndef COMPLEX
  253. #ifdef XDOUBLE
  254. int mode = BLAS_XDOUBLE | BLAS_REAL;
  255. #elif defined(DOUBLE)
  256. int mode = BLAS_DOUBLE | BLAS_REAL;
  257. #else
  258. int mode = BLAS_SINGLE | BLAS_REAL;
  259. #endif
  260. #else
  261. #ifdef XDOUBLE
  262. int mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  263. #elif defined(DOUBLE)
  264. int mode = BLAS_DOUBLE | BLAS_COMPLEX;
  265. #else
  266. int mode = BLAS_SINGLE | BLAS_COMPLEX;
  267. #endif
  268. #endif
  269. #endif
  270. #endif
  271. #if defined(SMP) && !defined(NO_AFFINITY) && !defined(USE_SIMPLE_THREADED_LEVEL3)
  272. int nodes;
  273. #endif
  274. PRINT_DEBUG_NAME;
  275. args.m = *M;
  276. args.n = *N;
  277. args.k = *K;
  278. args.a = (void *)a;
  279. args.b = (void *)b;
  280. args.c = (void *)c;
  281. args.lda = *ldA;
  282. args.ldb = *ldB;
  283. args.ldc = *ldC;
  284. args.alpha = (void *)alpha;
  285. args.beta = (void *)beta;
  286. transA = *TRANSA;
  287. transB = *TRANSB;
  288. TOUPPER(transA);
  289. TOUPPER(transB);
  290. transa = -1;
  291. transb = -1;
  292. if (transA == 'N') transa = 0;
  293. if (transA == 'T') transa = 1;
  294. #ifndef COMPLEX
  295. if (transA == 'R') transa = 0;
  296. if (transA == 'C') transa = 1;
  297. #else
  298. if (transA == 'R') transa = 2;
  299. if (transA == 'C') transa = 3;
  300. #endif
  301. if (transB == 'N') transb = 0;
  302. if (transB == 'T') transb = 1;
  303. #ifndef COMPLEX
  304. if (transB == 'R') transb = 0;
  305. if (transB == 'C') transb = 1;
  306. #else
  307. if (transB == 'R') transb = 2;
  308. if (transB == 'C') transb = 3;
  309. #endif
  310. nrowa = args.m;
  311. if (transa & 1) nrowa = args.k;
  312. nrowb = args.k;
  313. if (transb & 1) nrowb = args.n;
  314. info = 0;
  315. if (args.ldc < args.m) info = 13;
  316. if (args.ldb < nrowb) info = 10;
  317. if (args.lda < nrowa) info = 8;
  318. if (args.k < 0) info = 5;
  319. if (args.n < 0) info = 4;
  320. if (args.m < 0) info = 3;
  321. if (transb < 0) info = 2;
  322. if (transa < 0) info = 1;
  323. if (info){
  324. BLASFUNC(xerbla)(ERROR_NAME, &info, sizeof(ERROR_NAME));
  325. return;
  326. }
  327. #else
  328. void CNAME(enum CBLAS_ORDER order, enum CBLAS_TRANSPOSE TransA, enum CBLAS_TRANSPOSE TransB,
  329. blasint m, blasint n, blasint k,
  330. #ifndef COMPLEX
  331. FLOAT alpha,
  332. IFLOAT *a, blasint lda,
  333. IFLOAT *b, blasint ldb,
  334. FLOAT beta,
  335. FLOAT *c, blasint ldc) {
  336. #else
  337. void *valpha,
  338. void *va, blasint lda,
  339. void *vb, blasint ldb,
  340. void *vbeta,
  341. void *vc, blasint ldc) {
  342. FLOAT *alpha = (FLOAT*) valpha;
  343. FLOAT *beta = (FLOAT*) vbeta;
  344. FLOAT *a = (FLOAT*) va;
  345. FLOAT *b = (FLOAT*) vb;
  346. FLOAT *c = (FLOAT*) vc;
  347. #endif
  348. blas_arg_t args;
  349. int transa, transb;
  350. blasint nrowa, nrowb, info;
  351. XFLOAT *buffer;
  352. XFLOAT *sa, *sb;
  353. #ifdef SMP
  354. double MNK;
  355. #if defined(USE_SIMPLE_THREADED_LEVEL3) || !defined(NO_AFFINITY)
  356. #ifndef COMPLEX
  357. #ifdef XDOUBLE
  358. int mode = BLAS_XDOUBLE | BLAS_REAL;
  359. #elif defined(DOUBLE)
  360. int mode = BLAS_DOUBLE | BLAS_REAL;
  361. #else
  362. int mode = BLAS_SINGLE | BLAS_REAL;
  363. #endif
  364. #else
  365. #ifdef XDOUBLE
  366. int mode = BLAS_XDOUBLE | BLAS_COMPLEX;
  367. #elif defined(DOUBLE)
  368. int mode = BLAS_DOUBLE | BLAS_COMPLEX;
  369. #else
  370. int mode = BLAS_SINGLE | BLAS_COMPLEX;
  371. #endif
  372. #endif
  373. #endif
  374. #endif
  375. #if defined(SMP) && !defined(NO_AFFINITY) && !defined(USE_SIMPLE_THREADED_LEVEL3)
  376. int nodes;
  377. #endif
  378. PRINT_DEBUG_CNAME;
  379. #if !defined(COMPLEX) && !defined(DOUBLE) && !defined(BFLOAT16) && !defined(HFLOAT16)
  380. #if defined(ARCH_x86) && (defined(USE_SGEMM_KERNEL_DIRECT)||defined(DYNAMIC_ARCH))
  381. #if defined(DYNAMIC_ARCH)
  382. if (support_avx512() )
  383. #endif
  384. if (beta == 0 && alpha == 1.0 && order == CblasRowMajor && TransA == CblasNoTrans && TransB == CblasNoTrans && SGEMM_DIRECT_PERFORMANT(m,n,k)) {
  385. SGEMM_DIRECT(m, n, k, a, lda, b, ldb, c, ldc);
  386. return;
  387. }
  388. #endif
  389. #if defined(ARCH_ARM64) && (defined(USE_SGEMM_KERNEL_DIRECT)||defined(DYNAMIC_ARCH))
  390. #if defined(DYNAMIC_ARCH)
  391. if (support_sme1())
  392. #endif
  393. if (beta == 0 && alpha == 1.0 && order == CblasRowMajor && TransA == CblasNoTrans && TransB == CblasNoTrans) {
  394. SGEMM_DIRECT(m, n, k, a, lda, b, ldb, c, ldc);
  395. return;
  396. }
  397. #endif
  398. #endif
  399. #ifndef COMPLEX
  400. args.alpha = (void *)&alpha;
  401. args.beta = (void *)&beta;
  402. #else
  403. args.alpha = (void *)alpha;
  404. args.beta = (void *)beta;
  405. #endif
  406. transa = -1;
  407. transb = -1;
  408. info = 0;
  409. if (order == CblasColMajor) {
  410. args.m = m;
  411. args.n = n;
  412. args.k = k;
  413. args.a = (void *)a;
  414. args.b = (void *)b;
  415. args.c = (void *)c;
  416. args.lda = lda;
  417. args.ldb = ldb;
  418. args.ldc = ldc;
  419. if (TransA == CblasNoTrans) transa = 0;
  420. if (TransA == CblasTrans) transa = 1;
  421. #ifndef COMPLEX
  422. if (TransA == CblasConjNoTrans) transa = 0;
  423. if (TransA == CblasConjTrans) transa = 1;
  424. #else
  425. if (TransA == CblasConjNoTrans) transa = 2;
  426. if (TransA == CblasConjTrans) transa = 3;
  427. #endif
  428. if (TransB == CblasNoTrans) transb = 0;
  429. if (TransB == CblasTrans) transb = 1;
  430. #ifndef COMPLEX
  431. if (TransB == CblasConjNoTrans) transb = 0;
  432. if (TransB == CblasConjTrans) transb = 1;
  433. #else
  434. if (TransB == CblasConjNoTrans) transb = 2;
  435. if (TransB == CblasConjTrans) transb = 3;
  436. #endif
  437. nrowa = args.m;
  438. if (transa & 1) nrowa = args.k;
  439. nrowb = args.k;
  440. if (transb & 1) nrowb = args.n;
  441. info = -1;
  442. if (args.ldc < args.m) info = 13;
  443. if (args.ldb < nrowb) info = 10;
  444. if (args.lda < nrowa) info = 8;
  445. if (args.k < 0) info = 5;
  446. if (args.n < 0) info = 4;
  447. if (args.m < 0) info = 3;
  448. if (transb < 0) info = 2;
  449. if (transa < 0) info = 1;
  450. }
  451. if (order == CblasRowMajor) {
  452. args.m = n;
  453. args.n = m;
  454. args.k = k;
  455. args.a = (void *)b;
  456. args.b = (void *)a;
  457. args.c = (void *)c;
  458. args.lda = ldb;
  459. args.ldb = lda;
  460. args.ldc = ldc;
  461. if (TransB == CblasNoTrans) transa = 0;
  462. if (TransB == CblasTrans) transa = 1;
  463. #ifndef COMPLEX
  464. if (TransB == CblasConjNoTrans) transa = 0;
  465. if (TransB == CblasConjTrans) transa = 1;
  466. #else
  467. if (TransB == CblasConjNoTrans) transa = 2;
  468. if (TransB == CblasConjTrans) transa = 3;
  469. #endif
  470. if (TransA == CblasNoTrans) transb = 0;
  471. if (TransA == CblasTrans) transb = 1;
  472. #ifndef COMPLEX
  473. if (TransA == CblasConjNoTrans) transb = 0;
  474. if (TransA == CblasConjTrans) transb = 1;
  475. #else
  476. if (TransA == CblasConjNoTrans) transb = 2;
  477. if (TransA == CblasConjTrans) transb = 3;
  478. #endif
  479. nrowa = args.m;
  480. if (transa & 1) nrowa = args.k;
  481. nrowb = args.k;
  482. if (transb & 1) nrowb = args.n;
  483. info = -1;
  484. if (args.ldc < args.m) info = 13;
  485. if (args.ldb < nrowb) info = 10;
  486. if (args.lda < nrowa) info = 8;
  487. if (args.k < 0) info = 5;
  488. if (args.n < 0) info = 4;
  489. if (args.m < 0) info = 3;
  490. if (transb < 0) info = 2;
  491. if (transa < 0) info = 1;
  492. }
  493. if (info >= 0) {
  494. BLASFUNC(xerbla)(ERROR_NAME, &info, sizeof(ERROR_NAME));
  495. return;
  496. }
  497. #endif
  498. #if defined(__linux__) && defined(__x86_64__) && defined(BFLOAT16)
  499. #if defined(DYNAMIC_ARCH)
  500. if (gotoblas->need_amxtile_permission &&
  501. openblas_amxtile_permission == 0 && init_amxtile_permission() == -1) {
  502. return;
  503. }
  504. #endif
  505. #if !defined(DYNAMIC_ARCH) && defined(SAPPHIRERAPIDS)
  506. if (openblas_amxtile_permission == 0 && init_amxtile_permission() == -1) {
  507. return;
  508. }
  509. #endif
  510. #endif // defined(__linux__) && defined(__x86_64__) && defined(BFLOAT16)
  511. if ((args.m == 0) || (args.n == 0)) return;
  512. #if 0
  513. fprintf(stderr, "m = %4d n = %d k = %d lda = %4d ldb = %4d ldc = %4d\n",
  514. args.m, args.n, args.k, args.lda, args.ldb, args.ldc);
  515. #endif
  516. #if defined(GEMM_GEMV_FORWARD) && !defined(GEMM3M) && !defined(COMPLEX) && !defined(HFLOAT16) && (!defined(BFLOAT16) || (!defined(BGEMM) && defined(SBGEMM_GEMV_FORWARD)) || (defined(BGEMM) && defined(BGEMM_GEMV_FORWARD)))
  517. #if defined(ARCH_ARM64)
  518. // The gemv kernels in arm64/{gemv_n.S,gemv_n_sve.c,gemv_t.S,gemv_t_sve.c}
  519. // perform poorly in certain circumstances. We use the following boolean
  520. // variable along with the gemv argument values to avoid these inefficient
  521. // gemv cases, see github issue#4951.
  522. bool have_tuned_gemv = false;
  523. #else
  524. bool have_tuned_gemv = true;
  525. #endif
  526. // Check if we can convert GEMM -> GEMV
  527. if (args.k != 0) {
  528. if (args.n == 1) {
  529. blasint inc_x = 1;
  530. blasint inc_y = 1;
  531. // These were passed in as blasint, but the struct translates them to blaslong
  532. blasint m = args.m;
  533. blasint n = args.k;
  534. blasint lda = args.lda;
  535. // Create new transpose parameters
  536. char NT = 'N';
  537. if (transa & 1) {
  538. NT = 'T';
  539. m = args.k;
  540. n = args.m;
  541. }
  542. if (transb & 1) {
  543. inc_x = args.ldb;
  544. }
  545. bool is_efficient_gemv = have_tuned_gemv || ((NT == 'N') || (NT == 'T' && inc_x == 1));
  546. if (is_efficient_gemv) {
  547. GEMV(&NT, &m, &n, args.alpha, args.a, &lda, args.b, &inc_x, args.beta, args.c, &inc_y);
  548. return;
  549. }
  550. }
  551. if (args.m == 1) {
  552. blasint inc_x = args.lda;
  553. blasint inc_y = args.ldc;
  554. // These were passed in as blasint, but the struct translates them to blaslong
  555. blasint m = args.k;
  556. blasint n = args.n;
  557. blasint ldb = args.ldb;
  558. // Create new transpose parameters
  559. char NT = 'T';
  560. if (transa & 1) {
  561. inc_x = 1;
  562. }
  563. if (transb & 1) {
  564. NT = 'N';
  565. m = args.n;
  566. n = args.k;
  567. }
  568. bool is_efficient_gemv = have_tuned_gemv || ((NT == 'N' && inc_y == 1) || (NT == 'T' && inc_x == 1));
  569. if (is_efficient_gemv) {
  570. GEMV(&NT, &m, &n, args.alpha, args.b, &ldb, args.a, &inc_x, args.beta, args.c, &inc_y);
  571. return;
  572. }
  573. }
  574. }
  575. #endif
  576. IDEBUG_START;
  577. FUNCTION_PROFILE_START();
  578. #if USE_SMALL_MATRIX_OPT
  579. #if !defined(COMPLEX)
  580. if(GEMM_SMALL_MATRIX_PERMIT(transa, transb, args.m, args.n, args.k, *(FLOAT *)(args.alpha), *(FLOAT *)(args.beta))){
  581. if(*(FLOAT *)(args.beta) == 0.0){
  582. (GEMM_SMALL_KERNEL_B0((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, *(FLOAT *)(args.alpha), args.b, args.ldb, args.c, args.ldc);
  583. }else{
  584. (GEMM_SMALL_KERNEL((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, *(FLOAT *)(args.alpha), args.b, args.ldb, *(FLOAT *)(args.beta), args.c, args.ldc);
  585. }
  586. return;
  587. }
  588. #else
  589. if(GEMM_SMALL_MATRIX_PERMIT(transa, transb, args.m, args.n, args.k, alpha[0], alpha[1], beta[0], beta[1])){
  590. if(beta[0] == 0.0 && beta[1] == 0.0){
  591. (ZGEMM_SMALL_KERNEL_B0((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, alpha[0], alpha[1], args.b, args.ldb, args.c, args.ldc);
  592. }else{
  593. (ZGEMM_SMALL_KERNEL((transb << 2) | transa))(args.m, args.n, args.k, args.a, args.lda, alpha[0], alpha[1], args.b, args.ldb, beta[0], beta[1], args.c, args.ldc);
  594. }
  595. return;
  596. }
  597. #endif
  598. #endif
  599. buffer = (XFLOAT *)blas_memory_alloc(0);
  600. //For LOONGARCH64, applying an offset to the buffer is essential
  601. //for minimizing cache conflicts and optimizing performance.
  602. #if defined(ARCH_LOONGARCH64) && !defined(NO_AFFINITY)
  603. sa = (XFLOAT *)((BLASLONG)buffer + (WhereAmI() & 0xf) * GEMM_OFFSET_A);
  604. #else
  605. sa = (XFLOAT *)((BLASLONG)buffer +GEMM_OFFSET_A);
  606. #endif
  607. sb = (XFLOAT *)(((BLASLONG)sa + ((GEMM_P * GEMM_Q * COMPSIZE * SIZE + GEMM_ALIGN) & ~GEMM_ALIGN)) + GEMM_OFFSET_B);
  608. #ifdef SMP
  609. #if defined(USE_SIMPLE_THREADED_LEVEL3) || !defined(NO_AFFINITY)
  610. mode |= (transa << BLAS_TRANSA_SHIFT);
  611. mode |= (transb << BLAS_TRANSB_SHIFT);
  612. #endif
  613. MNK = (double) args.m * (double) args.n * (double) args.k;
  614. args.nthreads = get_gemm_optimal_nthreads(MNK);
  615. args.common = NULL;
  616. if (args.nthreads == 1) {
  617. #endif
  618. (gemm[(transb << 2) | transa])(&args, NULL, NULL, sa, sb, 0);
  619. #ifdef SMP
  620. } else {
  621. #ifndef USE_SIMPLE_THREADED_LEVEL3
  622. #ifndef NO_AFFINITY
  623. nodes = get_num_nodes();
  624. if ((nodes > 1) && get_node_equal()) {
  625. args.nthreads /= nodes;
  626. gemm_thread_mn(mode, &args, NULL, NULL, gemm[16 | (transb << 2) | transa], sa, sb, nodes);
  627. } else {
  628. #endif
  629. (gemm[16 | (transb << 2) | transa])(&args, NULL, NULL, sa, sb, 0);
  630. #else
  631. GEMM_THREAD(mode, &args, NULL, NULL, gemm[(transb << 2) | transa], sa, sb, args.nthreads);
  632. #endif
  633. #ifndef USE_SIMPLE_THREADED_LEVEL3
  634. #ifndef NO_AFFINITY
  635. }
  636. #endif
  637. #endif
  638. #endif
  639. #ifdef SMP
  640. }
  641. #endif
  642. blas_memory_free(buffer);
  643. FUNCTION_PROFILE_END(COMPSIZE * COMPSIZE, args.m * args.k + args.k * args.n + args.m * args.n, 2 * args.m * args.n * args.k);
  644. IDEBUG_END;
  645. return;
  646. }