You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

zlatps.f 30 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975
  1. *> \brief \b ZLATPS solves a triangular system of equations with the matrix held in packed storage.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download ZLATPS + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlatps.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlatps.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlatps.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE ZLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
  22. * CNORM, INFO )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIAG, NORMIN, TRANS, UPLO
  26. * INTEGER INFO, N
  27. * DOUBLE PRECISION SCALE
  28. * ..
  29. * .. Array Arguments ..
  30. * DOUBLE PRECISION CNORM( * )
  31. * COMPLEX*16 AP( * ), X( * )
  32. * ..
  33. *
  34. *
  35. *> \par Purpose:
  36. * =============
  37. *>
  38. *> \verbatim
  39. *>
  40. *> ZLATPS solves one of the triangular systems
  41. *>
  42. *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b,
  43. *>
  44. *> with scaling to prevent overflow, where A is an upper or lower
  45. *> triangular matrix stored in packed form. Here A**T denotes the
  46. *> transpose of A, A**H denotes the conjugate transpose of A, x and b
  47. *> are n-element vectors, and s is a scaling factor, usually less than
  48. *> or equal to 1, chosen so that the components of x will be less than
  49. *> the overflow threshold. If the unscaled problem will not cause
  50. *> overflow, the Level 2 BLAS routine ZTPSV is called. If the matrix A
  51. *> is singular (A(j,j) = 0 for some j), then s is set to 0 and a
  52. *> non-trivial solution to A*x = 0 is returned.
  53. *> \endverbatim
  54. *
  55. * Arguments:
  56. * ==========
  57. *
  58. *> \param[in] UPLO
  59. *> \verbatim
  60. *> UPLO is CHARACTER*1
  61. *> Specifies whether the matrix A is upper or lower triangular.
  62. *> = 'U': Upper triangular
  63. *> = 'L': Lower triangular
  64. *> \endverbatim
  65. *>
  66. *> \param[in] TRANS
  67. *> \verbatim
  68. *> TRANS is CHARACTER*1
  69. *> Specifies the operation applied to A.
  70. *> = 'N': Solve A * x = s*b (No transpose)
  71. *> = 'T': Solve A**T * x = s*b (Transpose)
  72. *> = 'C': Solve A**H * x = s*b (Conjugate transpose)
  73. *> \endverbatim
  74. *>
  75. *> \param[in] DIAG
  76. *> \verbatim
  77. *> DIAG is CHARACTER*1
  78. *> Specifies whether or not the matrix A is unit triangular.
  79. *> = 'N': Non-unit triangular
  80. *> = 'U': Unit triangular
  81. *> \endverbatim
  82. *>
  83. *> \param[in] NORMIN
  84. *> \verbatim
  85. *> NORMIN is CHARACTER*1
  86. *> Specifies whether CNORM has been set or not.
  87. *> = 'Y': CNORM contains the column norms on entry
  88. *> = 'N': CNORM is not set on entry. On exit, the norms will
  89. *> be computed and stored in CNORM.
  90. *> \endverbatim
  91. *>
  92. *> \param[in] N
  93. *> \verbatim
  94. *> N is INTEGER
  95. *> The order of the matrix A. N >= 0.
  96. *> \endverbatim
  97. *>
  98. *> \param[in] AP
  99. *> \verbatim
  100. *> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
  101. *> The upper or lower triangular matrix A, packed columnwise in
  102. *> a linear array. The j-th column of A is stored in the array
  103. *> AP as follows:
  104. *> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
  105. *> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
  106. *> \endverbatim
  107. *>
  108. *> \param[in,out] X
  109. *> \verbatim
  110. *> X is COMPLEX*16 array, dimension (N)
  111. *> On entry, the right hand side b of the triangular system.
  112. *> On exit, X is overwritten by the solution vector x.
  113. *> \endverbatim
  114. *>
  115. *> \param[out] SCALE
  116. *> \verbatim
  117. *> SCALE is DOUBLE PRECISION
  118. *> The scaling factor s for the triangular system
  119. *> A * x = s*b, A**T * x = s*b, or A**H * x = s*b.
  120. *> If SCALE = 0, the matrix A is singular or badly scaled, and
  121. *> the vector x is an exact or approximate solution to A*x = 0.
  122. *> \endverbatim
  123. *>
  124. *> \param[in,out] CNORM
  125. *> \verbatim
  126. *> CNORM is DOUBLE PRECISION array, dimension (N)
  127. *>
  128. *> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
  129. *> contains the norm of the off-diagonal part of the j-th column
  130. *> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
  131. *> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
  132. *> must be greater than or equal to the 1-norm.
  133. *>
  134. *> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
  135. *> returns the 1-norm of the offdiagonal part of the j-th column
  136. *> of A.
  137. *> \endverbatim
  138. *>
  139. *> \param[out] INFO
  140. *> \verbatim
  141. *> INFO is INTEGER
  142. *> = 0: successful exit
  143. *> < 0: if INFO = -k, the k-th argument had an illegal value
  144. *> \endverbatim
  145. *
  146. * Authors:
  147. * ========
  148. *
  149. *> \author Univ. of Tennessee
  150. *> \author Univ. of California Berkeley
  151. *> \author Univ. of Colorado Denver
  152. *> \author NAG Ltd.
  153. *
  154. *> \ingroup complex16OTHERauxiliary
  155. *
  156. *> \par Further Details:
  157. * =====================
  158. *>
  159. *> \verbatim
  160. *>
  161. *> A rough bound on x is computed; if that is less than overflow, ZTPSV
  162. *> is called, otherwise, specific code is used which checks for possible
  163. *> overflow or divide-by-zero at every operation.
  164. *>
  165. *> A columnwise scheme is used for solving A*x = b. The basic algorithm
  166. *> if A is lower triangular is
  167. *>
  168. *> x[1:n] := b[1:n]
  169. *> for j = 1, ..., n
  170. *> x(j) := x(j) / A(j,j)
  171. *> x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j]
  172. *> end
  173. *>
  174. *> Define bounds on the components of x after j iterations of the loop:
  175. *> M(j) = bound on x[1:j]
  176. *> G(j) = bound on x[j+1:n]
  177. *> Initially, let M(0) = 0 and G(0) = max{x(i), i=1,...,n}.
  178. *>
  179. *> Then for iteration j+1 we have
  180. *> M(j+1) <= G(j) / | A(j+1,j+1) |
  181. *> G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] |
  182. *> <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | )
  183. *>
  184. *> where CNORM(j+1) is greater than or equal to the infinity-norm of
  185. *> column j+1 of A, not counting the diagonal. Hence
  186. *>
  187. *> G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | )
  188. *> 1<=i<=j
  189. *> and
  190. *>
  191. *> |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| )
  192. *> 1<=i< j
  193. *>
  194. *> Since |x(j)| <= M(j), we use the Level 2 BLAS routine ZTPSV if the
  195. *> reciprocal of the largest M(j), j=1,..,n, is larger than
  196. *> max(underflow, 1/overflow).
  197. *>
  198. *> The bound on x(j) is also used to determine when a step in the
  199. *> columnwise method can be performed without fear of overflow. If
  200. *> the computed bound is greater than a large constant, x is scaled to
  201. *> prevent overflow, but if the bound overflows, x is set to 0, x(j) to
  202. *> 1, and scale to 0, and a non-trivial solution to A*x = 0 is found.
  203. *>
  204. *> Similarly, a row-wise scheme is used to solve A**T *x = b or
  205. *> A**H *x = b. The basic algorithm for A upper triangular is
  206. *>
  207. *> for j = 1, ..., n
  208. *> x(j) := ( b(j) - A[1:j-1,j]' * x[1:j-1] ) / A(j,j)
  209. *> end
  210. *>
  211. *> We simultaneously compute two bounds
  212. *> G(j) = bound on ( b(i) - A[1:i-1,i]' * x[1:i-1] ), 1<=i<=j
  213. *> M(j) = bound on x(i), 1<=i<=j
  214. *>
  215. *> The initial values are G(0) = 0, M(0) = max{b(i), i=1,..,n}, and we
  216. *> add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1.
  217. *> Then the bound on x(j) is
  218. *>
  219. *> M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) |
  220. *>
  221. *> <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| )
  222. *> 1<=i<=j
  223. *>
  224. *> and we can safely call ZTPSV if 1/M(n) and 1/G(n) are both greater
  225. *> than max(underflow, 1/overflow).
  226. *> \endverbatim
  227. *>
  228. * =====================================================================
  229. SUBROUTINE ZLATPS( UPLO, TRANS, DIAG, NORMIN, N, AP, X, SCALE,
  230. $ CNORM, INFO )
  231. *
  232. * -- LAPACK auxiliary routine --
  233. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  234. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  235. *
  236. * .. Scalar Arguments ..
  237. CHARACTER DIAG, NORMIN, TRANS, UPLO
  238. INTEGER INFO, N
  239. DOUBLE PRECISION SCALE
  240. * ..
  241. * .. Array Arguments ..
  242. DOUBLE PRECISION CNORM( * )
  243. COMPLEX*16 AP( * ), X( * )
  244. * ..
  245. *
  246. * =====================================================================
  247. *
  248. * .. Parameters ..
  249. DOUBLE PRECISION ZERO, HALF, ONE, TWO
  250. PARAMETER ( ZERO = 0.0D+0, HALF = 0.5D+0, ONE = 1.0D+0,
  251. $ TWO = 2.0D+0 )
  252. * ..
  253. * .. Local Scalars ..
  254. LOGICAL NOTRAN, NOUNIT, UPPER
  255. INTEGER I, IMAX, IP, J, JFIRST, JINC, JLAST, JLEN
  256. DOUBLE PRECISION BIGNUM, GROW, REC, SMLNUM, TJJ, TMAX, TSCAL,
  257. $ XBND, XJ, XMAX
  258. COMPLEX*16 CSUMJ, TJJS, USCAL, ZDUM
  259. * ..
  260. * .. External Functions ..
  261. LOGICAL LSAME
  262. INTEGER IDAMAX, IZAMAX
  263. DOUBLE PRECISION DLAMCH, DZASUM
  264. COMPLEX*16 ZDOTC, ZDOTU, ZLADIV
  265. EXTERNAL LSAME, IDAMAX, IZAMAX, DLAMCH, DZASUM, ZDOTC,
  266. $ ZDOTU, ZLADIV
  267. * ..
  268. * .. External Subroutines ..
  269. EXTERNAL DSCAL, XERBLA, ZAXPY, ZDSCAL, ZTPSV, DLABAD
  270. * ..
  271. * .. Intrinsic Functions ..
  272. INTRINSIC ABS, DBLE, DCMPLX, DCONJG, DIMAG, MAX, MIN
  273. * ..
  274. * .. Statement Functions ..
  275. DOUBLE PRECISION CABS1, CABS2
  276. * ..
  277. * .. Statement Function definitions ..
  278. CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
  279. CABS2( ZDUM ) = ABS( DBLE( ZDUM ) / 2.D0 ) +
  280. $ ABS( DIMAG( ZDUM ) / 2.D0 )
  281. * ..
  282. * .. Executable Statements ..
  283. *
  284. INFO = 0
  285. UPPER = LSAME( UPLO, 'U' )
  286. NOTRAN = LSAME( TRANS, 'N' )
  287. NOUNIT = LSAME( DIAG, 'N' )
  288. *
  289. * Test the input parameters.
  290. *
  291. IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
  292. INFO = -1
  293. ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
  294. $ LSAME( TRANS, 'C' ) ) THEN
  295. INFO = -2
  296. ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
  297. INFO = -3
  298. ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
  299. $ LSAME( NORMIN, 'N' ) ) THEN
  300. INFO = -4
  301. ELSE IF( N.LT.0 ) THEN
  302. INFO = -5
  303. END IF
  304. IF( INFO.NE.0 ) THEN
  305. CALL XERBLA( 'ZLATPS', -INFO )
  306. RETURN
  307. END IF
  308. *
  309. * Quick return if possible
  310. *
  311. IF( N.EQ.0 )
  312. $ RETURN
  313. *
  314. * Determine machine dependent parameters to control overflow.
  315. *
  316. SMLNUM = DLAMCH( 'Safe minimum' )
  317. BIGNUM = ONE / SMLNUM
  318. CALL DLABAD( SMLNUM, BIGNUM )
  319. SMLNUM = SMLNUM / DLAMCH( 'Precision' )
  320. BIGNUM = ONE / SMLNUM
  321. SCALE = ONE
  322. *
  323. IF( LSAME( NORMIN, 'N' ) ) THEN
  324. *
  325. * Compute the 1-norm of each column, not including the diagonal.
  326. *
  327. IF( UPPER ) THEN
  328. *
  329. * A is upper triangular.
  330. *
  331. IP = 1
  332. DO 10 J = 1, N
  333. CNORM( J ) = DZASUM( J-1, AP( IP ), 1 )
  334. IP = IP + J
  335. 10 CONTINUE
  336. ELSE
  337. *
  338. * A is lower triangular.
  339. *
  340. IP = 1
  341. DO 20 J = 1, N - 1
  342. CNORM( J ) = DZASUM( N-J, AP( IP+1 ), 1 )
  343. IP = IP + N - J + 1
  344. 20 CONTINUE
  345. CNORM( N ) = ZERO
  346. END IF
  347. END IF
  348. *
  349. * Scale the column norms by TSCAL if the maximum element in CNORM is
  350. * greater than BIGNUM/2.
  351. *
  352. IMAX = IDAMAX( N, CNORM, 1 )
  353. TMAX = CNORM( IMAX )
  354. IF( TMAX.LE.BIGNUM*HALF ) THEN
  355. TSCAL = ONE
  356. ELSE
  357. TSCAL = HALF / ( SMLNUM*TMAX )
  358. CALL DSCAL( N, TSCAL, CNORM, 1 )
  359. END IF
  360. *
  361. * Compute a bound on the computed solution vector to see if the
  362. * Level 2 BLAS routine ZTPSV can be used.
  363. *
  364. XMAX = ZERO
  365. DO 30 J = 1, N
  366. XMAX = MAX( XMAX, CABS2( X( J ) ) )
  367. 30 CONTINUE
  368. XBND = XMAX
  369. IF( NOTRAN ) THEN
  370. *
  371. * Compute the growth in A * x = b.
  372. *
  373. IF( UPPER ) THEN
  374. JFIRST = N
  375. JLAST = 1
  376. JINC = -1
  377. ELSE
  378. JFIRST = 1
  379. JLAST = N
  380. JINC = 1
  381. END IF
  382. *
  383. IF( TSCAL.NE.ONE ) THEN
  384. GROW = ZERO
  385. GO TO 60
  386. END IF
  387. *
  388. IF( NOUNIT ) THEN
  389. *
  390. * A is non-unit triangular.
  391. *
  392. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  393. * Initially, G(0) = max{x(i), i=1,...,n}.
  394. *
  395. GROW = HALF / MAX( XBND, SMLNUM )
  396. XBND = GROW
  397. IP = JFIRST*( JFIRST+1 ) / 2
  398. JLEN = N
  399. DO 40 J = JFIRST, JLAST, JINC
  400. *
  401. * Exit the loop if the growth factor is too small.
  402. *
  403. IF( GROW.LE.SMLNUM )
  404. $ GO TO 60
  405. *
  406. TJJS = AP( IP )
  407. TJJ = CABS1( TJJS )
  408. *
  409. IF( TJJ.GE.SMLNUM ) THEN
  410. *
  411. * M(j) = G(j-1) / abs(A(j,j))
  412. *
  413. XBND = MIN( XBND, MIN( ONE, TJJ )*GROW )
  414. ELSE
  415. *
  416. * M(j) could overflow, set XBND to 0.
  417. *
  418. XBND = ZERO
  419. END IF
  420. *
  421. IF( TJJ+CNORM( J ).GE.SMLNUM ) THEN
  422. *
  423. * G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) )
  424. *
  425. GROW = GROW*( TJJ / ( TJJ+CNORM( J ) ) )
  426. ELSE
  427. *
  428. * G(j) could overflow, set GROW to 0.
  429. *
  430. GROW = ZERO
  431. END IF
  432. IP = IP + JINC*JLEN
  433. JLEN = JLEN - 1
  434. 40 CONTINUE
  435. GROW = XBND
  436. ELSE
  437. *
  438. * A is unit triangular.
  439. *
  440. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  441. *
  442. GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  443. DO 50 J = JFIRST, JLAST, JINC
  444. *
  445. * Exit the loop if the growth factor is too small.
  446. *
  447. IF( GROW.LE.SMLNUM )
  448. $ GO TO 60
  449. *
  450. * G(j) = G(j-1)*( 1 + CNORM(j) )
  451. *
  452. GROW = GROW*( ONE / ( ONE+CNORM( J ) ) )
  453. 50 CONTINUE
  454. END IF
  455. 60 CONTINUE
  456. *
  457. ELSE
  458. *
  459. * Compute the growth in A**T * x = b or A**H * x = b.
  460. *
  461. IF( UPPER ) THEN
  462. JFIRST = 1
  463. JLAST = N
  464. JINC = 1
  465. ELSE
  466. JFIRST = N
  467. JLAST = 1
  468. JINC = -1
  469. END IF
  470. *
  471. IF( TSCAL.NE.ONE ) THEN
  472. GROW = ZERO
  473. GO TO 90
  474. END IF
  475. *
  476. IF( NOUNIT ) THEN
  477. *
  478. * A is non-unit triangular.
  479. *
  480. * Compute GROW = 1/G(j) and XBND = 1/M(j).
  481. * Initially, M(0) = max{x(i), i=1,...,n}.
  482. *
  483. GROW = HALF / MAX( XBND, SMLNUM )
  484. XBND = GROW
  485. IP = JFIRST*( JFIRST+1 ) / 2
  486. JLEN = 1
  487. DO 70 J = JFIRST, JLAST, JINC
  488. *
  489. * Exit the loop if the growth factor is too small.
  490. *
  491. IF( GROW.LE.SMLNUM )
  492. $ GO TO 90
  493. *
  494. * G(j) = max( G(j-1), M(j-1)*( 1 + CNORM(j) ) )
  495. *
  496. XJ = ONE + CNORM( J )
  497. GROW = MIN( GROW, XBND / XJ )
  498. *
  499. TJJS = AP( IP )
  500. TJJ = CABS1( TJJS )
  501. *
  502. IF( TJJ.GE.SMLNUM ) THEN
  503. *
  504. * M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j))
  505. *
  506. IF( XJ.GT.TJJ )
  507. $ XBND = XBND*( TJJ / XJ )
  508. ELSE
  509. *
  510. * M(j) could overflow, set XBND to 0.
  511. *
  512. XBND = ZERO
  513. END IF
  514. JLEN = JLEN + 1
  515. IP = IP + JINC*JLEN
  516. 70 CONTINUE
  517. GROW = MIN( GROW, XBND )
  518. ELSE
  519. *
  520. * A is unit triangular.
  521. *
  522. * Compute GROW = 1/G(j), where G(0) = max{x(i), i=1,...,n}.
  523. *
  524. GROW = MIN( ONE, HALF / MAX( XBND, SMLNUM ) )
  525. DO 80 J = JFIRST, JLAST, JINC
  526. *
  527. * Exit the loop if the growth factor is too small.
  528. *
  529. IF( GROW.LE.SMLNUM )
  530. $ GO TO 90
  531. *
  532. * G(j) = ( 1 + CNORM(j) )*G(j-1)
  533. *
  534. XJ = ONE + CNORM( J )
  535. GROW = GROW / XJ
  536. 80 CONTINUE
  537. END IF
  538. 90 CONTINUE
  539. END IF
  540. *
  541. IF( ( GROW*TSCAL ).GT.SMLNUM ) THEN
  542. *
  543. * Use the Level 2 BLAS solve if the reciprocal of the bound on
  544. * elements of X is not too small.
  545. *
  546. CALL ZTPSV( UPLO, TRANS, DIAG, N, AP, X, 1 )
  547. ELSE
  548. *
  549. * Use a Level 1 BLAS solve, scaling intermediate results.
  550. *
  551. IF( XMAX.GT.BIGNUM*HALF ) THEN
  552. *
  553. * Scale X so that its components are less than or equal to
  554. * BIGNUM in absolute value.
  555. *
  556. SCALE = ( BIGNUM*HALF ) / XMAX
  557. CALL ZDSCAL( N, SCALE, X, 1 )
  558. XMAX = BIGNUM
  559. ELSE
  560. XMAX = XMAX*TWO
  561. END IF
  562. *
  563. IF( NOTRAN ) THEN
  564. *
  565. * Solve A * x = b
  566. *
  567. IP = JFIRST*( JFIRST+1 ) / 2
  568. DO 120 J = JFIRST, JLAST, JINC
  569. *
  570. * Compute x(j) = b(j) / A(j,j), scaling x if necessary.
  571. *
  572. XJ = CABS1( X( J ) )
  573. IF( NOUNIT ) THEN
  574. TJJS = AP( IP )*TSCAL
  575. ELSE
  576. TJJS = TSCAL
  577. IF( TSCAL.EQ.ONE )
  578. $ GO TO 110
  579. END IF
  580. TJJ = CABS1( TJJS )
  581. IF( TJJ.GT.SMLNUM ) THEN
  582. *
  583. * abs(A(j,j)) > SMLNUM:
  584. *
  585. IF( TJJ.LT.ONE ) THEN
  586. IF( XJ.GT.TJJ*BIGNUM ) THEN
  587. *
  588. * Scale x by 1/b(j).
  589. *
  590. REC = ONE / XJ
  591. CALL ZDSCAL( N, REC, X, 1 )
  592. SCALE = SCALE*REC
  593. XMAX = XMAX*REC
  594. END IF
  595. END IF
  596. X( J ) = ZLADIV( X( J ), TJJS )
  597. XJ = CABS1( X( J ) )
  598. ELSE IF( TJJ.GT.ZERO ) THEN
  599. *
  600. * 0 < abs(A(j,j)) <= SMLNUM:
  601. *
  602. IF( XJ.GT.TJJ*BIGNUM ) THEN
  603. *
  604. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM
  605. * to avoid overflow when dividing by A(j,j).
  606. *
  607. REC = ( TJJ*BIGNUM ) / XJ
  608. IF( CNORM( J ).GT.ONE ) THEN
  609. *
  610. * Scale by 1/CNORM(j) to avoid overflow when
  611. * multiplying x(j) times column j.
  612. *
  613. REC = REC / CNORM( J )
  614. END IF
  615. CALL ZDSCAL( N, REC, X, 1 )
  616. SCALE = SCALE*REC
  617. XMAX = XMAX*REC
  618. END IF
  619. X( J ) = ZLADIV( X( J ), TJJS )
  620. XJ = CABS1( X( J ) )
  621. ELSE
  622. *
  623. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  624. * scale = 0, and compute a solution to A*x = 0.
  625. *
  626. DO 100 I = 1, N
  627. X( I ) = ZERO
  628. 100 CONTINUE
  629. X( J ) = ONE
  630. XJ = ONE
  631. SCALE = ZERO
  632. XMAX = ZERO
  633. END IF
  634. 110 CONTINUE
  635. *
  636. * Scale x if necessary to avoid overflow when adding a
  637. * multiple of column j of A.
  638. *
  639. IF( XJ.GT.ONE ) THEN
  640. REC = ONE / XJ
  641. IF( CNORM( J ).GT.( BIGNUM-XMAX )*REC ) THEN
  642. *
  643. * Scale x by 1/(2*abs(x(j))).
  644. *
  645. REC = REC*HALF
  646. CALL ZDSCAL( N, REC, X, 1 )
  647. SCALE = SCALE*REC
  648. END IF
  649. ELSE IF( XJ*CNORM( J ).GT.( BIGNUM-XMAX ) ) THEN
  650. *
  651. * Scale x by 1/2.
  652. *
  653. CALL ZDSCAL( N, HALF, X, 1 )
  654. SCALE = SCALE*HALF
  655. END IF
  656. *
  657. IF( UPPER ) THEN
  658. IF( J.GT.1 ) THEN
  659. *
  660. * Compute the update
  661. * x(1:j-1) := x(1:j-1) - x(j) * A(1:j-1,j)
  662. *
  663. CALL ZAXPY( J-1, -X( J )*TSCAL, AP( IP-J+1 ), 1, X,
  664. $ 1 )
  665. I = IZAMAX( J-1, X, 1 )
  666. XMAX = CABS1( X( I ) )
  667. END IF
  668. IP = IP - J
  669. ELSE
  670. IF( J.LT.N ) THEN
  671. *
  672. * Compute the update
  673. * x(j+1:n) := x(j+1:n) - x(j) * A(j+1:n,j)
  674. *
  675. CALL ZAXPY( N-J, -X( J )*TSCAL, AP( IP+1 ), 1,
  676. $ X( J+1 ), 1 )
  677. I = J + IZAMAX( N-J, X( J+1 ), 1 )
  678. XMAX = CABS1( X( I ) )
  679. END IF
  680. IP = IP + N - J + 1
  681. END IF
  682. 120 CONTINUE
  683. *
  684. ELSE IF( LSAME( TRANS, 'T' ) ) THEN
  685. *
  686. * Solve A**T * x = b
  687. *
  688. IP = JFIRST*( JFIRST+1 ) / 2
  689. JLEN = 1
  690. DO 170 J = JFIRST, JLAST, JINC
  691. *
  692. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  693. * k<>j
  694. *
  695. XJ = CABS1( X( J ) )
  696. USCAL = TSCAL
  697. REC = ONE / MAX( XMAX, ONE )
  698. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  699. *
  700. * If x(j) could overflow, scale x by 1/(2*XMAX).
  701. *
  702. REC = REC*HALF
  703. IF( NOUNIT ) THEN
  704. TJJS = AP( IP )*TSCAL
  705. ELSE
  706. TJJS = TSCAL
  707. END IF
  708. TJJ = CABS1( TJJS )
  709. IF( TJJ.GT.ONE ) THEN
  710. *
  711. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  712. *
  713. REC = MIN( ONE, REC*TJJ )
  714. USCAL = ZLADIV( USCAL, TJJS )
  715. END IF
  716. IF( REC.LT.ONE ) THEN
  717. CALL ZDSCAL( N, REC, X, 1 )
  718. SCALE = SCALE*REC
  719. XMAX = XMAX*REC
  720. END IF
  721. END IF
  722. *
  723. CSUMJ = ZERO
  724. IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
  725. *
  726. * If the scaling needed for A in the dot product is 1,
  727. * call ZDOTU to perform the dot product.
  728. *
  729. IF( UPPER ) THEN
  730. CSUMJ = ZDOTU( J-1, AP( IP-J+1 ), 1, X, 1 )
  731. ELSE IF( J.LT.N ) THEN
  732. CSUMJ = ZDOTU( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
  733. END IF
  734. ELSE
  735. *
  736. * Otherwise, use in-line code for the dot product.
  737. *
  738. IF( UPPER ) THEN
  739. DO 130 I = 1, J - 1
  740. CSUMJ = CSUMJ + ( AP( IP-J+I )*USCAL )*X( I )
  741. 130 CONTINUE
  742. ELSE IF( J.LT.N ) THEN
  743. DO 140 I = 1, N - J
  744. CSUMJ = CSUMJ + ( AP( IP+I )*USCAL )*X( J+I )
  745. 140 CONTINUE
  746. END IF
  747. END IF
  748. *
  749. IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
  750. *
  751. * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  752. * was not used to scale the dotproduct.
  753. *
  754. X( J ) = X( J ) - CSUMJ
  755. XJ = CABS1( X( J ) )
  756. IF( NOUNIT ) THEN
  757. *
  758. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  759. *
  760. TJJS = AP( IP )*TSCAL
  761. ELSE
  762. TJJS = TSCAL
  763. IF( TSCAL.EQ.ONE )
  764. $ GO TO 160
  765. END IF
  766. TJJ = CABS1( TJJS )
  767. IF( TJJ.GT.SMLNUM ) THEN
  768. *
  769. * abs(A(j,j)) > SMLNUM:
  770. *
  771. IF( TJJ.LT.ONE ) THEN
  772. IF( XJ.GT.TJJ*BIGNUM ) THEN
  773. *
  774. * Scale X by 1/abs(x(j)).
  775. *
  776. REC = ONE / XJ
  777. CALL ZDSCAL( N, REC, X, 1 )
  778. SCALE = SCALE*REC
  779. XMAX = XMAX*REC
  780. END IF
  781. END IF
  782. X( J ) = ZLADIV( X( J ), TJJS )
  783. ELSE IF( TJJ.GT.ZERO ) THEN
  784. *
  785. * 0 < abs(A(j,j)) <= SMLNUM:
  786. *
  787. IF( XJ.GT.TJJ*BIGNUM ) THEN
  788. *
  789. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  790. *
  791. REC = ( TJJ*BIGNUM ) / XJ
  792. CALL ZDSCAL( N, REC, X, 1 )
  793. SCALE = SCALE*REC
  794. XMAX = XMAX*REC
  795. END IF
  796. X( J ) = ZLADIV( X( J ), TJJS )
  797. ELSE
  798. *
  799. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  800. * scale = 0 and compute a solution to A**T *x = 0.
  801. *
  802. DO 150 I = 1, N
  803. X( I ) = ZERO
  804. 150 CONTINUE
  805. X( J ) = ONE
  806. SCALE = ZERO
  807. XMAX = ZERO
  808. END IF
  809. 160 CONTINUE
  810. ELSE
  811. *
  812. * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  813. * product has already been divided by 1/A(j,j).
  814. *
  815. X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
  816. END IF
  817. XMAX = MAX( XMAX, CABS1( X( J ) ) )
  818. JLEN = JLEN + 1
  819. IP = IP + JINC*JLEN
  820. 170 CONTINUE
  821. *
  822. ELSE
  823. *
  824. * Solve A**H * x = b
  825. *
  826. IP = JFIRST*( JFIRST+1 ) / 2
  827. JLEN = 1
  828. DO 220 J = JFIRST, JLAST, JINC
  829. *
  830. * Compute x(j) = b(j) - sum A(k,j)*x(k).
  831. * k<>j
  832. *
  833. XJ = CABS1( X( J ) )
  834. USCAL = TSCAL
  835. REC = ONE / MAX( XMAX, ONE )
  836. IF( CNORM( J ).GT.( BIGNUM-XJ )*REC ) THEN
  837. *
  838. * If x(j) could overflow, scale x by 1/(2*XMAX).
  839. *
  840. REC = REC*HALF
  841. IF( NOUNIT ) THEN
  842. TJJS = DCONJG( AP( IP ) )*TSCAL
  843. ELSE
  844. TJJS = TSCAL
  845. END IF
  846. TJJ = CABS1( TJJS )
  847. IF( TJJ.GT.ONE ) THEN
  848. *
  849. * Divide by A(j,j) when scaling x if A(j,j) > 1.
  850. *
  851. REC = MIN( ONE, REC*TJJ )
  852. USCAL = ZLADIV( USCAL, TJJS )
  853. END IF
  854. IF( REC.LT.ONE ) THEN
  855. CALL ZDSCAL( N, REC, X, 1 )
  856. SCALE = SCALE*REC
  857. XMAX = XMAX*REC
  858. END IF
  859. END IF
  860. *
  861. CSUMJ = ZERO
  862. IF( USCAL.EQ.DCMPLX( ONE ) ) THEN
  863. *
  864. * If the scaling needed for A in the dot product is 1,
  865. * call ZDOTC to perform the dot product.
  866. *
  867. IF( UPPER ) THEN
  868. CSUMJ = ZDOTC( J-1, AP( IP-J+1 ), 1, X, 1 )
  869. ELSE IF( J.LT.N ) THEN
  870. CSUMJ = ZDOTC( N-J, AP( IP+1 ), 1, X( J+1 ), 1 )
  871. END IF
  872. ELSE
  873. *
  874. * Otherwise, use in-line code for the dot product.
  875. *
  876. IF( UPPER ) THEN
  877. DO 180 I = 1, J - 1
  878. CSUMJ = CSUMJ + ( DCONJG( AP( IP-J+I ) )*USCAL )
  879. $ *X( I )
  880. 180 CONTINUE
  881. ELSE IF( J.LT.N ) THEN
  882. DO 190 I = 1, N - J
  883. CSUMJ = CSUMJ + ( DCONJG( AP( IP+I ) )*USCAL )*
  884. $ X( J+I )
  885. 190 CONTINUE
  886. END IF
  887. END IF
  888. *
  889. IF( USCAL.EQ.DCMPLX( TSCAL ) ) THEN
  890. *
  891. * Compute x(j) := ( x(j) - CSUMJ ) / A(j,j) if 1/A(j,j)
  892. * was not used to scale the dotproduct.
  893. *
  894. X( J ) = X( J ) - CSUMJ
  895. XJ = CABS1( X( J ) )
  896. IF( NOUNIT ) THEN
  897. *
  898. * Compute x(j) = x(j) / A(j,j), scaling if necessary.
  899. *
  900. TJJS = DCONJG( AP( IP ) )*TSCAL
  901. ELSE
  902. TJJS = TSCAL
  903. IF( TSCAL.EQ.ONE )
  904. $ GO TO 210
  905. END IF
  906. TJJ = CABS1( TJJS )
  907. IF( TJJ.GT.SMLNUM ) THEN
  908. *
  909. * abs(A(j,j)) > SMLNUM:
  910. *
  911. IF( TJJ.LT.ONE ) THEN
  912. IF( XJ.GT.TJJ*BIGNUM ) THEN
  913. *
  914. * Scale X by 1/abs(x(j)).
  915. *
  916. REC = ONE / XJ
  917. CALL ZDSCAL( N, REC, X, 1 )
  918. SCALE = SCALE*REC
  919. XMAX = XMAX*REC
  920. END IF
  921. END IF
  922. X( J ) = ZLADIV( X( J ), TJJS )
  923. ELSE IF( TJJ.GT.ZERO ) THEN
  924. *
  925. * 0 < abs(A(j,j)) <= SMLNUM:
  926. *
  927. IF( XJ.GT.TJJ*BIGNUM ) THEN
  928. *
  929. * Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM.
  930. *
  931. REC = ( TJJ*BIGNUM ) / XJ
  932. CALL ZDSCAL( N, REC, X, 1 )
  933. SCALE = SCALE*REC
  934. XMAX = XMAX*REC
  935. END IF
  936. X( J ) = ZLADIV( X( J ), TJJS )
  937. ELSE
  938. *
  939. * A(j,j) = 0: Set x(1:n) = 0, x(j) = 1, and
  940. * scale = 0 and compute a solution to A**H *x = 0.
  941. *
  942. DO 200 I = 1, N
  943. X( I ) = ZERO
  944. 200 CONTINUE
  945. X( J ) = ONE
  946. SCALE = ZERO
  947. XMAX = ZERO
  948. END IF
  949. 210 CONTINUE
  950. ELSE
  951. *
  952. * Compute x(j) := x(j) / A(j,j) - CSUMJ if the dot
  953. * product has already been divided by 1/A(j,j).
  954. *
  955. X( J ) = ZLADIV( X( J ), TJJS ) - CSUMJ
  956. END IF
  957. XMAX = MAX( XMAX, CABS1( X( J ) ) )
  958. JLEN = JLEN + 1
  959. IP = IP + JINC*JLEN
  960. 220 CONTINUE
  961. END IF
  962. SCALE = SCALE / TSCAL
  963. END IF
  964. *
  965. * Scale the column norms by 1/TSCAL for return.
  966. *
  967. IF( TSCAL.NE.ONE ) THEN
  968. CALL DSCAL( N, ONE / TSCAL, CNORM, 1 )
  969. END IF
  970. *
  971. RETURN
  972. *
  973. * End of ZLATPS
  974. *
  975. END