You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

dlarmm.c 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605
  1. #include <math.h>
  2. #include <stdlib.h>
  3. #include <string.h>
  4. #include <stdio.h>
  5. #include <complex.h>
  6. #ifdef complex
  7. #undef complex
  8. #endif
  9. #ifdef I
  10. #undef I
  11. #endif
  12. #if defined(_WIN64)
  13. typedef long long BLASLONG;
  14. typedef unsigned long long BLASULONG;
  15. #else
  16. typedef long BLASLONG;
  17. typedef unsigned long BLASULONG;
  18. #endif
  19. #ifdef LAPACK_ILP64
  20. typedef BLASLONG blasint;
  21. #if defined(_WIN64)
  22. #define blasabs(x) llabs(x)
  23. #else
  24. #define blasabs(x) labs(x)
  25. #endif
  26. #else
  27. typedef int blasint;
  28. #define blasabs(x) abs(x)
  29. #endif
  30. typedef blasint integer;
  31. typedef unsigned int uinteger;
  32. typedef char *address;
  33. typedef short int shortint;
  34. typedef float real;
  35. typedef double doublereal;
  36. typedef struct { real r, i; } complex;
  37. typedef struct { doublereal r, i; } doublecomplex;
  38. #ifdef _MSC_VER
  39. static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
  40. static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
  41. static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
  42. static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
  43. #else
  44. static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
  45. static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
  46. static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
  47. static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
  48. #endif
  49. #define pCf(z) (*_pCf(z))
  50. #define pCd(z) (*_pCd(z))
  51. typedef int logical;
  52. typedef short int shortlogical;
  53. typedef char logical1;
  54. typedef char integer1;
  55. #define TRUE_ (1)
  56. #define FALSE_ (0)
  57. /* Extern is for use with -E */
  58. #ifndef Extern
  59. #define Extern extern
  60. #endif
  61. /* I/O stuff */
  62. typedef int flag;
  63. typedef int ftnlen;
  64. typedef int ftnint;
  65. /*external read, write*/
  66. typedef struct
  67. { flag cierr;
  68. ftnint ciunit;
  69. flag ciend;
  70. char *cifmt;
  71. ftnint cirec;
  72. } cilist;
  73. /*internal read, write*/
  74. typedef struct
  75. { flag icierr;
  76. char *iciunit;
  77. flag iciend;
  78. char *icifmt;
  79. ftnint icirlen;
  80. ftnint icirnum;
  81. } icilist;
  82. /*open*/
  83. typedef struct
  84. { flag oerr;
  85. ftnint ounit;
  86. char *ofnm;
  87. ftnlen ofnmlen;
  88. char *osta;
  89. char *oacc;
  90. char *ofm;
  91. ftnint orl;
  92. char *oblnk;
  93. } olist;
  94. /*close*/
  95. typedef struct
  96. { flag cerr;
  97. ftnint cunit;
  98. char *csta;
  99. } cllist;
  100. /*rewind, backspace, endfile*/
  101. typedef struct
  102. { flag aerr;
  103. ftnint aunit;
  104. } alist;
  105. /* inquire */
  106. typedef struct
  107. { flag inerr;
  108. ftnint inunit;
  109. char *infile;
  110. ftnlen infilen;
  111. ftnint *inex; /*parameters in standard's order*/
  112. ftnint *inopen;
  113. ftnint *innum;
  114. ftnint *innamed;
  115. char *inname;
  116. ftnlen innamlen;
  117. char *inacc;
  118. ftnlen inacclen;
  119. char *inseq;
  120. ftnlen inseqlen;
  121. char *indir;
  122. ftnlen indirlen;
  123. char *infmt;
  124. ftnlen infmtlen;
  125. char *inform;
  126. ftnint informlen;
  127. char *inunf;
  128. ftnlen inunflen;
  129. ftnint *inrecl;
  130. ftnint *innrec;
  131. char *inblank;
  132. ftnlen inblanklen;
  133. } inlist;
  134. #define VOID void
  135. union Multitype { /* for multiple entry points */
  136. integer1 g;
  137. shortint h;
  138. integer i;
  139. /* longint j; */
  140. real r;
  141. doublereal d;
  142. complex c;
  143. doublecomplex z;
  144. };
  145. typedef union Multitype Multitype;
  146. struct Vardesc { /* for Namelist */
  147. char *name;
  148. char *addr;
  149. ftnlen *dims;
  150. int type;
  151. };
  152. typedef struct Vardesc Vardesc;
  153. struct Namelist {
  154. char *name;
  155. Vardesc **vars;
  156. int nvars;
  157. };
  158. typedef struct Namelist Namelist;
  159. #define abs(x) ((x) >= 0 ? (x) : -(x))
  160. #define dabs(x) (fabs(x))
  161. #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
  162. #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
  163. #define dmin(a,b) (f2cmin(a,b))
  164. #define dmax(a,b) (f2cmax(a,b))
  165. #define bit_test(a,b) ((a) >> (b) & 1)
  166. #define bit_clear(a,b) ((a) & ~((uinteger)1 << (b)))
  167. #define bit_set(a,b) ((a) | ((uinteger)1 << (b)))
  168. #define abort_() { sig_die("Fortran abort routine called", 1); }
  169. #define c_abs(z) (cabsf(Cf(z)))
  170. #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
  171. #ifdef _MSC_VER
  172. #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
  173. #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
  174. #else
  175. #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
  176. #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
  177. #endif
  178. #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
  179. #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
  180. #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
  181. //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
  182. #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
  183. #define d_abs(x) (fabs(*(x)))
  184. #define d_acos(x) (acos(*(x)))
  185. #define d_asin(x) (asin(*(x)))
  186. #define d_atan(x) (atan(*(x)))
  187. #define d_atn2(x, y) (atan2(*(x),*(y)))
  188. #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
  189. #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
  190. #define d_cos(x) (cos(*(x)))
  191. #define d_cosh(x) (cosh(*(x)))
  192. #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
  193. #define d_exp(x) (exp(*(x)))
  194. #define d_imag(z) (cimag(Cd(z)))
  195. #define r_imag(z) (cimagf(Cf(z)))
  196. #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  197. #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
  198. #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  199. #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
  200. #define d_log(x) (log(*(x)))
  201. #define d_mod(x, y) (fmod(*(x), *(y)))
  202. #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
  203. #define d_nint(x) u_nint(*(x))
  204. #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
  205. #define d_sign(a,b) u_sign(*(a),*(b))
  206. #define r_sign(a,b) u_sign(*(a),*(b))
  207. #define d_sin(x) (sin(*(x)))
  208. #define d_sinh(x) (sinh(*(x)))
  209. #define d_sqrt(x) (sqrt(*(x)))
  210. #define d_tan(x) (tan(*(x)))
  211. #define d_tanh(x) (tanh(*(x)))
  212. #define i_abs(x) abs(*(x))
  213. #define i_dnnt(x) ((integer)u_nint(*(x)))
  214. #define i_len(s, n) (n)
  215. #define i_nint(x) ((integer)u_nint(*(x)))
  216. #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
  217. #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
  218. #define pow_si(B,E) spow_ui(*(B),*(E))
  219. #define pow_ri(B,E) spow_ui(*(B),*(E))
  220. #define pow_di(B,E) dpow_ui(*(B),*(E))
  221. #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
  222. #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
  223. #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
  224. #define s_cat(lpp, rpp, rnp, np, llp) { ftnlen i, nc, ll; char *f__rp, *lp; ll = (llp); lp = (lpp); for(i=0; i < (int)*(np); ++i) { nc = ll; if((rnp)[i] < nc) nc = (rnp)[i]; ll -= nc; f__rp = (rpp)[i]; while(--nc >= 0) *lp++ = *(f__rp)++; } while(--ll >= 0) *lp++ = ' '; }
  225. #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
  226. #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
  227. #define sig_die(s, kill) { exit(1); }
  228. #define s_stop(s, n) {exit(0);}
  229. static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
  230. #define z_abs(z) (cabs(Cd(z)))
  231. #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
  232. #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
  233. #define myexit_() break;
  234. #define mycycle_() continue;
  235. #define myceiling_(w) {ceil(w)}
  236. #define myhuge_(w) {HUGE_VAL}
  237. //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
  238. #define mymaxloc_(w,s,e,n) dmaxloc_(w,*(s),*(e),n)
  239. #define myexp_(w) my_expfunc(w)
  240. static int my_expfunc(double *x) {int e; (void)frexp(*x,&e); return e;}
  241. /* procedure parameter types for -A and -C++ */
  242. #define F2C_proc_par_types 1
  243. #ifdef __cplusplus
  244. typedef logical (*L_fp)(...);
  245. #else
  246. typedef logical (*L_fp)();
  247. #endif
  248. static float spow_ui(float x, integer n) {
  249. float pow=1.0; unsigned long int u;
  250. if(n != 0) {
  251. if(n < 0) n = -n, x = 1/x;
  252. for(u = n; ; ) {
  253. if(u & 01) pow *= x;
  254. if(u >>= 1) x *= x;
  255. else break;
  256. }
  257. }
  258. return pow;
  259. }
  260. static double dpow_ui(double x, integer n) {
  261. double pow=1.0; unsigned long int u;
  262. if(n != 0) {
  263. if(n < 0) n = -n, x = 1/x;
  264. for(u = n; ; ) {
  265. if(u & 01) pow *= x;
  266. if(u >>= 1) x *= x;
  267. else break;
  268. }
  269. }
  270. return pow;
  271. }
  272. #ifdef _MSC_VER
  273. static _Fcomplex cpow_ui(complex x, integer n) {
  274. complex pow={1.0,0.0}; unsigned long int u;
  275. if(n != 0) {
  276. if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
  277. for(u = n; ; ) {
  278. if(u & 01) pow.r *= x.r, pow.i *= x.i;
  279. if(u >>= 1) x.r *= x.r, x.i *= x.i;
  280. else break;
  281. }
  282. }
  283. _Fcomplex p={pow.r, pow.i};
  284. return p;
  285. }
  286. #else
  287. static _Complex float cpow_ui(_Complex float x, integer n) {
  288. _Complex float pow=1.0; unsigned long int u;
  289. if(n != 0) {
  290. if(n < 0) n = -n, x = 1/x;
  291. for(u = n; ; ) {
  292. if(u & 01) pow *= x;
  293. if(u >>= 1) x *= x;
  294. else break;
  295. }
  296. }
  297. return pow;
  298. }
  299. #endif
  300. #ifdef _MSC_VER
  301. static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
  302. _Dcomplex pow={1.0,0.0}; unsigned long int u;
  303. if(n != 0) {
  304. if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
  305. for(u = n; ; ) {
  306. if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
  307. if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
  308. else break;
  309. }
  310. }
  311. _Dcomplex p = {pow._Val[0], pow._Val[1]};
  312. return p;
  313. }
  314. #else
  315. static _Complex double zpow_ui(_Complex double x, integer n) {
  316. _Complex double pow=1.0; unsigned long int u;
  317. if(n != 0) {
  318. if(n < 0) n = -n, x = 1/x;
  319. for(u = n; ; ) {
  320. if(u & 01) pow *= x;
  321. if(u >>= 1) x *= x;
  322. else break;
  323. }
  324. }
  325. return pow;
  326. }
  327. #endif
  328. static integer pow_ii(integer x, integer n) {
  329. integer pow; unsigned long int u;
  330. if (n <= 0) {
  331. if (n == 0 || x == 1) pow = 1;
  332. else if (x != -1) pow = x == 0 ? 1/x : 0;
  333. else n = -n;
  334. }
  335. if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
  336. u = n;
  337. for(pow = 1; ; ) {
  338. if(u & 01) pow *= x;
  339. if(u >>= 1) x *= x;
  340. else break;
  341. }
  342. }
  343. return pow;
  344. }
  345. static integer dmaxloc_(double *w, integer s, integer e, integer *n)
  346. {
  347. double m; integer i, mi;
  348. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  349. if (w[i-1]>m) mi=i ,m=w[i-1];
  350. return mi-s+1;
  351. }
  352. static integer smaxloc_(float *w, integer s, integer e, integer *n)
  353. {
  354. float m; integer i, mi;
  355. for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
  356. if (w[i-1]>m) mi=i ,m=w[i-1];
  357. return mi-s+1;
  358. }
  359. static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  360. integer n = *n_, incx = *incx_, incy = *incy_, i;
  361. #ifdef _MSC_VER
  362. _Fcomplex zdotc = {0.0, 0.0};
  363. if (incx == 1 && incy == 1) {
  364. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  365. zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
  366. zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
  367. }
  368. } else {
  369. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  370. zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
  371. zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
  372. }
  373. }
  374. pCf(z) = zdotc;
  375. }
  376. #else
  377. _Complex float zdotc = 0.0;
  378. if (incx == 1 && incy == 1) {
  379. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  380. zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
  381. }
  382. } else {
  383. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  384. zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
  385. }
  386. }
  387. pCf(z) = zdotc;
  388. }
  389. #endif
  390. static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  391. integer n = *n_, incx = *incx_, incy = *incy_, i;
  392. #ifdef _MSC_VER
  393. _Dcomplex zdotc = {0.0, 0.0};
  394. if (incx == 1 && incy == 1) {
  395. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  396. zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
  397. zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
  398. }
  399. } else {
  400. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  401. zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
  402. zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
  403. }
  404. }
  405. pCd(z) = zdotc;
  406. }
  407. #else
  408. _Complex double zdotc = 0.0;
  409. if (incx == 1 && incy == 1) {
  410. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  411. zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
  412. }
  413. } else {
  414. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  415. zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
  416. }
  417. }
  418. pCd(z) = zdotc;
  419. }
  420. #endif
  421. static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
  422. integer n = *n_, incx = *incx_, incy = *incy_, i;
  423. #ifdef _MSC_VER
  424. _Fcomplex zdotc = {0.0, 0.0};
  425. if (incx == 1 && incy == 1) {
  426. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  427. zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
  428. zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
  429. }
  430. } else {
  431. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  432. zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
  433. zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
  434. }
  435. }
  436. pCf(z) = zdotc;
  437. }
  438. #else
  439. _Complex float zdotc = 0.0;
  440. if (incx == 1 && incy == 1) {
  441. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  442. zdotc += Cf(&x[i]) * Cf(&y[i]);
  443. }
  444. } else {
  445. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  446. zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
  447. }
  448. }
  449. pCf(z) = zdotc;
  450. }
  451. #endif
  452. static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
  453. integer n = *n_, incx = *incx_, incy = *incy_, i;
  454. #ifdef _MSC_VER
  455. _Dcomplex zdotc = {0.0, 0.0};
  456. if (incx == 1 && incy == 1) {
  457. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  458. zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
  459. zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
  460. }
  461. } else {
  462. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  463. zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
  464. zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
  465. }
  466. }
  467. pCd(z) = zdotc;
  468. }
  469. #else
  470. _Complex double zdotc = 0.0;
  471. if (incx == 1 && incy == 1) {
  472. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  473. zdotc += Cd(&x[i]) * Cd(&y[i]);
  474. }
  475. } else {
  476. for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
  477. zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
  478. }
  479. }
  480. pCd(z) = zdotc;
  481. }
  482. #endif
  483. /* -- translated by f2c (version 20000121).
  484. You must link the resulting object file with the libraries:
  485. -lf2c -lm (in that order)
  486. */
  487. /* > \brief \b DLARMM */
  488. /* Definition: */
  489. /* =========== */
  490. /* DOUBLE PRECISION FUNCTION DLARMM( ANORM, BNORM, CNORM ) */
  491. /* DOUBLE PRECISION ANORM, BNORM, CNORM */
  492. /* > \par Purpose: */
  493. /* ======= */
  494. /* > */
  495. /* > \verbatim */
  496. /* > */
  497. /* > DLARMM returns a factor s in (0, 1] such that the linear updates */
  498. /* > */
  499. /* > (s * C) - A * (s * B) and (s * C) - (s * A) * B */
  500. /* > */
  501. /* > cannot overflow, where A, B, and C are matrices of conforming */
  502. /* > dimensions. */
  503. /* > */
  504. /* > This is an auxiliary routine so there is no argument checking. */
  505. /* > \endverbatim */
  506. /* Arguments: */
  507. /* ========= */
  508. /* > \param[in] ANORM */
  509. /* > \verbatim */
  510. /* > ANORM is DOUBLE PRECISION */
  511. /* > The infinity norm of A. ANORM >= 0. */
  512. /* > The number of rows of the matrix A. M >= 0. */
  513. /* > \endverbatim */
  514. /* > */
  515. /* > \param[in] BNORM */
  516. /* > \verbatim */
  517. /* > BNORM is DOUBLE PRECISION */
  518. /* > The infinity norm of B. BNORM >= 0. */
  519. /* > \endverbatim */
  520. /* > */
  521. /* > \param[in] CNORM */
  522. /* > \verbatim */
  523. /* > CNORM is DOUBLE PRECISION */
  524. /* > The infinity norm of C. CNORM >= 0. */
  525. /* > \endverbatim */
  526. /* > */
  527. /* > */
  528. /* ===================================================================== */
  529. /* > References: */
  530. /* > C. C. Kjelgaard Mikkelsen and L. Karlsson, Blocked Algorithms for */
  531. /* > Robust Solution of Triangular Linear Systems. In: International */
  532. /* > Conference on Parallel Processing and Applied Mathematics, pages */
  533. /* > 68--78. Springer, 2017. */
  534. /* > */
  535. /* > \ingroup OTHERauxiliary */
  536. /* ===================================================================== */
  537. doublereal dlarmm_(doublereal *anorm, doublereal *bnorm, doublereal *cnorm)
  538. {
  539. /* System generated locals */
  540. doublereal ret_val;
  541. /* Local variables */
  542. extern doublereal dlamch_(char *);
  543. doublereal bignum, smlnum;
  544. /* Determine machine dependent parameters to control overflow. */
  545. smlnum = dlamch_("Safe minimum") / dlamch_("Precision");
  546. bignum = 1. / smlnum / 4.;
  547. /* Compute a scale factor. */
  548. ret_val = 1.;
  549. if (*bnorm <= 1.) {
  550. if (*anorm * *bnorm > bignum - *cnorm) {
  551. ret_val = .5;
  552. }
  553. } else {
  554. if (*anorm > (bignum - *cnorm) / *bnorm) {
  555. ret_val = .5 / *bnorm;
  556. }
  557. }
  558. return ret_val;
  559. /* ==== End of DLARMM ==== */
  560. } /* dlarmm_ */