You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

ctrttf.f 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534
  1. *> \brief \b CTRTTF copies a triangular matrix from the standard full format (TR) to the rectangular full packed format (TF).
  2. *
  3. * =========== DOCUMENTATION ===========
  4. *
  5. * Online html documentation available at
  6. * http://www.netlib.org/lapack/explore-html/
  7. *
  8. *> \htmlonly
  9. *> Download CTRTTF + dependencies
  10. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctrttf.f">
  11. *> [TGZ]</a>
  12. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctrttf.f">
  13. *> [ZIP]</a>
  14. *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctrttf.f">
  15. *> [TXT]</a>
  16. *> \endhtmlonly
  17. *
  18. * Definition:
  19. * ===========
  20. *
  21. * SUBROUTINE CTRTTF( TRANSR, UPLO, N, A, LDA, ARF, INFO )
  22. *
  23. * .. Scalar Arguments ..
  24. * CHARACTER TRANSR, UPLO
  25. * INTEGER INFO, N, LDA
  26. * ..
  27. * .. Array Arguments ..
  28. * COMPLEX A( 0: LDA-1, 0: * ), ARF( 0: * )
  29. * ..
  30. *
  31. *
  32. *> \par Purpose:
  33. * =============
  34. *>
  35. *> \verbatim
  36. *>
  37. *> CTRTTF copies a triangular matrix A from standard full format (TR)
  38. *> to rectangular full packed format (TF) .
  39. *> \endverbatim
  40. *
  41. * Arguments:
  42. * ==========
  43. *
  44. *> \param[in] TRANSR
  45. *> \verbatim
  46. *> TRANSR is CHARACTER*1
  47. *> = 'N': ARF in Normal mode is wanted;
  48. *> = 'C': ARF in Conjugate Transpose mode is wanted;
  49. *> \endverbatim
  50. *>
  51. *> \param[in] UPLO
  52. *> \verbatim
  53. *> UPLO is CHARACTER*1
  54. *> = 'U': A is upper triangular;
  55. *> = 'L': A is lower triangular.
  56. *> \endverbatim
  57. *>
  58. *> \param[in] N
  59. *> \verbatim
  60. *> N is INTEGER
  61. *> The order of the matrix A. N >= 0.
  62. *> \endverbatim
  63. *>
  64. *> \param[in] A
  65. *> \verbatim
  66. *> A is COMPLEX array, dimension ( LDA, N )
  67. *> On entry, the triangular matrix A. If UPLO = 'U', the
  68. *> leading N-by-N upper triangular part of the array A contains
  69. *> the upper triangular matrix, and the strictly lower
  70. *> triangular part of A is not referenced. If UPLO = 'L', the
  71. *> leading N-by-N lower triangular part of the array A contains
  72. *> the lower triangular matrix, and the strictly upper
  73. *> triangular part of A is not referenced.
  74. *> \endverbatim
  75. *>
  76. *> \param[in] LDA
  77. *> \verbatim
  78. *> LDA is INTEGER
  79. *> The leading dimension of the matrix A. LDA >= max(1,N).
  80. *> \endverbatim
  81. *>
  82. *> \param[out] ARF
  83. *> \verbatim
  84. *> ARF is COMPLEX array, dimension ( N*(N+1)/2 ),
  85. *> On exit, the upper or lower triangular matrix A stored in
  86. *> RFP format. For a further discussion see Notes below.
  87. *> \endverbatim
  88. *>
  89. *> \param[out] INFO
  90. *> \verbatim
  91. *> INFO is INTEGER
  92. *> = 0: successful exit
  93. *> < 0: if INFO = -i, the i-th argument had an illegal value
  94. *> \endverbatim
  95. *
  96. * Authors:
  97. * ========
  98. *
  99. *> \author Univ. of Tennessee
  100. *> \author Univ. of California Berkeley
  101. *> \author Univ. of Colorado Denver
  102. *> \author NAG Ltd.
  103. *
  104. *> \ingroup complexOTHERcomputational
  105. *
  106. *> \par Further Details:
  107. * =====================
  108. *>
  109. *> \verbatim
  110. *>
  111. *> We first consider Standard Packed Format when N is even.
  112. *> We give an example where N = 6.
  113. *>
  114. *> AP is Upper AP is Lower
  115. *>
  116. *> 00 01 02 03 04 05 00
  117. *> 11 12 13 14 15 10 11
  118. *> 22 23 24 25 20 21 22
  119. *> 33 34 35 30 31 32 33
  120. *> 44 45 40 41 42 43 44
  121. *> 55 50 51 52 53 54 55
  122. *>
  123. *>
  124. *> Let TRANSR = 'N'. RFP holds AP as follows:
  125. *> For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
  126. *> three columns of AP upper. The lower triangle A(4:6,0:2) consists of
  127. *> conjugate-transpose of the first three columns of AP upper.
  128. *> For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
  129. *> three columns of AP lower. The upper triangle A(0:2,0:2) consists of
  130. *> conjugate-transpose of the last three columns of AP lower.
  131. *> To denote conjugate we place -- above the element. This covers the
  132. *> case N even and TRANSR = 'N'.
  133. *>
  134. *> RFP A RFP A
  135. *>
  136. *> -- -- --
  137. *> 03 04 05 33 43 53
  138. *> -- --
  139. *> 13 14 15 00 44 54
  140. *> --
  141. *> 23 24 25 10 11 55
  142. *>
  143. *> 33 34 35 20 21 22
  144. *> --
  145. *> 00 44 45 30 31 32
  146. *> -- --
  147. *> 01 11 55 40 41 42
  148. *> -- -- --
  149. *> 02 12 22 50 51 52
  150. *>
  151. *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  152. *> transpose of RFP A above. One therefore gets:
  153. *>
  154. *>
  155. *> RFP A RFP A
  156. *>
  157. *> -- -- -- -- -- -- -- -- -- --
  158. *> 03 13 23 33 00 01 02 33 00 10 20 30 40 50
  159. *> -- -- -- -- -- -- -- -- -- --
  160. *> 04 14 24 34 44 11 12 43 44 11 21 31 41 51
  161. *> -- -- -- -- -- -- -- -- -- --
  162. *> 05 15 25 35 45 55 22 53 54 55 22 32 42 52
  163. *>
  164. *>
  165. *> We next consider Standard Packed Format when N is odd.
  166. *> We give an example where N = 5.
  167. *>
  168. *> AP is Upper AP is Lower
  169. *>
  170. *> 00 01 02 03 04 00
  171. *> 11 12 13 14 10 11
  172. *> 22 23 24 20 21 22
  173. *> 33 34 30 31 32 33
  174. *> 44 40 41 42 43 44
  175. *>
  176. *>
  177. *> Let TRANSR = 'N'. RFP holds AP as follows:
  178. *> For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
  179. *> three columns of AP upper. The lower triangle A(3:4,0:1) consists of
  180. *> conjugate-transpose of the first two columns of AP upper.
  181. *> For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
  182. *> three columns of AP lower. The upper triangle A(0:1,1:2) consists of
  183. *> conjugate-transpose of the last two columns of AP lower.
  184. *> To denote conjugate we place -- above the element. This covers the
  185. *> case N odd and TRANSR = 'N'.
  186. *>
  187. *> RFP A RFP A
  188. *>
  189. *> -- --
  190. *> 02 03 04 00 33 43
  191. *> --
  192. *> 12 13 14 10 11 44
  193. *>
  194. *> 22 23 24 20 21 22
  195. *> --
  196. *> 00 33 34 30 31 32
  197. *> -- --
  198. *> 01 11 44 40 41 42
  199. *>
  200. *> Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate-
  201. *> transpose of RFP A above. One therefore gets:
  202. *>
  203. *>
  204. *> RFP A RFP A
  205. *>
  206. *> -- -- -- -- -- -- -- -- --
  207. *> 02 12 22 00 01 00 10 20 30 40 50
  208. *> -- -- -- -- -- -- -- -- --
  209. *> 03 13 23 33 11 33 11 21 31 41 51
  210. *> -- -- -- -- -- -- -- -- --
  211. *> 04 14 24 34 44 43 44 22 32 42 52
  212. *> \endverbatim
  213. *>
  214. * =====================================================================
  215. SUBROUTINE CTRTTF( TRANSR, UPLO, N, A, LDA, ARF, INFO )
  216. *
  217. * -- LAPACK computational routine --
  218. * -- LAPACK is a software package provided by Univ. of Tennessee, --
  219. * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
  220. *
  221. * .. Scalar Arguments ..
  222. CHARACTER TRANSR, UPLO
  223. INTEGER INFO, N, LDA
  224. * ..
  225. * .. Array Arguments ..
  226. COMPLEX A( 0: LDA-1, 0: * ), ARF( 0: * )
  227. * ..
  228. *
  229. * =====================================================================
  230. *
  231. * .. Parameters ..
  232. * ..
  233. * .. Local Scalars ..
  234. LOGICAL LOWER, NISODD, NORMALTRANSR
  235. INTEGER I, IJ, J, K, L, N1, N2, NT, NX2, NP1X2
  236. * ..
  237. * .. External Functions ..
  238. LOGICAL LSAME
  239. EXTERNAL LSAME
  240. * ..
  241. * .. External Subroutines ..
  242. EXTERNAL XERBLA
  243. * ..
  244. * .. Intrinsic Functions ..
  245. INTRINSIC CONJG, MAX, MOD
  246. * ..
  247. * .. Executable Statements ..
  248. *
  249. * Test the input parameters.
  250. *
  251. INFO = 0
  252. NORMALTRANSR = LSAME( TRANSR, 'N' )
  253. LOWER = LSAME( UPLO, 'L' )
  254. IF( .NOT.NORMALTRANSR .AND. .NOT.LSAME( TRANSR, 'C' ) ) THEN
  255. INFO = -1
  256. ELSE IF( .NOT.LOWER .AND. .NOT.LSAME( UPLO, 'U' ) ) THEN
  257. INFO = -2
  258. ELSE IF( N.LT.0 ) THEN
  259. INFO = -3
  260. ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
  261. INFO = -5
  262. END IF
  263. IF( INFO.NE.0 ) THEN
  264. CALL XERBLA( 'CTRTTF', -INFO )
  265. RETURN
  266. END IF
  267. *
  268. * Quick return if possible
  269. *
  270. IF( N.LE.1 ) THEN
  271. IF( N.EQ.1 ) THEN
  272. IF( NORMALTRANSR ) THEN
  273. ARF( 0 ) = A( 0, 0 )
  274. ELSE
  275. ARF( 0 ) = CONJG( A( 0, 0 ) )
  276. END IF
  277. END IF
  278. RETURN
  279. END IF
  280. *
  281. * Size of array ARF(1:2,0:nt-1)
  282. *
  283. NT = N*( N+1 ) / 2
  284. *
  285. * set N1 and N2 depending on LOWER: for N even N1=N2=K
  286. *
  287. IF( LOWER ) THEN
  288. N2 = N / 2
  289. N1 = N - N2
  290. ELSE
  291. N1 = N / 2
  292. N2 = N - N1
  293. END IF
  294. *
  295. * If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2.
  296. * If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is
  297. * N--by--(N+1)/2.
  298. *
  299. IF( MOD( N, 2 ).EQ.0 ) THEN
  300. K = N / 2
  301. NISODD = .FALSE.
  302. IF( .NOT.LOWER )
  303. $ NP1X2 = N + N + 2
  304. ELSE
  305. NISODD = .TRUE.
  306. IF( .NOT.LOWER )
  307. $ NX2 = N + N
  308. END IF
  309. *
  310. IF( NISODD ) THEN
  311. *
  312. * N is odd
  313. *
  314. IF( NORMALTRANSR ) THEN
  315. *
  316. * N is odd and TRANSR = 'N'
  317. *
  318. IF( LOWER ) THEN
  319. *
  320. * SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) )
  321. * T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0)
  322. * T1 -> a(0), T2 -> a(n), S -> a(n1); lda=n
  323. *
  324. IJ = 0
  325. DO J = 0, N2
  326. DO I = N1, N2 + J
  327. ARF( IJ ) = CONJG( A( N2+J, I ) )
  328. IJ = IJ + 1
  329. END DO
  330. DO I = J, N - 1
  331. ARF( IJ ) = A( I, J )
  332. IJ = IJ + 1
  333. END DO
  334. END DO
  335. *
  336. ELSE
  337. *
  338. * SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1)
  339. * T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0)
  340. * T1 -> a(n2), T2 -> a(n1), S -> a(0); lda=n
  341. *
  342. IJ = NT - N
  343. DO J = N - 1, N1, -1
  344. DO I = 0, J
  345. ARF( IJ ) = A( I, J )
  346. IJ = IJ + 1
  347. END DO
  348. DO L = J - N1, N1 - 1
  349. ARF( IJ ) = CONJG( A( J-N1, L ) )
  350. IJ = IJ + 1
  351. END DO
  352. IJ = IJ - NX2
  353. END DO
  354. *
  355. END IF
  356. *
  357. ELSE
  358. *
  359. * N is odd and TRANSR = 'C'
  360. *
  361. IF( LOWER ) THEN
  362. *
  363. * SRPA for LOWER, TRANSPOSE and N is odd
  364. * T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1)
  365. * T1 -> A(0+0) , T2 -> A(1+0) , S -> A(0+n1*n1); lda=n1
  366. *
  367. IJ = 0
  368. DO J = 0, N2 - 1
  369. DO I = 0, J
  370. ARF( IJ ) = CONJG( A( J, I ) )
  371. IJ = IJ + 1
  372. END DO
  373. DO I = N1 + J, N - 1
  374. ARF( IJ ) = A( I, N1+J )
  375. IJ = IJ + 1
  376. END DO
  377. END DO
  378. DO J = N2, N - 1
  379. DO I = 0, N1 - 1
  380. ARF( IJ ) = CONJG( A( J, I ) )
  381. IJ = IJ + 1
  382. END DO
  383. END DO
  384. *
  385. ELSE
  386. *
  387. * SRPA for UPPER, TRANSPOSE and N is odd
  388. * T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0)
  389. * T1 -> A(n2*n2), T2 -> A(n1*n2), S -> A(0); lda=n2
  390. *
  391. IJ = 0
  392. DO J = 0, N1
  393. DO I = N1, N - 1
  394. ARF( IJ ) = CONJG( A( J, I ) )
  395. IJ = IJ + 1
  396. END DO
  397. END DO
  398. DO J = 0, N1 - 1
  399. DO I = 0, J
  400. ARF( IJ ) = A( I, J )
  401. IJ = IJ + 1
  402. END DO
  403. DO L = N2 + J, N - 1
  404. ARF( IJ ) = CONJG( A( N2+J, L ) )
  405. IJ = IJ + 1
  406. END DO
  407. END DO
  408. *
  409. END IF
  410. *
  411. END IF
  412. *
  413. ELSE
  414. *
  415. * N is even
  416. *
  417. IF( NORMALTRANSR ) THEN
  418. *
  419. * N is even and TRANSR = 'N'
  420. *
  421. IF( LOWER ) THEN
  422. *
  423. * SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) )
  424. * T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0)
  425. * T1 -> a(1), T2 -> a(0), S -> a(k+1); lda=n+1
  426. *
  427. IJ = 0
  428. DO J = 0, K - 1
  429. DO I = K, K + J
  430. ARF( IJ ) = CONJG( A( K+J, I ) )
  431. IJ = IJ + 1
  432. END DO
  433. DO I = J, N - 1
  434. ARF( IJ ) = A( I, J )
  435. IJ = IJ + 1
  436. END DO
  437. END DO
  438. *
  439. ELSE
  440. *
  441. * SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) )
  442. * T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0)
  443. * T1 -> a(k+1), T2 -> a(k), S -> a(0); lda=n+1
  444. *
  445. IJ = NT - N - 1
  446. DO J = N - 1, K, -1
  447. DO I = 0, J
  448. ARF( IJ ) = A( I, J )
  449. IJ = IJ + 1
  450. END DO
  451. DO L = J - K, K - 1
  452. ARF( IJ ) = CONJG( A( J-K, L ) )
  453. IJ = IJ + 1
  454. END DO
  455. IJ = IJ - NP1X2
  456. END DO
  457. *
  458. END IF
  459. *
  460. ELSE
  461. *
  462. * N is even and TRANSR = 'C'
  463. *
  464. IF( LOWER ) THEN
  465. *
  466. * SRPA for LOWER, TRANSPOSE and N is even (see paper, A=B)
  467. * T1 -> A(0,1) , T2 -> A(0,0) , S -> A(0,k+1) :
  468. * T1 -> A(0+k) , T2 -> A(0+0) , S -> A(0+k*(k+1)); lda=k
  469. *
  470. IJ = 0
  471. J = K
  472. DO I = K, N - 1
  473. ARF( IJ ) = A( I, J )
  474. IJ = IJ + 1
  475. END DO
  476. DO J = 0, K - 2
  477. DO I = 0, J
  478. ARF( IJ ) = CONJG( A( J, I ) )
  479. IJ = IJ + 1
  480. END DO
  481. DO I = K + 1 + J, N - 1
  482. ARF( IJ ) = A( I, K+1+J )
  483. IJ = IJ + 1
  484. END DO
  485. END DO
  486. DO J = K - 1, N - 1
  487. DO I = 0, K - 1
  488. ARF( IJ ) = CONJG( A( J, I ) )
  489. IJ = IJ + 1
  490. END DO
  491. END DO
  492. *
  493. ELSE
  494. *
  495. * SRPA for UPPER, TRANSPOSE and N is even (see paper, A=B)
  496. * T1 -> A(0,k+1) , T2 -> A(0,k) , S -> A(0,0)
  497. * T1 -> A(0+k*(k+1)) , T2 -> A(0+k*k) , S -> A(0+0)); lda=k
  498. *
  499. IJ = 0
  500. DO J = 0, K
  501. DO I = K, N - 1
  502. ARF( IJ ) = CONJG( A( J, I ) )
  503. IJ = IJ + 1
  504. END DO
  505. END DO
  506. DO J = 0, K - 2
  507. DO I = 0, J
  508. ARF( IJ ) = A( I, J )
  509. IJ = IJ + 1
  510. END DO
  511. DO L = K + 1 + J, N - 1
  512. ARF( IJ ) = CONJG( A( K+1+J, L ) )
  513. IJ = IJ + 1
  514. END DO
  515. END DO
  516. *
  517. * Note that here J = K-1
  518. *
  519. DO I = 0, J
  520. ARF( IJ ) = A( I, J )
  521. IJ = IJ + 1
  522. END DO
  523. *
  524. END IF
  525. *
  526. END IF
  527. *
  528. END IF
  529. *
  530. RETURN
  531. *
  532. * End of CTRTTF
  533. *
  534. END