You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

slarfb.f 21 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709
  1. *> \brief \b SLARFB applies a block reflector or its transpose to a general rectangular matrix.
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download SLARFB + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarfb.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarfb.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarfb.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE SLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  22. * T, LDT, C, LDC, WORK, LDWORK )
  23. *
  24. * .. Scalar Arguments ..
  25. * CHARACTER DIRECT, SIDE, STOREV, TRANS
  26. * INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  27. * ..
  28. * .. Array Arguments ..
  29. * REAL C( LDC, * ), T( LDT, * ), V( LDV, * ),
  30. * $ WORK( LDWORK, * )
  31. * ..
  32. *
  33. *
  34. *> \par Purpose:
  35. * =============
  36. *>
  37. *> \verbatim
  38. *>
  39. *> SLARFB applies a real block reflector H or its transpose H**T to a
  40. *> real m by n matrix C, from either the left or the right.
  41. *> \endverbatim
  42. *
  43. * Arguments:
  44. * ==========
  45. *
  46. *> \param[in] SIDE
  47. *> \verbatim
  48. *> SIDE is CHARACTER*1
  49. *> = 'L': apply H or H**T from the Left
  50. *> = 'R': apply H or H**T from the Right
  51. *> \endverbatim
  52. *>
  53. *> \param[in] TRANS
  54. *> \verbatim
  55. *> TRANS is CHARACTER*1
  56. *> = 'N': apply H (No transpose)
  57. *> = 'T': apply H**T (Transpose)
  58. *> \endverbatim
  59. *>
  60. *> \param[in] DIRECT
  61. *> \verbatim
  62. *> DIRECT is CHARACTER*1
  63. *> Indicates how H is formed from a product of elementary
  64. *> reflectors
  65. *> = 'F': H = H(1) H(2) . . . H(k) (Forward)
  66. *> = 'B': H = H(k) . . . H(2) H(1) (Backward)
  67. *> \endverbatim
  68. *>
  69. *> \param[in] STOREV
  70. *> \verbatim
  71. *> STOREV is CHARACTER*1
  72. *> Indicates how the vectors which define the elementary
  73. *> reflectors are stored:
  74. *> = 'C': Columnwise
  75. *> = 'R': Rowwise
  76. *> \endverbatim
  77. *>
  78. *> \param[in] M
  79. *> \verbatim
  80. *> M is INTEGER
  81. *> The number of rows of the matrix C.
  82. *> \endverbatim
  83. *>
  84. *> \param[in] N
  85. *> \verbatim
  86. *> N is INTEGER
  87. *> The number of columns of the matrix C.
  88. *> \endverbatim
  89. *>
  90. *> \param[in] K
  91. *> \verbatim
  92. *> K is INTEGER
  93. *> The order of the matrix T (= the number of elementary
  94. *> reflectors whose product defines the block reflector).
  95. *> If SIDE = 'L', M >= K >= 0;
  96. *> if SIDE = 'R', N >= K >= 0.
  97. *> \endverbatim
  98. *>
  99. *> \param[in] V
  100. *> \verbatim
  101. *> V is REAL array, dimension
  102. *> (LDV,K) if STOREV = 'C'
  103. *> (LDV,M) if STOREV = 'R' and SIDE = 'L'
  104. *> (LDV,N) if STOREV = 'R' and SIDE = 'R'
  105. *> The matrix V. See Further Details.
  106. *> \endverbatim
  107. *>
  108. *> \param[in] LDV
  109. *> \verbatim
  110. *> LDV is INTEGER
  111. *> The leading dimension of the array V.
  112. *> If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M);
  113. *> if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N);
  114. *> if STOREV = 'R', LDV >= K.
  115. *> \endverbatim
  116. *>
  117. *> \param[in] T
  118. *> \verbatim
  119. *> T is REAL array, dimension (LDT,K)
  120. *> The triangular k by k matrix T in the representation of the
  121. *> block reflector.
  122. *> \endverbatim
  123. *>
  124. *> \param[in] LDT
  125. *> \verbatim
  126. *> LDT is INTEGER
  127. *> The leading dimension of the array T. LDT >= K.
  128. *> \endverbatim
  129. *>
  130. *> \param[in,out] C
  131. *> \verbatim
  132. *> C is REAL array, dimension (LDC,N)
  133. *> On entry, the m by n matrix C.
  134. *> On exit, C is overwritten by H*C or H**T*C or C*H or C*H**T.
  135. *> \endverbatim
  136. *>
  137. *> \param[in] LDC
  138. *> \verbatim
  139. *> LDC is INTEGER
  140. *> The leading dimension of the array C. LDC >= max(1,M).
  141. *> \endverbatim
  142. *>
  143. *> \param[out] WORK
  144. *> \verbatim
  145. *> WORK is REAL array, dimension (LDWORK,K)
  146. *> \endverbatim
  147. *>
  148. *> \param[in] LDWORK
  149. *> \verbatim
  150. *> LDWORK is INTEGER
  151. *> The leading dimension of the array WORK.
  152. *> If SIDE = 'L', LDWORK >= max(1,N);
  153. *> if SIDE = 'R', LDWORK >= max(1,M).
  154. *> \endverbatim
  155. *
  156. * Authors:
  157. * ========
  158. *
  159. *> \author Univ. of Tennessee
  160. *> \author Univ. of California Berkeley
  161. *> \author Univ. of Colorado Denver
  162. *> \author NAG Ltd.
  163. *
  164. *> \ingroup realOTHERauxiliary
  165. *
  166. *> \par Further Details:
  167. * =====================
  168. *>
  169. *> \verbatim
  170. *>
  171. *> The shape of the matrix V and the storage of the vectors which define
  172. *> the H(i) is best illustrated by the following example with n = 5 and
  173. *> k = 3. The elements equal to 1 are not stored; the corresponding
  174. *> array elements are modified but restored on exit. The rest of the
  175. *> array is not used.
  176. *>
  177. *> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
  178. *>
  179. *> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
  180. *> ( v1 1 ) ( 1 v2 v2 v2 )
  181. *> ( v1 v2 1 ) ( 1 v3 v3 )
  182. *> ( v1 v2 v3 )
  183. *> ( v1 v2 v3 )
  184. *>
  185. *> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
  186. *>
  187. *> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
  188. *> ( v1 v2 v3 ) ( v2 v2 v2 1 )
  189. *> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
  190. *> ( 1 v3 )
  191. *> ( 1 )
  192. *> \endverbatim
  193. *>
  194. * =====================================================================
  195. SUBROUTINE SLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV,
  196. $ T, LDT, C, LDC, WORK, LDWORK )
  197. *
  198. * -- LAPACK auxiliary routine --
  199. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  200. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  201. *
  202. * .. Scalar Arguments ..
  203. CHARACTER DIRECT, SIDE, STOREV, TRANS
  204. INTEGER K, LDC, LDT, LDV, LDWORK, M, N
  205. * ..
  206. * .. Array Arguments ..
  207. REAL C( LDC, * ), T( LDT, * ), V( LDV, * ),
  208. $ WORK( LDWORK, * )
  209. * ..
  210. *
  211. * =====================================================================
  212. *
  213. * .. Parameters ..
  214. REAL ONE
  215. PARAMETER ( ONE = 1.0E+0 )
  216. * ..
  217. * .. Local Scalars ..
  218. CHARACTER TRANST
  219. INTEGER I, J
  220. * ..
  221. * .. External Functions ..
  222. LOGICAL LSAME
  223. EXTERNAL LSAME
  224. * ..
  225. * .. External Subroutines ..
  226. EXTERNAL SCOPY, SGEMM, STRMM
  227. * ..
  228. * .. Executable Statements ..
  229. *
  230. * Quick return if possible
  231. *
  232. IF( M.LE.0 .OR. N.LE.0 )
  233. $ RETURN
  234. *
  235. IF( LSAME( TRANS, 'N' ) ) THEN
  236. TRANST = 'T'
  237. ELSE
  238. TRANST = 'N'
  239. END IF
  240. *
  241. IF( LSAME( STOREV, 'C' ) ) THEN
  242. *
  243. IF( LSAME( DIRECT, 'F' ) ) THEN
  244. *
  245. * Let V = ( V1 ) (first K rows)
  246. * ( V2 )
  247. * where V1 is unit lower triangular.
  248. *
  249. IF( LSAME( SIDE, 'L' ) ) THEN
  250. *
  251. * Form H * C or H**T * C where C = ( C1 )
  252. * ( C2 )
  253. *
  254. * W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK)
  255. *
  256. * W := C1**T
  257. *
  258. DO 10 J = 1, K
  259. CALL SCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  260. 10 CONTINUE
  261. *
  262. * W := W * V1
  263. *
  264. CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
  265. $ K, ONE, V, LDV, WORK, LDWORK )
  266. IF( M.GT.K ) THEN
  267. *
  268. * W := W + C2**T * V2
  269. *
  270. CALL SGEMM( 'Transpose', 'No transpose', N, K, M-K,
  271. $ ONE, C( K+1, 1 ), LDC, V( K+1, 1 ), LDV,
  272. $ ONE, WORK, LDWORK )
  273. END IF
  274. *
  275. * W := W * T**T or W * T
  276. *
  277. CALL STRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
  278. $ ONE, T, LDT, WORK, LDWORK )
  279. *
  280. * C := C - V * W**T
  281. *
  282. IF( M.GT.K ) THEN
  283. *
  284. * C2 := C2 - V2 * W**T
  285. *
  286. CALL SGEMM( 'No transpose', 'Transpose', M-K, N, K,
  287. $ -ONE, V( K+1, 1 ), LDV, WORK, LDWORK, ONE,
  288. $ C( K+1, 1 ), LDC )
  289. END IF
  290. *
  291. * W := W * V1**T
  292. *
  293. CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', N, K,
  294. $ ONE, V, LDV, WORK, LDWORK )
  295. *
  296. * C1 := C1 - W**T
  297. *
  298. DO 30 J = 1, K
  299. DO 20 I = 1, N
  300. C( J, I ) = C( J, I ) - WORK( I, J )
  301. 20 CONTINUE
  302. 30 CONTINUE
  303. *
  304. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  305. *
  306. * Form C * H or C * H**T where C = ( C1 C2 )
  307. *
  308. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  309. *
  310. * W := C1
  311. *
  312. DO 40 J = 1, K
  313. CALL SCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
  314. 40 CONTINUE
  315. *
  316. * W := W * V1
  317. *
  318. CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
  319. $ K, ONE, V, LDV, WORK, LDWORK )
  320. IF( N.GT.K ) THEN
  321. *
  322. * W := W + C2 * V2
  323. *
  324. CALL SGEMM( 'No transpose', 'No transpose', M, K, N-K,
  325. $ ONE, C( 1, K+1 ), LDC, V( K+1, 1 ), LDV,
  326. $ ONE, WORK, LDWORK )
  327. END IF
  328. *
  329. * W := W * T or W * T**T
  330. *
  331. CALL STRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
  332. $ ONE, T, LDT, WORK, LDWORK )
  333. *
  334. * C := C - W * V**T
  335. *
  336. IF( N.GT.K ) THEN
  337. *
  338. * C2 := C2 - W * V2**T
  339. *
  340. CALL SGEMM( 'No transpose', 'Transpose', M, N-K, K,
  341. $ -ONE, WORK, LDWORK, V( K+1, 1 ), LDV, ONE,
  342. $ C( 1, K+1 ), LDC )
  343. END IF
  344. *
  345. * W := W * V1**T
  346. *
  347. CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', M, K,
  348. $ ONE, V, LDV, WORK, LDWORK )
  349. *
  350. * C1 := C1 - W
  351. *
  352. DO 60 J = 1, K
  353. DO 50 I = 1, M
  354. C( I, J ) = C( I, J ) - WORK( I, J )
  355. 50 CONTINUE
  356. 60 CONTINUE
  357. END IF
  358. *
  359. ELSE
  360. *
  361. * Let V = ( V1 )
  362. * ( V2 ) (last K rows)
  363. * where V2 is unit upper triangular.
  364. *
  365. IF( LSAME( SIDE, 'L' ) ) THEN
  366. *
  367. * Form H * C or H**T * C where C = ( C1 )
  368. * ( C2 )
  369. *
  370. * W := C**T * V = (C1**T * V1 + C2**T * V2) (stored in WORK)
  371. *
  372. * W := C2**T
  373. *
  374. DO 70 J = 1, K
  375. CALL SCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
  376. 70 CONTINUE
  377. *
  378. * W := W * V2
  379. *
  380. CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
  381. $ K, ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
  382. IF( M.GT.K ) THEN
  383. *
  384. * W := W + C1**T * V1
  385. *
  386. CALL SGEMM( 'Transpose', 'No transpose', N, K, M-K,
  387. $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
  388. END IF
  389. *
  390. * W := W * T**T or W * T
  391. *
  392. CALL STRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
  393. $ ONE, T, LDT, WORK, LDWORK )
  394. *
  395. * C := C - V * W**T
  396. *
  397. IF( M.GT.K ) THEN
  398. *
  399. * C1 := C1 - V1 * W**T
  400. *
  401. CALL SGEMM( 'No transpose', 'Transpose', M-K, N, K,
  402. $ -ONE, V, LDV, WORK, LDWORK, ONE, C, LDC )
  403. END IF
  404. *
  405. * W := W * V2**T
  406. *
  407. CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', N, K,
  408. $ ONE, V( M-K+1, 1 ), LDV, WORK, LDWORK )
  409. *
  410. * C2 := C2 - W**T
  411. *
  412. DO 90 J = 1, K
  413. DO 80 I = 1, N
  414. C( M-K+J, I ) = C( M-K+J, I ) - WORK( I, J )
  415. 80 CONTINUE
  416. 90 CONTINUE
  417. *
  418. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  419. *
  420. * Form C * H or C * H' where C = ( C1 C2 )
  421. *
  422. * W := C * V = (C1*V1 + C2*V2) (stored in WORK)
  423. *
  424. * W := C2
  425. *
  426. DO 100 J = 1, K
  427. CALL SCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
  428. 100 CONTINUE
  429. *
  430. * W := W * V2
  431. *
  432. CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
  433. $ K, ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
  434. IF( N.GT.K ) THEN
  435. *
  436. * W := W + C1 * V1
  437. *
  438. CALL SGEMM( 'No transpose', 'No transpose', M, K, N-K,
  439. $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
  440. END IF
  441. *
  442. * W := W * T or W * T**T
  443. *
  444. CALL STRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
  445. $ ONE, T, LDT, WORK, LDWORK )
  446. *
  447. * C := C - W * V**T
  448. *
  449. IF( N.GT.K ) THEN
  450. *
  451. * C1 := C1 - W * V1**T
  452. *
  453. CALL SGEMM( 'No transpose', 'Transpose', M, N-K, K,
  454. $ -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
  455. END IF
  456. *
  457. * W := W * V2**T
  458. *
  459. CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', M, K,
  460. $ ONE, V( N-K+1, 1 ), LDV, WORK, LDWORK )
  461. *
  462. * C2 := C2 - W
  463. *
  464. DO 120 J = 1, K
  465. DO 110 I = 1, M
  466. C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  467. 110 CONTINUE
  468. 120 CONTINUE
  469. END IF
  470. END IF
  471. *
  472. ELSE IF( LSAME( STOREV, 'R' ) ) THEN
  473. *
  474. IF( LSAME( DIRECT, 'F' ) ) THEN
  475. *
  476. * Let V = ( V1 V2 ) (V1: first K columns)
  477. * where V1 is unit upper triangular.
  478. *
  479. IF( LSAME( SIDE, 'L' ) ) THEN
  480. *
  481. * Form H * C or H**T * C where C = ( C1 )
  482. * ( C2 )
  483. *
  484. * W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK)
  485. *
  486. * W := C1**T
  487. *
  488. DO 130 J = 1, K
  489. CALL SCOPY( N, C( J, 1 ), LDC, WORK( 1, J ), 1 )
  490. 130 CONTINUE
  491. *
  492. * W := W * V1**T
  493. *
  494. CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', N, K,
  495. $ ONE, V, LDV, WORK, LDWORK )
  496. IF( M.GT.K ) THEN
  497. *
  498. * W := W + C2**T * V2**T
  499. *
  500. CALL SGEMM( 'Transpose', 'Transpose', N, K, M-K, ONE,
  501. $ C( K+1, 1 ), LDC, V( 1, K+1 ), LDV, ONE,
  502. $ WORK, LDWORK )
  503. END IF
  504. *
  505. * W := W * T**T or W * T
  506. *
  507. CALL STRMM( 'Right', 'Upper', TRANST, 'Non-unit', N, K,
  508. $ ONE, T, LDT, WORK, LDWORK )
  509. *
  510. * C := C - V**T * W**T
  511. *
  512. IF( M.GT.K ) THEN
  513. *
  514. * C2 := C2 - V2**T * W**T
  515. *
  516. CALL SGEMM( 'Transpose', 'Transpose', M-K, N, K, -ONE,
  517. $ V( 1, K+1 ), LDV, WORK, LDWORK, ONE,
  518. $ C( K+1, 1 ), LDC )
  519. END IF
  520. *
  521. * W := W * V1
  522. *
  523. CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', N,
  524. $ K, ONE, V, LDV, WORK, LDWORK )
  525. *
  526. * C1 := C1 - W**T
  527. *
  528. DO 150 J = 1, K
  529. DO 140 I = 1, N
  530. C( J, I ) = C( J, I ) - WORK( I, J )
  531. 140 CONTINUE
  532. 150 CONTINUE
  533. *
  534. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  535. *
  536. * Form C * H or C * H**T where C = ( C1 C2 )
  537. *
  538. * W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK)
  539. *
  540. * W := C1
  541. *
  542. DO 160 J = 1, K
  543. CALL SCOPY( M, C( 1, J ), 1, WORK( 1, J ), 1 )
  544. 160 CONTINUE
  545. *
  546. * W := W * V1**T
  547. *
  548. CALL STRMM( 'Right', 'Upper', 'Transpose', 'Unit', M, K,
  549. $ ONE, V, LDV, WORK, LDWORK )
  550. IF( N.GT.K ) THEN
  551. *
  552. * W := W + C2 * V2**T
  553. *
  554. CALL SGEMM( 'No transpose', 'Transpose', M, K, N-K,
  555. $ ONE, C( 1, K+1 ), LDC, V( 1, K+1 ), LDV,
  556. $ ONE, WORK, LDWORK )
  557. END IF
  558. *
  559. * W := W * T or W * T**T
  560. *
  561. CALL STRMM( 'Right', 'Upper', TRANS, 'Non-unit', M, K,
  562. $ ONE, T, LDT, WORK, LDWORK )
  563. *
  564. * C := C - W * V
  565. *
  566. IF( N.GT.K ) THEN
  567. *
  568. * C2 := C2 - W * V2
  569. *
  570. CALL SGEMM( 'No transpose', 'No transpose', M, N-K, K,
  571. $ -ONE, WORK, LDWORK, V( 1, K+1 ), LDV, ONE,
  572. $ C( 1, K+1 ), LDC )
  573. END IF
  574. *
  575. * W := W * V1
  576. *
  577. CALL STRMM( 'Right', 'Upper', 'No transpose', 'Unit', M,
  578. $ K, ONE, V, LDV, WORK, LDWORK )
  579. *
  580. * C1 := C1 - W
  581. *
  582. DO 180 J = 1, K
  583. DO 170 I = 1, M
  584. C( I, J ) = C( I, J ) - WORK( I, J )
  585. 170 CONTINUE
  586. 180 CONTINUE
  587. *
  588. END IF
  589. *
  590. ELSE
  591. *
  592. * Let V = ( V1 V2 ) (V2: last K columns)
  593. * where V2 is unit lower triangular.
  594. *
  595. IF( LSAME( SIDE, 'L' ) ) THEN
  596. *
  597. * Form H * C or H**T * C where C = ( C1 )
  598. * ( C2 )
  599. *
  600. * W := C**T * V**T = (C1**T * V1**T + C2**T * V2**T) (stored in WORK)
  601. *
  602. * W := C2**T
  603. *
  604. DO 190 J = 1, K
  605. CALL SCOPY( N, C( M-K+J, 1 ), LDC, WORK( 1, J ), 1 )
  606. 190 CONTINUE
  607. *
  608. * W := W * V2**T
  609. *
  610. CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', N, K,
  611. $ ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
  612. IF( M.GT.K ) THEN
  613. *
  614. * W := W + C1**T * V1**T
  615. *
  616. CALL SGEMM( 'Transpose', 'Transpose', N, K, M-K, ONE,
  617. $ C, LDC, V, LDV, ONE, WORK, LDWORK )
  618. END IF
  619. *
  620. * W := W * T**T or W * T
  621. *
  622. CALL STRMM( 'Right', 'Lower', TRANST, 'Non-unit', N, K,
  623. $ ONE, T, LDT, WORK, LDWORK )
  624. *
  625. * C := C - V**T * W**T
  626. *
  627. IF( M.GT.K ) THEN
  628. *
  629. * C1 := C1 - V1**T * W**T
  630. *
  631. CALL SGEMM( 'Transpose', 'Transpose', M-K, N, K, -ONE,
  632. $ V, LDV, WORK, LDWORK, ONE, C, LDC )
  633. END IF
  634. *
  635. * W := W * V2
  636. *
  637. CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', N,
  638. $ K, ONE, V( 1, M-K+1 ), LDV, WORK, LDWORK )
  639. *
  640. * C2 := C2 - W**T
  641. *
  642. DO 210 J = 1, K
  643. DO 200 I = 1, N
  644. C( M-K+J, I ) = C( M-K+J, I ) - WORK( I, J )
  645. 200 CONTINUE
  646. 210 CONTINUE
  647. *
  648. ELSE IF( LSAME( SIDE, 'R' ) ) THEN
  649. *
  650. * Form C * H or C * H**T where C = ( C1 C2 )
  651. *
  652. * W := C * V**T = (C1*V1**T + C2*V2**T) (stored in WORK)
  653. *
  654. * W := C2
  655. *
  656. DO 220 J = 1, K
  657. CALL SCOPY( M, C( 1, N-K+J ), 1, WORK( 1, J ), 1 )
  658. 220 CONTINUE
  659. *
  660. * W := W * V2**T
  661. *
  662. CALL STRMM( 'Right', 'Lower', 'Transpose', 'Unit', M, K,
  663. $ ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
  664. IF( N.GT.K ) THEN
  665. *
  666. * W := W + C1 * V1**T
  667. *
  668. CALL SGEMM( 'No transpose', 'Transpose', M, K, N-K,
  669. $ ONE, C, LDC, V, LDV, ONE, WORK, LDWORK )
  670. END IF
  671. *
  672. * W := W * T or W * T**T
  673. *
  674. CALL STRMM( 'Right', 'Lower', TRANS, 'Non-unit', M, K,
  675. $ ONE, T, LDT, WORK, LDWORK )
  676. *
  677. * C := C - W * V
  678. *
  679. IF( N.GT.K ) THEN
  680. *
  681. * C1 := C1 - W * V1
  682. *
  683. CALL SGEMM( 'No transpose', 'No transpose', M, N-K, K,
  684. $ -ONE, WORK, LDWORK, V, LDV, ONE, C, LDC )
  685. END IF
  686. *
  687. * W := W * V2
  688. *
  689. CALL STRMM( 'Right', 'Lower', 'No transpose', 'Unit', M,
  690. $ K, ONE, V( 1, N-K+1 ), LDV, WORK, LDWORK )
  691. *
  692. * C1 := C1 - W
  693. *
  694. DO 240 J = 1, K
  695. DO 230 I = 1, M
  696. C( I, N-K+J ) = C( I, N-K+J ) - WORK( I, J )
  697. 230 CONTINUE
  698. 240 CONTINUE
  699. *
  700. END IF
  701. *
  702. END IF
  703. END IF
  704. *
  705. RETURN
  706. *
  707. * End of SLARFB
  708. *
  709. END